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CRISPR screen of venetoclax response-associated genes
identifies transcription factor ZNF740 as a key functional
regulator
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BCL-2 inhibitors such as venetoclax offer therapeutic promise in acute myeloid leukemia (AML) and other cancers, but drug
resistance poses a significant challenge. It is crucial to understand the mechanisms that regulate venetoclax response. While
correlative studies have identified numerous genes linked to venetoclax sensitivity, their direct impact on the drug response
remains unclear. In this study, we targeted around 1400 genes upregulated in venetoclax-sensitive primary AML samples and
carried out a CRISPR knockout screen to evaluate their direct effects on venetoclax response. Our screen identified the transcription
factor ZNF740 as a critical regulator, with its expression consistently predicting venetoclax sensitivity across subtypes of the FAB
classification. ZNF740 depletion leads to increased resistance to ventoclax, while its overexpression enhances sensitivity to the drug.
Mechanistically, our integrative transcriptomic and genomic analysis identifies NOXA as a direct target of ZNF740, which negatively
regulates MCL-1 protein stability. Loss of ZNF740 downregulates NOXA and increases the steady state protein levels of MCL-1 in
AML cells. Restoring NOXA expression in ZNF740-depleted cells re-sensitizes AML cells to venetoclax treatment. Furthermore, we
demonstrated that dual targeting of MCL-1 and BCL-2 effectively treats ZNF740-deficient AML in vivo. Together, our work
systematically elucidates the causal relationship between venetoclax response signature genes and establishes ZNF740 as a novel
transcription factor regulating venetoclax sensitivity.
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INTRODUCTION
Acute myeloid leukemia (AML) is a hematopoietic malignancy
marked by abnormal cell proliferation, hindered differentiation,
and disrupted apoptosis. Despite treatment advancements, the
prognosis remains poor, with less than 30% of adult AML patients
surviving over five years [1]. AML cells often utilize anti-apoptotic
mechanisms to resist therapy-induced apoptosis. The introduction
of the BCL-2 inhibitor venetoclax, especially in combination with
hypomethylating agents, has been a notable development in AML
treatment [2, 3]. Yet, the challenge of drug resistance significantly
impacts its effectiveness, highlighting the critical need to unravel
the mechanisms underlying venetoclax efficacy in AML.
The mechanisms of resistance to venetoclax in AML involve

various genetic, cellular, and metabolic processes [4]. Genetic
aberrations such as TP53 mutations, FLT3 kinase activation, and
other survival kinase signaling pathways, along with acquired loss-
of-function mutations in key apoptotic regulators like BAX,
contribute to adaptive resistance to venetoclax-based therapies
[5–9]. Additionally, overexpression of anti-apoptotic proteins such

as MCL-1, BCL-xL, and BCL2A1, which venetoclax does not target,
can negate the effects of BCL-2 inhibition, leading to reduced drug
efficacy [7, 10]. Recent studies also suggest mitochondrial
adaptations, cellular lineage bias, and alterations in metabolic
states as contributing factors to venetoclax resistance mechanisms
[11–15]. Despite these insights, the transcriptional mechanisms
regulating venetoclax response are less understood. In addition,
while transcriptome analyses in primary samples have identified
numerous genes linked to venetoclax sensitivity [16], it remains
crucial to distinguish between genes that play a direct role and
those that are simply associated.
In this study, we conducted CRISPR knockout screens to

interrogate the functional roles of genes associated with clinical
venetoclax sensitivity. By integrating genetic, pharmacological,
transcriptomic, and genomic approaches, we identified the
transcription factor ZNF740 as a crucial regulator of venetoclax
sensitivity and uncover a potential ZNF740-NOXA-MCL-1 axis that
governs the cellular response to BCL-2 inhibition in AML.
Furthermore, our findings demonstrate that combined inhibition
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of MCL-1 and BCL-2 may be used to effectively treat AMLs with
diminished ZNF740 expression.

