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Abstract 
Haxe is a general purpose, object-oriented programming language supporting syntactic macros. The Haxe compiler is well known for its 
ability to translate the source code of Haxe programs into the source code of a variety of other programming languages including Java, 
C++, JavaScript, and Python. Although Haxe is more and more used for a variety of purposes, including games, it has not yet attracted 
much attention from bioinformaticians. This is surprising, as Haxe allows generating different versions of the same program (e.g. a 
graphical user interface version in JavaScript running in a web browser for beginners and a command-line version in C++ or Python for 
increased performance) while maintaining a single code, a feature that should be of interest for many bioinformatic applications. To 
demonstrate the usefulness of Haxe in bioinformatics, we present here the case story of the program SeqPHASE, written originally in Perl 
(with a CGI version running on a server) and published in 2010. As Perl+CGI is not desirable anymore for security purposes, we decided 
to rewrite the SeqPHASE program in Haxe and to host it at Github Pages (https://eeg-ebe.github.io/SeqPHASE), thereby alleviating the 
need to configure and maintain a dedicated server. Using SeqPHASE as an example, we discuss the advantages and disadvantages of 
Haxe’s source code conversion functionality when it comes to implementing bioinformatic software. 
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Introduction 
Few biologists are proficient in using command-line tools [1]. 
As a result, bioinformatic software needs to be usable without 
the need to open a terminal. Nevertheless, some computer-savvy 
users prefer interacting with a tool via a command-line interface 
[2] (CLI) or need a command-line version to integrate the tool 
into a pipeline such as Galaxy [3–5]. Thus, in practice, most 
bioinformatic programs require two interfaces—a graphical user 
interface (GUI) and a CLI. 

Even though it is pretty straightforward to program a CLI, 
adding a GUI to a program can be trickier. GUIs can either be pro-
vided in form of a standalone application or via an external pro-
gram such as a web browser (e.g. Chrome, Firefox, Edge, or Safari). 
Although specialized toolkits such as Swing, SWT and JavaFX 
for Java, or Flutter for Dart/C++, allow the creation of platform-
independent standalone GUIs, this solution requires installing 
and maintaining the corresponding piece of software. In contrast, 
a web browser is preinstalled on most operating systems and is 
therefore more practical for biologists to use. 

Historically, embedding code into a website was usually done 
using Java Applets or Flash applications with the Netscape Plu-
gin Application Programming Interface [6]. However, newer web 
browsers do not allow this integration anymore due to security 
concerns [7]. Instead, modern browsers only allow the interpre-
tation of a particular set of programming languages, namely 
WebAssembly [8, 9] and ECMAScript (with its better known dialect 

JavaScript) [10]. Due to this limitation, most programming lan-
guages cannot directly execute code inside a web browser. Thus, 
when programmers want to avoid maintaining two distinct ver-
sions of the same software (e.g. one written in JavaScript and the 
other one in Python), there are three possible ways to write a 
program that can be run both using a CLI and via a GUI running 
in a web browser: 

• writing the whole program in JavaScript, then using e.g. 
Node.js (https://nodejs.org) to execute the JavaScript program 
in a terminal environment. However, high-level programming 
constructs such as classes are rather awkward to use in 
JavaScript, except with the help of a scripting language such 
as CoffeeScript [11]; 

• writing the program with a CLI that runs on a web server. The 
GUI can then communicate with the program running on the 
web server and visualize its results (e.g. via BioJS [12]). Many 
scripting language such as PHP, Perl, Python, or Ruby support 
communication via the common gateway interface (CGI) [13]. 
Nevertheless, setting up and maintaining such a dedicated 
public server can be time and resource-costly. It also requires 
users’ data to be sent over to the server via internet, which 
can be a problem in case of large and/or sensitive datasets; 

• using a programming language that allows the conversion 
of the source code into the source code of various other 
programming languages (a process variously called ‘trans-
compiling’, ‘transpiling’, or ‘cross-compiling’ depending on 
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authors, and that is perhaps better described as ‘source-to-
source translation’). A JavaScript version of the code can then 
run inside a web browser while another version of the pro-
gram (e.g. in Python) can be used in a terminal environment. 

One example of programming language enabling the latter 
approach is Haxe, a general purpose, highly versatile object-
oriented programming language [14]. Although other source-to-
source compilers exist, such as Dafny [15], Haxe is the most widely 
used among them. The source code of Haxe programs can be 
converted into the source code of a variety of other languages 
including Java, C++, JavaScript and Python [16]. Using Haxe, it is 
thus relatively easy to create multiple versions of the same tool— 
e.g. a JavaScript version that runs inside a web browser and a 
Python version that can run as a terminal application. Further-
more, Haxe supports sophisticated programming paradigms such 
as syntactic macros [17], making it an excellent choice for writing 
bioinformatic applications. 

