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Abstract

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been

underrepresented in Alzheimer’s disease (AD) genomics efforts.

METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265

controls of African ancestry. Within-dataset results were meta-analyzed, followed by

functional genomics analyses.

RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23

(rs141610415, MAF = 0.002, p = 3.68×10−9). Two additional novel common and nine

rare loci were identified with suggestive associations (P < 9×10−7). Comparison of

association and linkage disequilibrium (LD) patterns between datasets with higher

and lower degrees of African ancestry showed differential association patterns at

chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin

of local African ancestry.

DISCUSSION: These analyses identified novel AD-associated loci in individuals of

African ancestry and suggest that degree of African ancestry modulates some asso-

ciations. Increased sample sets covering as much African genetic diversity as possible

will be critical to identify additional loci and deconvolute local genetic ancestry effects.
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Highlights

∙ Genetic ancestry significantly impacts risk of Alzheimer’s Disease (AD). Although

individuals of African ancestry are twice as likely to develop AD, they are vastly

underrepresented in AD genomics studies.

∙ The Alzheimer’s Disease Genetics Consortium has previously identified 16 common

and rare genetic loci associatedwithAD inAfricanAmerican individuals. The current

analyses significantly expand this effort by increasing the sample size and extending

ancestral diversity by including populations from continental Africa.

∙ Single variant meta-analysis identified a novel genome-wide significant AD-risk

locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel

loci with suggestive genome-wide significance at p< 9×10−7.
∙ Comparison of African American datasets with samples of higher degree of African

ancestry demonstrated differing patterns of association and linkage disequilibrium

at one of these loci, suggesting that degree and/or geographic origin of African

ancestry modulates the effect at this locus.

∙ These findings illustrate the importance of increasing number and ancestral diver-

sity of African ancestry samples in AD genomics studies to fully disentangle the

genetic architecture underlying AD, and yield more effective ancestry-informed

genetic screening tools and therapeutic interventions.

1 BACKGROUND

Based on estimations by the World Health Organization, approx-

imately 55 million people globally suffer from dementia, and 40

million of these cases are thought to be due to Alzheimer’s dis-

ease (AD). As the proportion of older individuals increases in

nearly every country, the number of AD cases is expected to rise

exponentially to ∼78 million in 2030 and ∼139 million by 2050

mailto:cr2101@cumc.columbia.edu
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(https://www.who.int/news-room/fact-sheets/detail/dementia), mak-

ing identification of underlying factors one of the most urgent global

public health concerns.

Recent large-scale genome-wide association studies (GWAS) by

our group and others identified over 75 loci associated with risk

of AD and related dementias.1–5 While these findings have sig-

nificantly advanced the field by providing invaluable insights into

underlying mechanistic pathways, AD genomic studies were almost

exclusively conducted in individuals of European ancestry. This lim-

its our ability to identify ancestry-specific causative genetic variants,

loci, and mechanistic pathways underlying the disease, and substan-

tially hampers our progress toward identification of effective drug-

gable targets to address this devastating disease in underrepresented

populations.

With a two-fold increased disease risk compared to non-Hispanic

White6 (NHW) individuals, a ∼64% higher rate of progression to AD

and related dementias (ADRD) compared to NHW,7,8 a higher degree

of dementia risk factors, and greater cognitive impairment and neu-

ropsychiatric symptom severity,9 individuals of African ancestry are

at a particularly high risk of AD and its sub-phenotypes. To identify

genetic risk factors associatedwithAD inAfricanAmerican individuals,

we previously conducted GWAS in 8,006 subjects of African American

ancestry and identified 16 common and rare loci associated with AD,

most of which appear ancestry-specific.10,11 To identify additional risk

variants, genes, and mechanistic pathways, we reanalyzed these data

with a 14.5% increase in sample size. To start to deconvolute regional

African ancestry effects we addedWest African individuals with a high

degree of African ancestry. Observed loci of interest were followed

up through colocalization, local ancestry analysis, and analysis of Hi-C,

RNAseq, whole-genome sequencing, and proteomic data. These anal-

yses identified 12 novel susceptibility loci potentially associated with

AD in individuals of African ancestry that have not been identified in

other ancestry groups.

2 METHODS

2.1 Samples

To identify additional risk loci associated with AD in individuals of

African ancestry, we both increased the sample size by 14.5% in this

updated analysis and included, in addition to African American individ-

uals, 705 individuals fromWest Africa (sampled from Ibadan, Nigeria),

yielding in total 9,168 subjects of African ancestry in the analysis

(2,903 cases, 6,265 controls). Summary demographics of all datasets

are shown in Supplementary Table 1 and additional detailed informa-

tion about each dataset is provided in the Description of Cohorts in

the SupplementaryMaterials.Written informed consent was obtained

from all participants, or, for those with cognitive impairment, from a

caregiver, legal guardian, or other proxy. Study protocols for all cohorts

were reviewed and approved by the appropriate institutional review

boards.

RESEARCH INCONTEXT

1. Systematic review: Relevant literature and related

efforts were screened by reviewing PubMed and dbGaP

for efforts on Alzheimer’s disease (AD) including studies

targeting individuals of African descent.