RESULTS
CRISPR screen of venetoclax response-associated genes
reveals transcription factor ZNF740 as a key regulator
Previous studies in the BeatAML 2.0 project have pinpointed
thousands of genes correlated with up-front venetoclax response
[16], yet the causal role of these genes in influencing venetoclax
sensitivity remains unexplored. Here, we focused on 367 BeatAML
samples for which both gene expression and venetoclax response
data were available. The majority of these samples (248/367,
67.6%) were from initial diagnoses, while the remaining samples
were from cases of relapse, remission, or residual AML (Supple-
mentary Fig. 1A). We identified 1426 top genes whose expression
inversely correlated with venetoclax AUCs (area under the curve,
Pearson correlation r <−0.40) in these primary AML samples
(Supplementary Fig. 1B). We hypothesized that if any of these
genes were essential for venetoclax sensitivity, their absence
would lead to resistance. We introduced genetic perturbations by
infecting Cas9-expressing OCI-AML2 and MOLM-13 AML cells with
lentiviruses carrying a customized CRISPR knockout library. This
library included 7 single guide RNAs (sgRNAs) per gene for the
1426 target genes, along with 250 sgRNAs designated as negative
controls (Supplementary Table 1). Following transduction and
antibiotic selection, cells were subjected to either venetoclax or
vehicle (DMSO) treatment for 15 days. This timeframe allowed for
approximately 10 cell doublings to ensure enrichment of
resistance population. Genomic DNA was collected on the final
day of treatment from both venetoclax and DMSO-treated cells.
The PCR-amplified library of barcodes representing unique sgRNA
sequences obtained from genomic DNA underwent deep
sequencing and was analyzed using the MAGeCK pipeline (Fig.
1A). Our screen identified significant hits, with their depletion
associated with changes in venetoclax sensitivity (Fig. 1B, C). Given
that our CRISPR library was designed to target genes highly
expressed in venetoclax-sensitive AML samples, we focused on
the top hits, the depletion of which would lead to resistance to
venetoclax. In the OCI-AML2 cell line, the loss of genes such as
CDK6, OGT, PDS5A, ZNF740, BCL2, TIPRL, NONO, and SMARCB1 were
among the top enriched hits (Fig. 1B). In the MOLM-13 cells,
several genes emerged as resistance hits, including GTPBP3,
ZNF740, NUBPL, MRPS30, ZNRF1, PUS1, VIRMA-DT, and TMEM17 (Fig.
1C). Remarkably, ZNF740 was the sole top enriched gene common
to the screen results in both OCI-AML2 and MOLM-13 AML cell
lines. All 7 sgRNAs targeting ZNF740 showed significant enrich-
ment under venetoclax treatment compared to DMSO control (Fig.
1D), indicating a strong consistency across independent sgRNA
perturbations of the ZNF740 gene.
The expression of ZNF740 showed a strong negative correlation

with venetoclax AUC (r=−0.52, p= 2.71e-26) in the BeatAML 2.0
dataset (Fig. 1E), highlighting the clinical significance of ZNF740 in
venetoclax therapeutic response. Previous research has shown
that certain subtypes within the French-American-British (FAB)
classification, particularly AML-M4 and AML-M5, which represent a
more monocytic differentiation status of AML, exhibit resistance to
venetoclax treatment [7, 14, 17]. Interestingly, we found that
ZNF740 expression levels in AML-M4 and AML-M5 subtypes were
significantly lower compared to the other FAB subtypes (Fig. 1F),
which was consistent with our findings that ZNF740 loss results in
venetoclax resistance. Moreover, the correlation between ZNF740
expression level and venetoclax therapeutic response was not
limited to monocytic differentiation AML but also extended to
other FAB subtypes (Supplementary Fig. 1C, D), suggesting a
broader role for ZNF740 in venetoclax resistance in AML. Among
common AML mutations, ZNF740 was found to be expressed at
lower levels in AML subtypes associated with poor venetoclax

response, such as those with KRAS mutations [7], and at higher
levels in subtypes with better venetoclax response, such as NPM1
mutations [18] (Supplementary Fig. 1E).

ZNF740 is required for sustaining venetoclax sensitivity in
AML
To validate the role of ZNF740 in therapeutic response to
venetoclax in AML cells, we utilized competitive proliferative
assay to assess the impact of ZNF740 knockout on cell fitness
following treatment with venetoclax or DMSO in OCI-AML2 and
MOLM-13 cell lines (Fig. 2A). We selected two independent
sgRNAs targeting ZNF740 and a luciferase-targeting guide RNA as
a negative control. We confirmed that these two sgRNAs
targeting ZNF740 significantly reduced the protein level of
ZNF740 compared to control sgRNA using western blot analysis
(Fig. 2C). Notably, cells carrying ZNF740 sgRNAs did not show
affected proliferation in untreated conditions (Fig. 2B). However,
when treated with venetoclax, cells harboring ZNF740 sgRNAs, in
contrast to those with Luciferase sgRNA, exhibited a competitive
advantage over non-infected cells (Fig. 2B), which is consistent
with our screening results.
To explore the potential role of ZNF740 in venetoclax resistance,

we established stable cell lines with ZNF740 wildtype and
knockout in both OCI-AML2 and MOLM-13 cell lines. The depletion
of ZNF740 in these cell lines resulted in significant resistance to
venetoclax (Fig. 2D), with a much higher IC50 compared to those
with wildtype ZNF740 (Fig. 2E). In addition, the absence of ZNF740
also conferred resistance to the combination of venetoclax and
the hypomethylating agent 5-Azacytidine, a common regimen in
AML treatment (Supplementary Fig. 2A, B). Since elevated ZNF740
expression correlates with increased sensitivity to venetoclax in
primary AML samples (Fig. 1E), we examined if enhancing ZNF740
expression would further sensitize AML cells to venetoclax
treatment. Interestingly, inducing ZNF740 overexpression in OCI-
AML2 and MOLM-13 cell lines significantly increased their
sensitivity to venetoclax treatment, in contrast to cells transfected
with an empty vector (Fig. 2F–H). Together, these findings indicate
that ZNF740 is both essential and adequate for enhanced
venetoclax response in AML cells.