To illustrate the usefulness of Haxe as a Swiss knife for bioin-
formatic applications, we tell here the story of how we used Haxe 
to revive an old but very useful piece of code, SeqPHASE [18], 
originally written in Perl + CGI code, by reimplementing it in 
Haxe and then converting the Haxe code into JavaScript (for the 
graphical version) and Python (for the command-line one). 

Material and methods 
SeqPHASE was written in 2010 to address a pressing practical 
issue in population genetics: how to input FASTA files into PHASE 
[19] (a program originally written to infer the most probable pairs 
of haplotypes in a population of diploid organisms for which 
genotypes have been determined, but designed for microsatellite 
length polymorphism data and not for DNA sequences), and how 
to turn the output of PHASE back into FASTA [18]. 

Until that point, a tool allowing this conversion existed as 
part of the Windows program DNAsp [20, 21], but with several 
severe shortcomings [18], and conversion was impossible on other 
operating systems such as Linux or macOS. Because it filled 
an important need in the biological community, SeqPHASE was 
immediately adopted and cited a relatively large number of times 
(more than 500 times since published in 2010). 

However, its implementation in Perl + CGI posed important 
security issues, and, at some point, university computer infras-
tructure administrators became very reluctant to host this piece 
of code on public servers as it could offer an entrance point to 
hackers. Out of this necessity, it was therefore decided to reim-
plement SeqPHASE completely, this time in Haxe, as we needed 
to provide both a user-friendly web browser tool and a command-
line version for use in pipelines and on computer clusters. 

For the sake of simplicity and cost saving, a choice was 
made to host the Haxe source code on GitHub (https://github. 
com/eeg-ebe/SeqPHASE). Compiling the Haxe part of the code 
into JavaScript resulted in a fully functional web browser tool 
accessible via GitHub Pages (https://eeg-ebe.github.io/SeqPHASE), 
whereas compiling the same Haxe code into Python produced 
a cross-platform Python script (with a CLI) made available 
for download on the same website (https://eeg-ebe.github.io/ 
SeqPHASE/download.html). 

Results 
The source code of the reimplemented SeqPHASE program is 
available at https://github.com/eeg-ebe/SeqPHASE and licensed 
under the Apache 2.0 license. A web page allowing the user to 

Table 1. Versions of the different compilers/interpreters used for 
our benchmark 

Linux macOS 

Haxe haxe 4.2.4 haxe 4.2.4 
Lua lua 5.1.5 lua 5.4.6 
Neko neko 2.3.0 neko 2.3.0 
Python python 3.10.12 python 3.9.10 
Perl perl 5.34.0 perl 5.30.3 
Java java 11.0.22 java 15.0.1 
Node.js node 12.22.9 node 20.11.0 
C++ g++ 11.4.0 clang 1300.0.27.3 

run and/or download the program is available on GitHub Pages 
( https://eeg-ebe.github.io/SeqPHASE). 

The reimplementation consists of the following files: 

• a series of static HTML pages including a menu page, a FAQ 
page, and so on; 

• two dynamic web pages where users can run respectively the 
first (FASTA to PHASE) and second step (PHASE to FASTA)  
of the SeqPHASE program. The web pages directly call the 
corresponding JavaScript codes; 

• a download page that allows users to obtain a zipped archive 
of the GUI version of the program (once unzipped, users can 
run SeqPHASE offline inside a web browser by double-clicking 
the index.html file found inside that archive) as well as 
Python command-line versions of the two steps of SeqPHASE. 

During the reimplementation process we discovered small 
bugs in the original code and corrected them, namely: 

• for Step 1 (FASTA to PHASE), every sequence in the inputted 
FASTA files should have the same length, but it was possible 
to bypass this check by ordering the sequences by decreasing 
length; 

• for Step 2 (PHASE to FASTA), the sequences of individuals 
were sorted apart if the name of one sequence was a full 
prefix of a longer name of another sequence (e.g. the name 
of sample1a and sample1b would be sorted apart if there was 
another sequence with the name sample1abc1a). 

Although it is unlikely that these bugs had an impact on the 
accuracy of the results, it sometimes resulted in the program 
running on inputs that contained errors, instead of reporting 
those errors. 

Time usage 
In order to analyze the runtime usage of the SeqPHASE programs, 
we used Haxe to create different program versions with C++, 
Lua, Neko, Python, JavaScript (Node.js), and Java as target lan-
guages (Table 1): one program version where Haxe’s dead code 
elimination algorithm was turned on, one version where Haxe’s 
dead code elimination algorithm was turned off, and one version 
where Haxe’s dead code elimination algorithm was limited to 
classes in the Haxe standard library. This process resulted in 18 
executables (= six target programming languages ∗ three dead 
code elimination strategies) for the FASTA to PHASE conversion 
process as well as 18 other executables for the PHASE to FASTA 
conversion process. 