2. Interpretation: Individuals of African ancestry have been

largely excluded from AD genomics efforts, resulting

in an extensive lack of understanding of the effects of

genetic ancestry. In the largest AD genome-wide associ-

ation studies (GWAS) in individuals of African ancestry –

and the first to include aNigerian population fromYoruba

with a high degree of African ancestry – we identified 12

novelAD loci andnovelAD-relatedmechanistic pathways

and demonstrated that degree and/or origin of African

genetic ancestry impacts genetic risk.

3. Future directions: Studies with increased sample sizes

that cover asmuch of theAfrican genetic diversity as pos-

siblewill be critical to identifymore ancestry-specific AD-

associated loci, disentangle local genetic ancestry effects,

and develop ancestry-specific polygenic risk scores and

druggable targets.

2.2 Diagnosis of AD and age of onset

Participantswere diagnosed for AD according to theNational Institute

ofNeurological andCommunicativeDisorders andStroke–Alzheimer’s

Disease and Related Disorders Association criteria.12,13 Age at onset

for AD patients and age at examination or death for healthy controls

was available for most datasets. When not available, other informa-

tion was used instead, such as age at diagnosis (Chicago Health and

Aging Project [CHAP], Minority Aging Research Study/Clinical Minor-

ity Core [MARS/CORE]) or age at ascertainment (Indiana University).

To restrict the analyses to cases with late-onset AD, individuals with

age <60 years at symptom onset, last examination, or death were

excluded.

2.3 Genotyping

The platforms used for genome-wide genotyping in the individual

datasets are shown in Supplementary Table 2. For all datasets, samples

were randomly plated tominimize potential batch effects.

2.4 Apolipoprotein E genotyping

For the Alzheimer Disease Centers, Adult Changes in Thought,

National Institute in Aging–LOAD/National Cell Repository for

https://www.who.int/news-room/fact-sheets/detail/dementia
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Alzheimer Disease (NIA-FBS/NCRAD), UM/VU, CHAP, Columbia

University, Mayo Clinic, and REAAADI cohorts, apolipoprotein

E (APOE) genotypes were based on haplotypes derived from

single-nucleotide polymorphisms SNPs rs7412 and rs429358.

Whole-genome sequencing genotypes of these two SNPs were

used for the Ibadan cohort. For the MIRAGE and GenerAAtions

cohorts, APOE genotypes were determined using the Roche Diagnos-

tics LightCycler 480 instrument (Roche Diagnostics) and LightMix Kit

ApoE C112R R158 (TIB MOLBIOL); for the University of Pittsburgh,

WashingtonHeights ColumbiaAging Project, and Indianapolis cohorts,

they were determined by pyrosequencing or analysis of restriction

fragment length polymorphisms; for the Religious Orders Study/Rush

Memory and Aging Project (ROS/MAP) and MARS/CORE they were

determined by high-throughput sequencing of codons 112 and 158

in APOE by Agencourt Bioscience Corporation; for the Washington

University samples they were determined using a taqman-based assay

fromApplied Biosystems.

2.5 Genotype quality control

Standard quality control was performed separately on each dataset’s

genotype and sample-level data. SNPs with call rates less than 98%

or not in Hardy-Weinberg equilibrium at p < 10−6 in controls were

excluded. In addition, subjects with non-African American ancestry

according to principal components (PCs) analysis of ancestry infor-

mative markers, and study participants whose reported sex did not

equal the sex designation determinedby analysis of theX-chromosome

SNPs were removed. We identified latent relatedness among partic-

ipants using the estimated proportion of alleles (πˆ) shared identical

by descent (IBD) and included from each duplicate pair (πˆ > 0.95) or

relative pair (0.4 ≤ πˆ < 0.95) one participant prioritizing first sam-

ples with non-missing disease status followed by samples with higher

SNP call rate. Relationships among individuals in family-based cohorts

(MIRAGE) were validated employing pairwise genome-wide estimates

of IBD allele sharing.

2.6 Genotype imputation

Each dataset was independently phased and imputed to the African

Genome Resource (AGR) reference panel utilizing the Sanger geno-

type imputation andphasing service (https://imputation.sanger.ac.uk/),

which employs EAGLE2 for phasing and PBWT (Positional Burrows-

Wheeler Transform) for genotype imputation. The AGR reference

panel provides information on 93,421,145 autosomal bi-allelic mark-

ers and is based on 4,956 samples that includes – in addition to all

of the African and non-African populations from the 1000 Genomes

Phase 3 reference panel – also∼2000 samples fromUganda (Baganda,

Banyarwanda, Barundi and others) and ∼100 samples each from

Ethiopia (Gumuz, Wolayta, Amhara, Oromo, Somali), Egypt, Namibia

(Nama/Khoesan), and South Africa (Zulu). The AGR reference panel

showed the highest concordance rate with whole-genome sequence

data in sub-Saharan African participants compared to other reference

panels, including TOPMed.14 Data were filtered to exclude common

variants (MAF ≥ 0.01) with imputation quality score < 0.4, rare

variants (MAF < 0.01) with imputation quality < 0.7, and variants

present in less than 30% of AD cases and 30% of controls. The final

SNP set for analysis included 33,089,606 genotyped and imputed

variants.