ZNF740 loss diminishes apoptotic response to venetoclax in
AML cells with increased MCL-1 protein expression
To evaluate the effect of ZNF740 knockout on venetoclax-induced
cell death, we measured early and late apoptosis by quantifying
Annexin-V and 7-AAD or DAPI positive cells through flow
cytometry after venetoclax treatment. In both OCI-AML2 and
MOLM-13 cell lines, cells with ZNF740 knockout showed a marked
decrease in the percentage of apoptotic cells (Fig. 3A–D and
Supplementary Fig. 3A, B).
The resistance mechanisms of venetoclax are closely linked to the

dysregulation of anti-apoptotic proteins like BCL-2, MCL-1, BCL-xL,
BCL2A1, and pro-apoptotic proteins, including BH3-only proteins
(BAD, BIM, PUMA) and effector proteins (BAX, BAK), as well as
mutations in TP53 [3, 6, 9, 19]. We next examined the expression
levels of BCL-2, MCL-1, BCL-xL, BIM, BAX, and TP53 in OCI-AML2 and
MOLM-13 cell lines following ZNF740 knockout using western
blotting. Both cell lines demonstrated a significant reduction in
ZNF740 protein. Interestingly, the expression levels of BCL-2, BCL-xL,
BIM, BAX, and TP53 remained largely unchanged, indicating that the
resistance induced by ZNF740 loss is not dependent on these
proteins (Fig. 3E). However, we observed a notable and consistent
increase in MCL-1 protein levels after ZNF740 knockout in OCI-AML2
and MOLM-13 cell lines (Fig. 3E, F). Elevated expression of MCL-1 is
one of the important mechanisms of venetoclax resistance, and
MCL-1 has been a promising target to overcome venetoclax
resistance with multiple inhibitors being evaluated in clinical trials
[20–22]. Considering ZNF740’s role in transcriptional regulation, we
examined MCL-1 regulation at the mRNA level. Surprisingly, MCL-1
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mRNA levels remained largely unchanged in ZNF740 knockout OCI-
AML2 and MOLM-13 cell lines (Fig. 3G), suggesting that MCL-1
protein may be upregulated through post-transcriptional mechan-
isms. We then used cycloheximide (CHX) to inhibit protein synthesis
in these cell lines and monitored MCL-1 protein stability. Notably,
MCL-1 protein persisted longer in ZNF740 knockout cells post-CHX

treatment, indicating enhanced stability compared to wildtype
controls (Fig. 3H). Conversely, ZNF740 overexpression decreased
MCL-1 protein stability (Supplementary Fig. 3C, D). In summary, we
show that ZNF740 knockout leads to reduced apoptosis in response
to venetoclax, which may primarily be due to increased MCL-1
protein stability.
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Fig. 1 CRISPR screen of venetoclax response-associated genes reveals transcription factor ZNF740 as a key regulator. A Schematic
overview of the CRISPR knockout screen. OCI-AML2 and MOLM-13 cells with stable Cas9 expression were transduced with pooled sgRNAs in
lentiviruses. After antibiotic selection, these cells were treated with DMSO or venetoclax for 15 days. Following treatment, genomic DNA was
harvested for library construction and analyzed through next-generation sequencing. B, C Volcano plots showing the log2 fold change of
normalized sgRNA counts and −log10 p values from the screen results in OCI-AML2 and MOLM-13 cell lines. D Line plots depicting the
normalized counts of ZNF740 sgRNAs over time, under treatments of either DMSO or venetoclax. E Scatter plot representing the negative
correlation between normalized ZNF740 expression level and venetoclax AUC in AML patient samples of all FAB subtypes from BeatAML2.0.
F Bar plot showing normalized ZNF740 expression levels in AML-M4/5 and other FAB subtypes in AML patient samples from the BeatAML2.0
database. ****p < 0.0001.
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NOXA is a transcriptional target of ZNF740
To elucidate the role of ZNF740 in regulating the transcriptional
landscape of AML cells, we conducted RNA sequencing (RNA-seq)
on ZNF740 wildtype and knockout stable cell lines in OCI-AML2
and MOLM-13. This revealed 216 upregulated and 151

downregulated genes in OCI-AML2, and 138 upregulated and
257 downregulated genes in MOLM-13, following ZNF740 knock-
out (Supplementary Fig. 4A, B). Gene Set Enrichment Analysis
(GSEA) of gene ontology biological processes identified that
ZNF740 depletion led to increased expression of genes regulating
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the reactive oxygen species metabolism process (Supplementary
Fig. 4C), which has been implicated in affecting the response to
BCL2 inhibitors [23]. The differentiation state of AML influences its
sensitivity to venetoclax treatment, with monocytic AML generally
showing resistance to BCL2 inhibition [14, 17]. Our analysis of AML
differentiation gene signatures [24] revealed that ZNF740 loss
shifted cells from a primitive to a more monocytic AML state
(Supplementary Fig. 4D). This shift was accompanied by a
significantly increased expression of monocyte differentiation
genes in ZNF740 knockout cells (Supplementary Fig. 4E, F). Finally,
ZNF740 depletion resulted in a decreased expression of
venetoclax-sensitive genes and increased expression of
venetoclax-resistant genes (Fig. 4A), indicating that ZNF740
globally regulates genes linked to venetoclax sensitivity in AML.
Comparative RNA-seq analysis between OCI-AML2 and MOLM-

13 cells identified 35 commonly down-regulated and 19
commonly up-regulated genes (Fig. 4B). To further narrow down
the direct targets of ZNF740, we utilized CUT&RUN-sequencing
with a ZNF740-specific antibody to map its genome-wide binding
sites in both ZNF740 wildtype and knockout lines. The binding
profiles of ZNF740 showed significant overlap between OCI-AML2
and MOLM-13 cells, revealing 12,982 common peaks (Supple-
mentary Fig. 4G). Importantly, ZNF740 binding was eliminated
after sgRNA-mediated gene knockout, confirming the specificity of
the CUT&RUN assay (Fig. 4C). In agreement with this notion, the
ZNF740 binding motif emerged as one of the most significantly
enriched motifs (Fig. 4D). Genome-wide analysis of ZNF740-
binding peaks indicated that about 70% localized to promoter
regions (Fig. 4E), highlighting promoters as ZNF740’s primary
action sites. Moreover, ZNF740 was also found binding to
intergenic regulatory regions (Fig. 4E).
To identify the direct targets of ZNF740 in mediating venetoclax

response, we integrated RNA-seq and CUT&RUN data and
identified 11 commonly downregulated genes and 9 commonly
upregulated genes that were directly bound by ZNF740 (Fig. 4F).
Importantly, PMAIP1 (also known as NOXA) was identified as a
direct target positively regulated by ZNF740. NOXA is a member of
the BH3-only protein family and is known to play a role in
enhancing venetoclax sensitivity and destabilizing MCL-1[25–27].
CUT&RUN analysis demonstrated ZNF740 binding at the promoter
and multiple enhancer regions of the NOXA gene (Fig. 4G).
Additionally, chromosome conformation capture data from 25
AML patients [28] indicated strong interactions between several
distal enhancers and the NOXA promoter (Supplementary Fig. 4H).
RT-qPCR validation confirmed that ZNF740 depletion decreased
NOXA expression, whereas enforced ZNF740 overexpression
elevated NOXA expression (Fig. 4H, I). These findings collectively
establish NOXA as a transcriptional target of ZNF740.

NOXA overexpression re-sensitizes venetoclax-resistant AML
cells induced by ZNF740 depletion
Next, we investigated whether NOXA inactivation could mimic
venetoclax resistance observed in ZNF740-deficient AML cells. We
knocked out NOXA protein expression in OCI-AML2 and MOLM-13
using two independent sgRNAs (Fig. 5C). Similar to the resistance

observed in ZNF740 knockout cells, NOXA depletion significantly
increased resistance to the treatment with either venetoclax alone
or the venetoclax/5-Azacytidine combination (Fig. 5A, B, Supple-
mentary Fig. 5A, B). In line with the established role of NOXA in
promoting MCL-1 degradation [27], we observed a marked
increase in MCL-1 protein levels following NOXA loss (Fig. 5C).
Conversely, overexpression of NOXA led to enhanced venetoclax
sensitivity and reduced MCL-1 protein levels (Fig. 5D–G, Supple-
mentary Fig. 5C). Next, we investigated whether reintroducing
NOXA expression in ZNF740 knockout cells could reverse the
venetoclax resistance phenotype. Remarkably, reintroducing
NOXA in ZNF740-deficient cells restored venetoclax sensitivity
and normalized MCL-1 levels (Fig. 5H–J) and decreased MCL-1
stability (Fig. 5K). Finally, we show that ZNF740 knockout failed to
promote venetoclax resistance in NOXA-deficient OCI-AML2 and
MOLM-13 cells (Supplementary Fig. 5D, E). These results collec-
tively demonstrate that NOXA acts as a downstream effector of
ZNF740 and plays a critical role in mediating venetoclax sensitivity
by regulating MCL-1 protein stability.

Combined treatment of MCL-1 inhibitor and venetoclax
overcomes venetoclax resistance of ZNF740-deficient AML
cells in vitro and in vivo
Given the reported efficacy of several MCL-1 inhibitors in
countering venetoclax resistance, we explored the potential of
AZD-5991, an MCL-1 inhibitor with notable preclinical efficacy
[29, 30], to mitigate venetoclax resistance in the context of
ZNF740 loss. We treated wildtype and ZNF740 knockout OCI-
AML2 cell lines with venetoclax, both alone and in combination
with AZD-5991. The combination therapy significantly outper-
formed venetoclax monotherapy in reducing the IC50 in both
wildtype and ZNF740 knockout lines (Fig. 6A, B). Remarkably, in
ZNF740 knockout cells resistant to venetoclax, the combination of
venetoclax and AZD-5991 reduced the IC50 to levels comparable
to those in wildtype cells treated with venetoclax alone (Fig. 6B).
To assess the in vivo efficacy, we transplanted EGFP-expressing
venetoclax-resistant ZNF740 knockout OCI-AML2 cells into
immune-deficient mice. The mice were then randomly grouped
and treated with either vehicle, venetoclax, AZD-5991, or a
combination of venetoclax and AZD-5991 (Fig. 6C). Single-agent
treatment of either venetoclax or AZD-5991 demonstrated
suboptimal effectiveness, as indicated by a modest decrease in
hCD45 and EGFP double-positive AML cells in the bone marrow
and an extension in survival compared to the vehicle group.
However, the combination therapy markedly diminished AML cell
engraftment in the bone marrow and significantly extended
survival (Fig. 6D-F). These results suggest that pharmacological
dual inhibition of MCL-1 and BCL-2 can effectively overcome
venetoclax resistance associated with reduced ZNF740 expression.