2.7 Association analysis

Genome-wide single-variant association analyses of common and

rare variants were performed individually on each dataset using

SNPTEST.15–17 Age, sex, and population stratification (as determined

by the first three principal components (PCs) calculated individually

on each dataset) were entered as covariates in Model 1; APOEe4

allele dosage (coded as 0,1,2) was entered as an additional covariate

in Model 2. Logistic regression was used for case-control datasets and

generalized estimating equations (GEE) as implemented in GWAF18

were used for family-based datasets (i.e., MIRAGE). Associations with

extreme beta coefficients (|β| > 5) were filtered out. Within-study

results were subsequentlymeta-analyzedwithMETAL19 employing an

inverse-variance based model with genomic control. Variants showing

significant heterogeneity between studies (I2 > 75%) were removed.

The GenABEL package20 was used to estimate genomic inflation (λ).
A p-value threshold of 5×10−8 was employed to determine disease-

associated genetic variantswith genome-wide significance; a threshold

of p < 10−6 was applied to determine variants with suggestive signifi-

cance.

2.8 Gene-based analysis

Genome-wide gene-based analyses were performed employing

MAGMA implemented in the FUMA software.21,22 Setting a 35 kb

window upstream and a 10 kb window downstream of the genes and

including only variants with MAF > 0.001 and present in >30% of

cases and controls, these analyses were first adjusted for PCs, age, and

sex and subsequently in addition for APOEe4 allele dosage. Genome-

wide significance was determined using Bonferroni correction

(p= 0.05/19277 genes tested= 2.59×10−6).

2.9 Pathway analysis

Pathway analyses were performed with MAGMA,21 which performs

SNP-wise gene analysis of summary statistics with correction for LD

between variants and genes to test whether sets of genes are jointly

associated with a phenotype (i.e., AD), compared to other genes across

the genome. 9,988 gene-sets from gene ontology (GO)23 pathways

were used in the analyses. These analyses were performed using

the same parameters as described above in the gene-based analysis

section.

https://imputation.sanger.ac.uk/
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2.10 Local ancestry

To estimate local ancestry within African American datasets, we

initially merged each array dataset with the Human Genome Diver-

sity Project (HGDP) reference panel individually, utilizing PLINK v2

software.24,25 This integration involved 98 African and 109 European

individuals from the HGDP reference populations. Subsequently, the

merged datasets were phased employing the SHAPEIT tool version 2

withdefault configurationsusing the1000GenomesPhase3 reference

panel.26,27 Finally, we inferred the local ancestries using the discrimi-

native modeling approach implemented in RFMix with the PopPhased

option and aminimum node size of 5.28

2.11 Colocalization analyses

To identify potentially causative genes at identified top loci, we

performed Bayesian colocalization analyses employing the coloc.abf

function in the coloc R package (version 4.0.3)29 for a wide range of

cis-eQTL datasets (Supplementary Table 3) setting default priors to

P1 = 1×10−4, P2 = 1×10−4, and P12 = 1×10−5. A posterior prob-

ability PP.H4 > 0.75 was used to declare strong evidence of the

eQTL-GWAS pair influencing both the expression and GWAS trait at a

locus.

2.12 Hi-C analysis

To identify potentially causative genes and illustrate the functional

mechanisms at identified top loci, we performed Hi-C analysis using

brain autopsy samples as described before.30 Autopsy material was

obtained from the Alzheimer’s Disease Research Centers (ADRC) at

Emory University, Northwestern University, and the John P. Hussman

Institute for Human Genomics (HIHG). All samples were acquired with

informed consent for research use and approved by the institutional

review board of each center. Hi-C libraries from eight donors (four

African American and four NHW individuals) were pooled for the anal-

ysis. In situ Hi-C library was prepared using a protocol adapted from

Rao et al with a four-cutter enzyme.31 For each library, 340∼860 mil-

lion of paired-end reads at 150 bp length were obtained. Chromatin

loops were called using HiCorr32 to correct bias and LoopEnhance33

to remove noise. In addition, layered H3K27ac ChIP-seq data from

seven cell lines from the ENCODE project,34 H3K27ac and H3K4me3

ChIP-seq data from adult brains with NCBI GEO accession number

GSE11682532 were used to annotate functional DNA elements near

the chromatin loops.

2.13 Bulk RNA sequence analysis in human brain

Brain RNAseq data from over 2,100 samples from post-mortem brains

of more than 1,100 individuals from the ROSMAP study, the Mount

Sinai Brain Bank (MSBB), and the Mayo Clinic were scrutinized using

the AGORA AD knowledge Portal (https://agora.adknowledgeportal.

org/) to identify genes differentially expressed between AD cases and

controls.