DISCUSSION
The persistence of non-responsiveness or relapse after initial response
to venetoclax remains a significant clinical hurdle. Deciphering the
molecular mechanisms underlying venetoclax response is crucial for

Fig. 2 ZNF740 is required for sustaining venetoclax sensitivity in AML. A Schematic illustrating competitive growth assays to assess growth
advantage of leukemia cells expressing specific sgRNA sequences, under conditions of either DMSO or venetoclax treatment. B Competitive
proliferation assays showing the relative percentage of leukemia cells expressing EGFP-tagged sgRNA sequences under either DMSO or venetoclax
treatment in OCI-AML2 (20 nM), and MOLM-13 (2 nM) cell lines. An sgRNA targeting the Luciferase gene sgLuc was used as a negative control. The
EGFP percentage of each time point was normalized to the initial measurement. C Western blot analysis validating ZNF740 knockout in OCI-AML2
and MOLM-13 cell lines. D Dose-response curves showing viabilities of OCI-AML2 and MOLM-13 cell lines expressing indicated sgRNAs after a 4-day
treatment with DMSO control or various doses of venetoclax. All cell viabilities were normalized to DMSO treatment. E Bar plots showing the
calculated IC50 values from the dose-response curves. F Western blot analysis validating ZNF740 overexpression in OCI-AML2 and MOLM-13 cell
lines. Dose-response curves showing viabilities of OCI-AML2 (G) and MOLM-13 (H) cell lines expressing either empty vector or exogenous ZNF740
after a 3-day treatment with DMSO control or various doses of venetoclax. All cell viabilities were normalized to DMSO treatment. Calculated IC50
values are shown in bar plots. *p < 0.05; **p< 0.01; ***p< 0.001; ****p < 0.0001.
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advancing treatment strategies. Gene expression profiling in primary
AML samples has identified numerous genes associated with
venetoclax response, as exemplified in BeatAML2.0 studies [16]. While
these genes may serve as potential biomarkers for therapeutic
outcomes, exploring their functional impact on venetoclax response
could reveal new molecular regulators of drug response. In this study,
by employing a comprehensive CRISPR screen approach, we discover
that transcription factor ZNF740 is not only correlated with venetoclax

responsiveness but also plays a key role in mediating the drug’s
sensitivity. We further demonstrate that a deficiency in ZNF740
expression results in increased resistance to venetoclax, whereas
enforced ZNF740 expression renders cells more sensitive to the drug.
Our genome-wide profiling of ZNF740 targets and genetic rescue
experiments further reveal the pro-apoptotic gene NOXA as a target
of ZNF740. The loss of ZNF740 results in decreased NOXA expression,
which in turn stabilizes MCL-1, a BCL-2-independent anti-apoptotic
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protein. This stabilization contributes to resistance against BCL-2
inhibition. Furthermore, we demonstrate that combined MCL-1 and
BCL-2 inhibition is an effective strategy for treating AML cells with
diminished ZNF740 expression.
Numerous venetoclax resistance mechanisms, such as

genetic alterations, mitochondrial adaptations, mitophagy
deregulation, lineage bias, and metabolic pathways, have been
identified [5–15, 31]. Despite these advances, the regulatory
mechanisms at the transcription level in this process remain
largely unexplored. Here, we show that the zinc finger
transcription factor ZNF740 is a previously uncharacterized
regulator of venetoclax response. ZNF740 is a less-studied
transcription factor with one reported role in regulating gene
expression in heart [32]. In this study, we identify ZNF740 as a
transcription factor mediating the anti-leukemic effects of BCL-
2 inhibitors. We demonstrate that ZNF740 functions as an

upstream activator of the pro-apoptotic gene NOXA in AML cell
models, which subsequently downregulates MCL-1 protein
levels. However, ZNF740 expression does not correlate with
NOXA expression in the Beat AML dataset (data not shown),
suggesting that ZNF740 may influence venetoclax response
through mechanisms beyond NOXA modulation. Consistent
with this notion, our findings show that ZNF740 knockout
influences a spectrum of genes associated with venetoclax
resistance and sensitivity, such as the reactive oxygen species
metabolism genes and hematopoietic lineage signatures,
which have been linked to regulating responses to BCL2
inhibition [14, 17, 23]. These results suggest that NOXA may not
be the sole target of ZNF740 in regulating venetoclax response.
For example, ZFP36L1, a gene bound by ZNF740 and
upregulated following ZNF740 loss, has been implicated in
promoting monocyte differentiation [33]. Further research is