2.14 Bulk RNA sequence analysis in zebrafish

Amyloid toxicity was induced as previously described35,36 in the adult

telencephalon zebrafish brain. At 3 days after cerebroventricular injec-

tion, the brains were dissected and deep sequencing for bulk RNAwas

performed.35 Data canbeaccessedatGSE74326atGEO (https://www.

ncbi.nlm.nih.gov/geo).

2.15 Analysis of human cerebrospinal fluid
proteomic data

Cerebrospinal fluid (CSF) was collected from 500NHW, African Amer-

ican, and Caribbean Hispanic individuals from the Dominican Republic

and New York City. CSF biomarkers of AD including P-tau181, Aβ40,
Aβ42, total-tau, neurofilament light chain (NfL), and glial fibrillary

acidic protein (GFAP) were measured. CSF was depleted of abun-

dant proteins followed by precipitation, cysteine reduction/alkylation,

and proteolytic cleavage by trypsin. Peptides were measured using

a Q Exactive HF mass spectrometer (Thermo Scientific). Associa-

tion of individual and co-abundant modules of proteins were tested

with the clinical diagnosis of AD, as well as biologically defined AD

pathological process based on CSF P-tau181 and other biomarker

levels.

3 RESULTS

3.1 Single-variant meta-analysis

The results of the single-variant meta-analyses are summarized in

Table 1 and Figure 1. Single marker analyses identified one novel

genome-wide significant disease-associated locus, and 11 novel loci

with suggestive associations that are approaching genome-wide sig-

nificance at p < 9×10−7. The novel genome-wide significant locus,

associated with a rare variant, is located withinMPDZ on chromosome

(chr) 9p23 (rs141610415,MAF=0.002, p=3.68×10−9) andhas strong
regional support by variants in LD (Supplementary Figure 1). The 11

novel loci approaching genome-wide significance include two common

loci centered at 2p25.3 at LINC01250/TSSC1 and 3p25 at SRGAP3,

and nine rare loci centered at 2p25 (KIDINS220), 2q22 (TEX41), 4q22

(UNC5C), 6q21 (IYD/PLEKHG1), 7p22 (SDK1), 8q21 (MMP16), 12q23

(ASCL1), 16q23 (CNTNAP4), and 17q23 (TANC2) (see Table 1). Eight of

these 11 loci have strong regional support by variants in LD (see Sup-

plementary Figure 1), and all have consistent directions of effect across

most individual datasets (see Supplementary Figure 2). There was no

https://agora.adknowledgeportal.org/
https://agora.adknowledgeportal.org/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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F IGURE 1 Manhattan plots showing negative log10-transformed p-values from the single-variant meta-analysis adjusted for age, sex, and
population stratification (Model 1) and age, sex, population stratification, and APOE (Model 2). The solid black horizontal line represents a
genome-wide significance threshold of p= 5 × 10−8, and the dotted line represents a suggestive threshold of p= 5 × 10−6. All novel loci significant
at p< 9 × 10−7 are shown in red, and all previously reported loci significant at p< 9 × 10−6 are shown in blue. The y-axis has been truncated, the
lowest p value on chromosome 19 is 3.11× 10−65.

genomic inflation in eithermodel (Model 1: λ= 0.95;Model 2: λ= 0.96;

see Supplementary Figure 3 for QQ-plots).

In addition to US-based datasets of African American individ-

uals, the present analyses also included samples of Yoruba from

Ibadan with a high degree of African ancestry (see Supplementary

Figure 4 for principal component plots of all datasets). Compari-

son of effect sizes of identified loci between the datasets with high

(i.e., Ibadan dataset) and lower degree of African ancestry (all other

US-based African American datasets), showed comparable effects

between datasets with higher and lower degree of African ances-

try at all loci that were present in both groups of datasets except

for chr2:3070309, chr2:145902343, and chr12:103570373, which

showed differential association. These three loci showed a higher

effect size in theYoruba samples (see Supplementary Figure 2), indicat-

ing that degree of African ancestry at these loci may modify the effect.

Closer examination of the local association and LD patterns in these

three regions showed comparable LD patterns between African and

African American datasets at the two chr2 loci, but differential asso-

ciation and LD patterns at the chr12 locus (see Supplementary Figure

5), suggesting that this locus may show differential genetic ancestry.

The top variants at chr4:96471106 (rs969240869), chr6:150819452

(rs117762284), chr9:13220518 (rs141610415), and chr16:76535070

(rs1010752317) observed in the metanalysis were absent in the

Ibadan dataset, which is consistent with the absence of these alleles

in Yoruba according to reference data (https://gnomad.broadinstitute.

org/).

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
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While in the African American datasets the strongest association at

the chromosome 12 locus is observed at 103,538 kb, the high African

ancestry Ibadan dataset shows genome-wide significant association at

p= 3.8× 10−8 (rs547590324) 180 kb upstreamwithin theASCL1 gene.

Analysis of local ancestry at the two meta-analysis top locus markers

frombothmodels (Model 1: rs556001137;Model 2: rs138206541; see

Table 1) showed that both markers appear on African and Amerindian

but not European local ancestry backgrounds (Supplementary Table

4). Comparison of the allele frequencies of the three top markers only

observed with significant association in the African Ibadan dataset

(rs547590324, rs144730555, rs148789350; see Supplementary

Figure 5C) across the African American and Ibadan datasets, as well as

gnomAD, 1000 Genomes, and the Human Genome Diversity Project

(HGDP), suggest that these markers are present in West African

individuals but less frequent in Hispanic individuals and virtually

absent in other African regions (ie. Kenya, South Africa), and those

of European and Asian ancestry. (https://gnomad.broadinstitute.org/

variant/12-102960732-G-A?dataset = gnomad_r3; https://gnomad.

broadinstitute.org/variant/12-102957658-C-G?dataset = gno-

mad_r3, https://gnomad.broadinstitute.org/variant/12-102956366-

C-A?dataset= gnomad_r3).

Of the 16 loci identified in our previous analyses,10,11 all but 2

(SIPA1L2 and ACER3, both associated with rare variants) replicated at

a p-value of < 9 × 10−5. Of the variants previously implicated in either

AD, ADRD, or AD by proxy in African American individuals by other

studies,37–42 rs112404845 in COBL (p = 6.13×10−5), rs2234258 in

TREM2 (p = 1.74×10−5), and rs73505251 in ABCA7 (p = 2.13×10−5)
showed suggestive significance, and variants in SLC4A1AP

(rs17006206), POLN (rs1923775), RP11-785H20.1 (rs956225),

RP11-116D17.2 (rs10850408), ENOX1 (rs17460623), AKAP9

(rs144662445; rs149979685), TREM2 (rs2234256; rs73427293),

BZRAP1-AS1 (rs263251), AC010967.2/SCARNA16 (rs58443395),

RP11-157D6.1/CD2AP (rs7738720), and RP11-192P9.1/TRPS1

(rs76427927) were replicated with nominal significance (see Supple-

mentary Table 5). Of the GWAS loci implicated in NHW individuals1,3

besides APOE and ABCA7, only the variants in BIN1, IDUA, UNC5CL,

UMAD1, USP6NL, FERMT2, and SCIMP showed nominal association

(see Supplementary Table 6).

3.2 Gene-based and pathway analyses

Only APOE surpassed the Bonferroni corrected p-value threshold

for gene-based analyses. However, we also identified two novel loci

(C9orf139 and SNX31) that are suggestively associated with AD in

individuals of African ancestry at a suggestive significance thresh-

old of p < 9×10−5 (see Table 2 and Supplementary Figures 6 and

7), in addition to four regions (LARP1B, TREM2, SERPINB13, and

ABCA7) that we previously reported.10,11 Gene-based results for

all previously reported genes in NHW1,3 and African ancestry37–42

are reported in Supplementary Tables 7 and 8. Gene-set analyses

identified 16 pathways at p < 5 × 10−4 (see Table 3). Notably, in

addition to lipid metabolism, immune response, transcription/DNA

repair, and intracellular trafficking that are also associated with

AD in NHW,1,3 sodium transport emerged as a novel prominent

pathway that has not been reported before in analyses restricted

to individuals of African ancestry or in analyses in other ethnic

groups.

3.3 Colocalization analyses

Colocalization analyses at the identified loci using the coloc package

showed colocalization of eQTL and GWAS signals at the chr 3 locus

near SRGAP3 associated with a common variant (PP.H4 = 0.75; lead

eQTL variant: rs17744749).

3.4 Hi-C analysis

Hi-C analysis revealed that the top SNP rs396323 in SRGAP3 strongly

interacts with the proximal promoter of SRGAP3 and with RAD18

at a weaker strength (Supplementary Figure 8). The rs396323 co-

localizes with a H3K27AC peak in both ENCODE cell lines and adult

brains, suggesting that chromatin loops involving rs396323 repre-

sent promoter-enhancer interactions. In addition, the second strongest

association signals at SRGAP3 came from three less common vari-

ants within chr3: 9150527-9155067 (MAF < 0.05, p = 9.01 × 10−5

∼1.54 × 10−4). This block of DNA co-localizes with a brain specific

H3K27ACpeak and interactswith both SRGAP3 andRAD18 promoters

in a similar fashion as rs396323 (Supplementary Figure 8). The variants

in this block (chr3: 9150527-9155067) are not in LDwith the top vari-

ant (rs396323) at this locus (R2 < 0.1) and represent an independent

signal at the locus. Notably, both rs396323 and the variants at chr3:

9150527-9155067 interact with the lead e-QTL variant (rs17744749)

identified by the colocalization analyses near SRGAP3 described

above.