A B

C
OCI-AML2

ZNF740 KO NRGS Mice Vehicle
Venetoclax
AZD-5991
Combo

0.27 15.0

0.3684.4

0.44 11.6

0.3087.7

0.100 7.62

0.9591.3

0.070 2.93

0.1596.9

hCD45

E
G

F
P

Vehicle Venetoclax

AZD-5991 Combo

D

0

5

10

15

20

hC
D

45
+,

G
F

P
+

%

Vehicle

Venetoclax

AZD-5991

Combo

E

0 10 20 30 40
0

50

100

Day

P
ro

ba
bi

lit
y

of
S

ur
vi

va
l

Vehicle

Venetoclax

AZD-5991

Combo

F

100 101 102 103 104
0

50

100

Venetoclax/AZD5991 (nM)

%
S

ur
vi

va
l

OCI-AML2

sgLuc Venetoclax
sgLuc Combo

sgZNF740 Combo

sgZNF740 Venetoclax

0

20

40

300

400

IC
50

(n
M

)

OCI-AML2

sgLuc venetoclax

sgLuc Combo

sgZNF740 venetoclax

sgZNF740 combo

p=0.015

p=0.053

p=0.0045

****

*
*

***

Fig. 6 Combined treatment of MCL-1 inhibitor and venetoclax overcomes venetoclax resistance of ZNF740-deficient AML cells in vitro
and in vivo. A, B Dose-response curves showing viabilities of OCI-AML2 expressing sgLuc or sgZNF740 after a 4-day treatment with various
doses of venetoclax alone or combination treatment of venetoclax and AZD-5991 (A). All cell viabilities were normalized to DMSO treatment.
Calculated IC50 values are shown in bar plots (B). C Schematic showing the transplantation of EGFP-expressing OCI-AML2 ZNF740 knockout
cells into recipient mice, followed by a 3-week continuous treatment starting 5 days post-transplantation, using a vehicle control, venetoclax
alone at 50mg/kg daily, AZD-5991 alone at 100mg/kg weekly, or combination of venetoclax and AZD-5991. D, E Flow cytometry analysis of
the percentages of human CD45 and EGFP double-positive cells in bone marrow cells of the recipient mice 3 weeks post transplantation of
indicated treatment groups. F Kaplan–Meier survival curves of mice after transplantation of OCI-AML2 ZNF740 knockout cells under indicated
treatment. The p values were calculated by a log-rank test. *p < 0.05; ***p < 0.001; ****p < 0.0001.

L. Zhang et al.

9

Cell Death and Disease          (2024) 15:627 



needed to explore the roles of these ZNF740 targets and their
contributions to venetoclax response.
The BeatAML study, which evaluates drug responses through

ex vivo testing of primary AML samples [16], typically addresses
initial drug response rather than acquired resistance. Hence, our
screen results suggest that ZNF740 may influence the up-front
sensitivity to venetoclax, while its role in venetoclax resistance in
relapsed AML post-treatment remains to be defined. In addition, it
is important to correlate ZNF740 expression with clinical response
in venetoclax-treated patients, which requires future studies with
primary AML samples from both venetoclax responders and non-
responders. Our current clinical data-focused CRISPR screening
provides a framework for these subsequent functional studies to
delineate the roles of genes differentially expressed between
venetoclax responders and non-responders.
Together, our study comprehensively interrogates the func-

tional roles of genes associated with clinical venetoclax sensitivity,
which not only identifies ZNF740 as a key transcription factor
regulating venetoclax sensitivity, but also implies potential
strategies to improve venetoclax treatment response in AMLs
with reduced ZNF740 expression.

METHODS
Cell culture
AML cell lines OCI-AML2 and MOLM-13 were cultured in RPMI-1640
medium (Gibco) supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin. Puromycin-resistant, Cas9-expressing MOLM-13,
was kindly shared by Dr. Christopher R. Vakoc. Blasticidin-resistant, Cas9-
expressing OCI-AML2 was generated by lentiviral transduction of
lentiCas9-Blast (Addgene, 52962), followed by Blasticidin selection and
validation of Cas9 expression and activity as previously described [34].
HEK293FT (Invitrogen) cells were cultured in DMEM (Gibco) supplemented
with 10% fetal bovine serum and 1% penicillin-streptomycin. All cell lines
were tested and confirmed to be free of mycoplasma contamination using
MycoAlert PLUS Mycoplasma Detection Kit (Lonza).

Plasmid cloning
Lentiviral vector LRG2.1_Neo (Addgene,125593) was used to express
sgRNAs. For sgRNA cloning, vector was linearized with BsmBI (NEB) and
ligated with specific sgRNAs using T4 DNA ligase (NEB). The sequences of
sgRNAs used in this study are listed as follows: sgLuc,5’-CCC GGC GCC ATT
CTA TCC GC-3’; sgZNF740-1, 5’-GGA GCA GTT ACC ACC TAA AG-3’;
sgZNF740-2, 5’-GAG ACT TAC CAG TGT GAA TA-3’; sgNOXA-1, 5’-CGC TCAA
CCG AGC CCC GCG C-3’; sgNOXA-2, 5’-TCG AGT GTG CTA CTC AAC TC-3’.
For overexpression studies, human ZNF740 (NM_001004304) and human
NOXA (NM_021127) were cloned into a modified LeGO-iG2 (Addgene
27341) lentiviral vector by replacing EGFP with an EGFP-P2A-Neomycin
cassette. All plasmids were verified by Sanger sequencing before use.