3.5 Human and zebrafish brain tissue RNAseq
and CSF proteomic data analyses

In brain RNAseq data from over 2,100 samples from post mortem

brains of more than 1,100 individuals from the ROSMAP study, the

Mount Sinai Brain Bank (MSBB) and the Mayo Clinic (https://agora.

adknowledgeportal.org/), all nearest genes at all novel loci identified

in single marker association or gene-based analyses are differentially

expressed between AD cases and controls (see Supplementary Figure

9). In brain RNAseq analyses in zebrafish, orthologs forMPDZ, SRGAP3,

SDK1, TANC2,MMP16, andUNC5Cwere downregulated after inducing

amyloid toxicity,while theorthologofASCL1wasupregulated (see Sup-

plementary Figure 10). In CSF proteomic data, levels of UNC5C were

associated with amount of GFAP, a measure of astrogliosis (coef for

association=−0.012; p= .004).

https://gnomad.broadinstitute.org/variant/12-102960732-G-A?dataset
https://gnomad.broadinstitute.org/variant/12-102960732-G-A?dataset
https://gnomad.broadinstitute.org/variant/12-102957658-C-G?dataset
https://gnomad.broadinstitute.org/variant/12-102957658-C-G?dataset
https://gnomad.broadinstitute.org/variant/12-102956366-C-A?dataset
https://gnomad.broadinstitute.org/variant/12-102956366-C-A?dataset
https://agora.adknowledgeportal.org/
https://agora.adknowledgeportal.org/
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TABLE 2 Top regions identified in gene-based analysis.

Model 1 Model 2

Gene

Chromo-

some

Start BP

(hg37)

Stop BP

(hg37)

No. of

SNPs

No. of

parameters N Z Statistic p-Value

No. of

SNPs

No. of

parameters N Z Statistic p-Value

Novel regions

C9orf139 9 139886916 139941234 358 74 9095 3.28 5.27×10−4 356 68 8917 3.85 5.92×10−5*

SNX31 8 101575116 101710643 1163 151 9095 3.01 1.31×10−3 1156 146 8917 3.81 6.83×10−5*

Previously reported regions

APOE 19 45374011 45422650 342 85 9095 9.18 2.23×10−20** 343 85 8917 1.77 0.04

LARP1B 4 128947423 129154086 1053 81 9095 3.81 6.88×10−5* 1211 93 8917 2.32 0.01

TREM2 6 41116244 41165924 380 62 9095 3.55 1.93×10−4 379 72 8917 4.14 1.76×10−5*

SERPINB13 18 61219223 61281873 560 76 9095 3.43 2.97×10−4 555 78 8917 4.02 2.94×10−5*

ABCA7 19 1005102 1075571 765 116 9095 3.14 8.46×10−4 765 116 8917 3.78 7.76×10−5*

Abbreviations: BP, base pair; SNP, single nucleotide polymorphism.
aModel 1 is adjusted for age, sex, and population stratification (PCs).
bModel 2 is adjusted for age, sex, PCs, and APOE.
*Suggestively associated at p< 9×10−5.
**Significant at the Bonferroni corrected threshold of 2.59×10−6.

TABLE 3 Results of pathway analysis.

GOnumber Pathway Model

No. of

genes β SE p-Value

GO:0010915 regulation of very-low-density lipoprotein particle

clearance

1 4 3.25 0.59 2.07×10−8

GO:0051103 DNA ligation involved in DNA repair 1,2* 9 1.54 0.36 1.11×10−5

GO:0015347 sodium-independent organic anion transmembrane

transporter activity

1 16 0.84 0.20 2.11×10−5

GO:0043252 sodium-independent organic anion transport 1 15 0.81 0.21 7.82×10−5

GO:0034596 phosphatidylinositol phosphate 4-phosphatase

activity

2 8 1.14 0.30 9.25×10−5

GO:0010669 epithelial structuremaintenance 2 28 0.55 0.15 1.53×10−4

GO:0050890 cognition 2 281 0.17 0.05 1.70×10−4

GO:0000405 bubble DNA binding 2 8 1.00 0.29 2.81×10−4

GO:0019199 transmembrane receptor protein kinase activity 1 80 0.32 0.09 3.64×10−4

GO:0097350 neutrophil clearance 1,2* 5 1.18 0.35 3.95×10−4

GO:0070327 thyroid hormone transport 1 5 1.09 0.33 4.14×10−4

GO:0042180 cellular ketonemetabolic process 1 188 0.19 0.06 4.15×10−4

GO:0045898 regulation of RNA polymerase II transcriptional

preinitiation complex assembly

1 14 0.70 0.21 4.26×10−4

GO:0009649 entrainment of circadian clock 1 26 0.55 0.16 4.36×10−4

GO:0060260 regulation of transcription initiation fromRNA

polymerase II promoter

1 26 0.52 0.16 4.39×10−4

GO:0043194 axon initial segment 2 20 0.59 0.18 4.96×10−4

aModel 1 is adjusted for age, sex, and population stratification (PCs).
bModel 2 is adjusted for age, sex, PCs, and APOE.

*Results shown forModel 1.