Virus production and infection
Lentiviral particles were prepared using HEK293FT packaging cells (Invitrogen)
via Nanofect (ALSTEM, NF100)-mediated transfection of gene delivery vector
co-transfected with lentiviral packaging vectors psPAX2 and pMD2.G. Virus-
containing supernatant was harvested 48 and 72 h after transfection and
pooled. For infection, virus-containing supernatant was mixed with target cells
supplied with 8 μg/mL polybrene (Sigma-Aldrich, TR-1003-G), and then
centrifuged at 1500 rpm for 90min at room temperature. Medium was
replaced 24 h post-infection. Appropriate antibiotics were added 24 h post-
infection when selection was needed. High infection efficiency was confirmed
by flow cytometry or achieved by selection with antibiotics. Gene knockout or
overexpression was confirmed by Western blotting for each experiment.

Drug treatment
Venetoclax (HY-15531), 5-Azacytidine (HY-10586), AZD-5991 (HY-101533)
were obtained from MedChemExpress. For in vitro drug treatment,
leukemia cells were seeded in 24-well plates at a density of 20,000 cells/
mL and treated with indicated dilutions of the inhibitors or 0.1% DMSO
in culture medium (vehicle). Treated cells were re-plated into a new
24-well plate every 3 days with fresh medium and drug. Cell viability was
measured at different time points using ATP-based luminescent viability

assay CellTiter-Glo 2.0 (Promega), following the manufacturer’s
instructions.

Animal experiments
8–12-week-old NRGS mice (JAX, 024099) were given 2.5 Gy irradiation and
then transplanted with 1 million cells via tail vein injection. Mice were
randomly assigned to treatment groups and treated with vehicle (10%
DMSO and 20% SBE-β-Cyclodextrin), 50 mg/kg venetoclax (formulated in
20% SBE-β-Cyclodextrin) daily by oral gavage, 100mg/kg AZD-5991
(formulated in 30% 2-Hydroxypropyl-β-Cyclodextrin at pH 9.0) weekly
through tail vein injection, or combination of both venetoclax and AZD-
5991 starting 5 days post-transplant. Treatments were given for 3 weeks.
Engraftment was monitored by assessing the hCD45 and EGFP double-
positive cells in the bone marrow using flow cytometry. Sample sizes were
determined by power analysis and an equal number of male and female
mice were used in this study. Investigators were not blinded to treatment
groups.

Immunoblotting
Whole-cell extracts were prepared as previously described [35, 36], and
subsequently separated by SDS-PAGE. Relative density of immunoblotting
bands was analyzed using ImageJ. The following primary antibodies were
used: anti-Tubulin (Proteintech, 66031-1-Ig), anti-ZNF740 (Proteintech,
25411-1-AP), anti-MCL-1 (Cell Signaling Technology, 5453S), anti-BCL-2
(Cell Signaling Technology, 15071S), anti-BCL-XL (Cell Signaling Technol-
ogy, 2764S), anti-BAX (Cell Signaling Technology, 2772S), anti-BIM (Cell
Signaling Technology, 2933S), anti-P53 (Santa Cruz, sc-126), and anti-NOXA
(Abcam, ab13654).

RT-qPCR
RNA was extracted from cells using the RNeasy kit (Qiagen, Germany)
following the manufacturer’s instructions. First-strand cDNA was synthesized
using the High-Capacity cDNA Reverse Transcription (RT) Kit (Applied
Biosystems). Quantitative real-time PCR (qPCR) was performed in triplicate
using the iTaq Universal SYBR Green Supermix (BioRad) on the CFX Opus 384
Real-Time PCR System (Bio-Rad). Expression levels were determined using the
ΔΔCt method normalized to the housekeeping gene GAPDH. The primers
used in this study were as follows: GAPDH forward, 5’- CCC ACC ACA CTG AAT
CTC CC -3’; GAPDH reverse, 5’- TAC ATG ACA AGG TGC GGC TC -3’; NOXA
forward, 5’- ACT GTT CGT GTT CAG CTC GC-3’; NOXA reverse, 5’- GAG TAG CAC
ACT CGA CTT CCA -3’; MCL-1 forward, 5’- AAG AGG CTG GGA TGG GTT TGT G-
3’; MCL-1 reverse, 5’- TTG GTG GTG GTG GTG GTT GG-3’.

Flow cytometry analysis
Leukemia cells were collected after treatment and analyzed on an LSR
Fortessa (BD Biosciences) flow cytometer. Data were analyzed using FlowJo
(BD Biosciences) software. Mouse bone marrow cells were harvested and
stained with human CD45-APC antibodies (BioLegend, 368612). For
apoptosis analysis, APC Annexin V apoptosis detection kit with either
7-AAD (BioLegend) or DAPI (BioLegend) was used following the
manufacturer’s instructions.

CRISPR screen and data analysis
The CRISPR knockout library included 1426 genes whose expression
inversely correlates with venetoclax AUC (Pearson correlation r <−0.4)
in the BeatAML 2.0 dataset [16]. Each gene was represented by
7 sgRNAs, and an additional 250 sgRNAs were included as negative
controls. sgRNA oligos were synthesized by Genscript and cloned into
the LRG2.1_Neo (Addgene, 125593) vector using Gibson Assembly.
Lentiviruses of this CRISPR knockout library were packaged in
HEK293T cells and were used to infect OCI-AML2 cells and MOLM-13
cells at less than 0.5 MOI to ensure that each cell contained no more
than one sgRNA. The transduced cells were selected by Neomycin for
5 days (T0) and treated with either DMSO or venetoclax (50 nM for OCI-
AML2 and 10 nM for MOLM-13) for 15 days. Cells with at least 1,000x
coverage (i.e., 10 million cells) were maintained throughout the screen,
treatment, and sample collection. Genomic DNA was isolated and
sgRNA sequences were amplified by two round PCR reactions using
Nextera primers as described before [37], followed by deep sequencing
on the NovaSeq 6000 PE150 platform. After sequencing, sgRNA counts
were extracted and mapped to sgRNA sequences in the library and
analyzed using by MAGeCK [38].
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RNA-seq and data analysis
RNA-seq libraries were prepared using the NEBNext Ultra RNA Library Prep
Kit for Illumina (New England Biolabs) as previously described [39]. The
quality and concentration of the libraries were examined using the
Bioanalyzer High Sensitivity DNA Chip (Agilent). The multiplexed RNA-seq
libraries were paired-end sequenced for 150 bp on the Illumina HiSeq 6000
platform. The paired-end reads were mapped to the human genome
(hg38) using STAR with default parameters. The read counts were used for
DESeq2 to define differentially expressed genes. Gene set enrichment
analysis (GSEA) was performed to evaluate the enrichment of venetoclax
response signatures, defined as the top 300 highly expressed genes by
comparing gene expression in samples with the top and bottom 10% of
venetoclax AUCs in the BeatAML2.0 dataset.

CUT&RUN
CUT&RUN assay was performed as previously described [40–42]. Cells were
collected and washed with Wash Buffer (20mM HEPES pH 7.5, 150mM
NaCl, 0.5 mM Spermidine, protease inhibitor cocktail). After washing, cells
were resuspended with Wash Buffer and incubated with activated
Concanavalin A beads (Bangs Laboratories). Cell-binding beads were
resuspended with Antibody Buffer (Wash Buffer plus 0.01% Digitonin and
2mM EDTA) and primary antibody then incubated at 4 °C overnight with
rotation. On day 2, cell-binding beads were washed with ice-cold Digitonin
Buffer (Wash Buffer plus 0.01% Digitonin) twice and incubated with 2.5 µl/
sample pAG-MNase (EpiCypher, 15-1116). Targeted digestion was
performed on ice with 1 µl/sample 100mM CaCl2 for 2 h and stopped by
adding 33 µl/sample of Stop Buffer (340mM NaCl, 20 mM EDTA, 4 mM
EGTA, 50 µg/mL RNase A, 50 µg/mL glycogen). DNA was purified using the
DNA Clean & Concentrate-5 kit (Zymo Research, D4014) and proceeded to
library preparation using the NEBNext Ultra II Library Prep kit (New England
Biolabs). CUT&RUN libraries were sequenced on the NovaSeq 6000 PE150
platform. The following antibodies were used in CUT&RUN assays: anti-
ZNF740 (Proteintech, 25411-1-AP), and anti-rabbit IgG (Cell Signaling
Technology, 2729S).

CUT&RUN data analysis
Raw CUT&RUN reads were subjected to adapter removal (cutadapt 2.10)
and mapped genome hg38 (bowtie2 2.4.1) [43] using --end-to-end --very-
sensitive -–no-mixed -–no-discordant --phred33 -I 10 -X 700 parameters.
Bigwig files were generated by bamCoverage [44] (version 3.3.0) and used
for visualization in IGV [45] (version 2.8.6). Heatmaps were generated by
deeptools [44] (version 3.3.0). MACS2 (v2.2.7.0) were used for peak calling
from CUT&RUN against IgG controls. HOMER [46] was used for de novo
motif analysis using the HOCOMOCO human transcription factor database.

Virtual 4C analysis
We obtained the 25 AML patients’ data in pairs format [47] and aggregated
the contacts from all 25 AML patients. We conducted Virtual 4 C analysis as
previously described [47]. In summary, we used the PMAIP1 (NOXA)
promoter region (hg38, chr18:59,899,096-59,900,096) as the bait and
extracted the rows overlapping with the bait and its flanking regions from
the 1 kb bin Hi-C matrix to determine the contact numbers. Subsequently,
we plotted the observed contact numbers with a smoothing window
(250 bp) to generate Virtual 4C profiles.

Statistics
Data are presented as the mean ± SD from three independent experiments
unless otherwise noted. The sample size was determined by power
analysis. No randomization method was used, and no data were excluded
from analysis. Statistical analyses were performed by a two-tailed Student’s
test for comparing two data sets with assumed normal distribution unless
otherwise noted. A Fisher’s exact test was performed for categorical
variables. Survival analyses were performed using a log-rank test with
GraphPad Prism software (v9). *, **, ***, and **** denote p values < 0.05,
0.01, 0.001, and 0.0001, respectively. n.s. denotes not significant.
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