3.6 Analysis of whole-genome sequencing data

To provide additional validation of the genome-wide significant

variant in MPDZ (rs141610415; chr9:13220518), we performed

chi-square analyses on the whole-genome sequence data of indi-

viduals of African ancestry from the latest Alzheimer’s Disease

Sequencing Project (ADSP) R4 36K release (https://www.niagads.

org/news/alzheimer%E2%80%99s-disease-sequencing-project-

update-round-2-harmonized-phenotypes-and-r4-36k). Also in this

dataset, the minor allele from this top GWAS variant occurred more

https://www.niagads.org/news/alzheimer%E2%80%99s-disease-sequencing-project-update-round-2-harmonized-phenotypes-and-r4-36k
https://www.niagads.org/news/alzheimer%E2%80%99s-disease-sequencing-project-update-round-2-harmonized-phenotypes-and-r4-36k
https://www.niagads.org/news/alzheimer%E2%80%99s-disease-sequencing-project-update-round-2-harmonized-phenotypes-and-r4-36k
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frequently in cases than controls (allele count in cases = 16; total

alleles in cases = 3330; allele count in controls = 6; total alleles in

controls = 6362; χ2 = 12.74; p = 3.58×10−4). In addition, this variant

was found to be in high LD with another variant (rs181009479;

chr9:13240984; R2 = 0.67) with a high CADD score of 16.26 and

a minor allele that is also significantly more frequent in cases than

controls (allele count in cases = 22; total alleles in cases = 3346; allele

count in controls = 20; total alleles in controls = 6378; χ2 = 5.26;

p = 0.02).

4 DISCUSSION

This GWAS on AD in individuals of African ancestry, which is the

first to include individuals from continental Africa, nominated 1 novel

locus at P = 3.68×10−9 and 11 novel suggestive loci at p ≤ 9×10−7.
At least one locus appears influenced by regional origin of African

ancestry. Gene-based analyses nominated two additional suggestive

loci. Of over 80 known loci implicated in NHW individuals,1,3 only 8

were associated at nominal significance level or stronger in addition

to APOE.

Most of the novel loci identified in this study cluster in known

AD pathways. The novel top locus, associated with a rare variant

(rs141610415) with strong regional support, is located within MPDZ

on chromosome9p23.MPDZ is highly expressed in brain and encodes a

modular scaffoldprotein43,44 that is localizednear the junctionsof neu-

ronal synapses.45 It is involved in regulation of synaptic transmission46

and is a vital component of theNMDAR signaling complex in excitatory

synapses of hippocampal neurons critical for learning and memory.45

According to GTEx data from brain tissue,47 MPDZ contains six splice

site variants, three of which are in a haplotype block with the top

variant identified in our analyses (see Supplementary Figure 11). As

described above, the minor allele from our top variant is also more fre-

quent in cases than controls in ADSP whole-genome sequence data

from individuals of African ancestry and is in high LDwith another vari-

ant (also more frequent in cases than controls) with a CADD score

of 16. According to Agora, MPDZ is highly expressed in brain; is dif-

ferentially expressed between AD cases and controls in the anterior

cingulate cortex, cerebellum, inferior frontal gyrus, parahippocampal

gyrus, and superior temporal gyrus; and received a very high AD-risk

score of 3.91 out of 5 based on GWAS, eQTL, transcriptomic, pro-

teomic, and other multi-omic data (https://agora.adknowledgeportal.

org/).48

The loci at 2p25 and 3p25 are common and robustly present

in at least 15 of the 17 contributing datasets. The top variant at

2p25 (rs78857220) is located within a long intergenic non-coding

RNA (lincRNA). lincRNAs play an essential role in RNA transcription,

translation, regulation of gene expression and chromatin remodel-

ing, impacting cell proliferation, survival, and differentiation.49 Human

and animal studies link lincRNAs to various neurodegenerative dis-

eases including AD.50,51 Notably, LINC01250 identified in our study

also emerged as a top hit in a recent GWAS of brain amyloid

deposition.52

The top variant at 3p25 (rs396323) is located within SRGAP3,

which is involved in nervous system development53,54 and has been

implicated in cognitive functioning55 and intellectual disability.56,57

Colocalization and Hi-C data analyses demonstrating colocalization

and interaction of the GWAS locus with functional eQTLs and regu-

latory elements in SRGAP3 provide strong functional support for this

signal. SRGAP3 is highly expressed in brain and is downregulated in

the parahippocampal gyrus and temporal cortex in AD cases compared

to cognitively healthy individuals.58 In line with this finding, in our

study SRGAP3 expression was downregulated in zebrafish brain after

inducing amyloid toxicity.

The additional identified loci, all associated with rare variants

with suggestive significance, also cluster near/in genes involved in

biologically plausible pathways. KIDINS220 encodes a scaffold pro-

tein involved in neuronal survival, neurite outgrowth, and synaptic

plasticity.59,60 In rodents, knockdown of Kidins220 leads to memory

deficits.61 TEX41 encodes a lincRNA that, as described above, can

lead to disease by impacting RNA transcription, translation, regulation

of gene expression, or chromatin remodeling.49 UNC5C encodes a

netrin receptor protein directing axon extension and cell migration

during neural development.62–64 Notably, variants in UNC5C have

been previously identified in multiplex families with AD, an association

that has been replicated in independent case-control studies,65 and

the gene encoding UNC5C-like (UNC5CL) protein is an implicated risk

locus in NHW1 that has also been shown in a methylation study to

be associated with key AD neuropathologic changes.66 The present

study is the first to report association at this locus in individuals of

African ancestry. PLEKHG1 encodes a protein involved in Rho GTPase

signaling that has been associated with rate of cognitive decline,67

white matter hyperintensities,68 and high blood pressure in African

American individuals.69 SDK1 encodes an immunoglobulin superfamily

cell adhesion protein required for synaptic connectivity between

neurons.70 MMP16 encodes amatrixmetalloproteinase family protein.

Matrix metalloproteinases (MMPs) have been implicated in several

neuropathological processes including inflammation, blood-brain bar-

rier (BBB) damage, and neuronal cell death.71 ASCL1 encodes a protein

that regulates neurogenesis and neuronal differentiation.72 While the

Ibadan dataset has a limited sample size and the possibility of false-

positive findings cannot be excluded, comparison of allele frequencies,

association, and LD patterns of identified loci between datasets

with high and lower degree of African ancestry indicate differential

association patterns at this locus suggesting an influence by origin

of local African ancestry. CNTNAP4 encodes a neurexin superfamily

protein involved in neural development and synaptic transmission,73,74

and variants in this gene have been associated with AD and cognitive

impairment in NHW individuals.75 TANC2 encodes a scaffolding pro-

tein inhibiting mTOR signaling controlling long-term synaptic efficacy

and memory storage.76 The two loci identified in gene-based analyses

encode a member of the SNX-FERM family involved in intracellular

trafficking (SNX31)77 and a lincRNA (C9orf139/LINC02908). In brain

RNAseq data from over 1,100 individuals from the ROSMAP study,

the Mount Sinai Brain Bank (MSBB), and the Mayo Clinic all these

genes are differentially expressed between AD cases and controls

https://agora.adknowledgeportal.org/
https://agora.adknowledgeportal.org/
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(https://agora.adknowledgeportal.org/). In line with this notion,

RNAseq analyses showed that zebrafish orthologs forMPDZ, SRGAP3,

SDK1, TANC2, MMP16, and UNC5C are downregulated and the

ortholog of ASCL1 is upregulated after inducing amyloid toxicity.

In addition, CSF proteomic data showed that levels of UNC5C are

associated with amount of GFAP, a marker of astroglial activa-

tion and gliosis during neurodegeneration, further supporting the

involvement of these genes in AD etiology. Imputation quality for all

novel variants was excellent, and there was no evidence of inflation,

minimizing the possibility of spurious associations.

Our pathway analyses also suggest that at least a subset of the

causativemolecular pathways (immunity, lipid processing, intracellular

trafficking, DNA repair, and transcription) overlap with those in NHW

individuals, although largely with different disease-associated genes

within these pathways. However, a novel AD pathway emerging from

our analysis is sodium-independent organic anion transmembrane

transporter (OAT) activity. OATs are transporter proteins delivering a

range of hydrophobic organic anions including neurotransmitter and

amyloid beta metabolites across the BBB. There is significant evi-

dence that BBBdysfunction and dysregulation of BBB transporters are

involved in AD etiology.78

This study has limitations. First, given the paucity of available

African American samples for genomic research onAD and the need to

maximize statistical power,we combined all samples into onediscovery

set and relied on a range of multi-omic data for functional validation.

Additional validation will likely need to be derived from experimental

studies. Second, while this is the largest GWAS on directly assessed

AD in African ancestry individuals to date, our sample size was under-

powered to detect associations with very rare variants or rare variants

exerting very small effects. It should also be noted that, while our find-

ings at several loci are supported by additional functional data, further

fine mapping analyses of all loci are needed to determine the specific

causative variants under these signals.

In summary, while our findings support the notion that the principal

molecular pathways implicated in AD etiology in individuals of African

ancestry largely overlap with those in NHW, they suggest that the

specific disease-associated loci within these pathways differ. They fur-

ther suggest that, even within individuals of African ancestry, genetic

association with AD differs and is influenced by local genetic ancestry.

These observations have critical implications for our quest to fully dis-

entangle the genetic influences on the biology of AD and to develop

effective, population-specific druggable targets. First, our findings pro-

vide significant support for the importance of lipid metabolism, native

immune response, intracellular trafficking, nervous system develop-

ment, and synaptic plasticity in AD etiology and suggest that these

pathways are critical in disease etiology across ethnic groups. At the

same time, they suggest that there are also pathways whose contri-

butions differ in individuals of African ancestry compared to other

populations. OAT activity was identified as a novel disease mechanism

in these individuals of African ancestry, while amyloid and tau pathol-

ogy are not represented among the top pathways. It is important to

note, however, that associations with amyloid and tau pathways may

be revealed as larger studies of AD in African ancestry populations

are conducted, as was the case in NHW populations.3 The observa-

tion of differential association patternsmodulated by regional origin of

African ancestry underscores the importance of comprehensive analy-

sis of local ancestry at disease-associated genetic loci, and the urgent

need to assemble larger sample sets from Africa that cover as much

of the African genetic diversity as possible.79 It is likely that both an

overall increase of the total sample size as well as higher and broader

representation of individuals of high African ancestry, as is currently

underway through ADSP efforts, will facilitate the identification of

additional disease-associated loci and significantly help to disentangle

local genetic ancestry effects.
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