Twenty FASTA data files of variable sizes were generated using 
SimCoal [22]. We then launched the 18 programs as well as the 
two original Perl programs 120 times on each of these 20 datasets 
and measured the corresponding time usages (compare Fig. 1 and 
Table 2). To evaluate startup times, we also created Hello World
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Figure 1. Measurement of the average time usage the SeqPHASE program takes to convert different dataset sizes. The top panels show the calculation 
time needed for the conversion of the FASTA file into the PHASE input file format, while the bottom panels show the conversion of the PHASE output 
file format to FASTA file format, for Linux (left) and macOS (right). The error bars indicate the measured minimum and the maximum calculation 
time measured. The minimum, maximum, standard deviation, average, and median time usage of these runs for the different program versions and 
conversions are listed in Table 2. 

Figure 2. For this plot, each of the seven Hello World executables (one Perl executable + six executables created by source-to-source translation of 
the Haxe Hello World source code into the corresponding target language) were launched 120 times. The left panel shows the time usage of the Hello 
World programs on a Linux machine, while the right panel shows the corresponding analysis on a computer running the macOS operating system. The 
minimum, maximum, standard deviation, average, and median time usage of these runs for the different program versions and conversions are listed 
in Table 3. 

executables by source-to-source translating a Haxe Hello World 
program to the different target programming languages, as well 
as writing a Perl Hello World program ( Fig. 2 and Table 3). 

All datasets and source codes used in this benchmark 
are available at https://github.com/eeg-ebe/SeqPHASE_time_ 
mesurements.
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Table 2. Time usage (in ms) for different dataset sizes for the two different steps of SeqPHASE on Linux and macOS. The table lists the 
minimum, maximum, standard deviation, average, and median time of the Perl, C++, Lua, Python, Neko, Node.js, and Java SeqPHASE 
programs 

Program Linux macOS 

Min Max σ Avg Med Min Max σ Avg Med 

Smallest dataset (4kb) 

FASTA -> PHASE 

Lua 22.3 62.6 10.9 34.4 28.4 22.7 53.7 9.8 33.9 30.2 
Neko 18.3 86.2 6.7 31.6 31.7 31.9 46.8 4.1 40.9 41.6 
Python 52.9 160.8 32.7 87.3 68.1 66.3 192.9 38.7 107.9 89.6 
Perl 19.1 33.2 2.5 23.6 23.2 26.4 31.8 1.9 28.4 27.9 
Java 176.1 372.9 19.9 208.3 205.5 103.6 148.9 9.7 124.0 124.2 
Node.js 86.3 221.9 11.9 104.9 102.7 46.5 64.6 5.2 56.8 58.3 
C++ 7.1 27.3 1.8 9.5 9.1 8.3 14.2 1.3 11.0 11.1 

PHASE -> FASTA 

Lua 18.5 59.0 9.2 29.7 24.8 19.9 49.5 9.9 30.1 26.0 
Neko 14.8 41.6 5.6 25.3 24.8 25.6 44.9 4.9 33.2 32.3 
Python 42.3 149.3 31.8 73.8 54.2 53.8 166.8 35.8 90.9 70.4 
Perl 12.0 22.9 2.0 14.3 13.8 13.6 21.0 2.3 17.3 17.4 
Java 134.4 310.8 15.5 162.8 161.5 106.4 132.8 8.0 118.6 118.8 
Node.js 79.1 150.5 9.9 99.1 97.6 41.1 66.1 6.1 54.9 56.6 
C++ 6.4 14.6 1.1 8.2 7.9 8.0 23.5 2.6 10.7 10.2 

Largest dataset (156kb) 

FASTA -> PHASE 

Lua 1700.0 2643.1 127.3 2086.5 2070.8 2030.6 2846.0 265.1 2392.9 2397.2 
Neko 634.9 1495.4 105.9 1110.4 1120.6 2257.7 3211.8 287.5 2710.3 2689.1 
Python 632.3 1300.6 78.7 793.6 776.7 834.1 1188.7 118.8 1034.0 1089.4 
Perl 664.0 990.5 46.1 761.7 756.7 871.1 1144.8 98.3 1014.7 1043.1 
Java 371.3 646.4 34.2 449.6 445.8 241.9 315.8 22.0 274.2 272.7 
Node.js 353.7 629.5 28.8 401.0 395.9 193.5 265.8 20.0 231.5 235.1 
C++ 69.6 109.8 6.4 81.7 81.1 84.2 124.3 9.4 100.8 102.0 

PHASE -> FASTA 

Lua 5547.6 8167.4 317.7 6459.5 6406.4 11602.5 16211.3 1502.0 13441.0 13343.5 
Neko 716.1 1447.3 103.8 1035.9 1052.9 2695.3 3888.6 409.4 3266.8 3200.4 
Python 696.4 1153.8 67.5 816.5 810.0 874.0 1318.2 115.7 1040.3 1064.1 
Perl 155.9 217.2 12.4 177.8 175.6 189.4 241.1 16.6 216.4 215.1 
Java 309.6 573.4 29.8 366.7 362.3 223.7 275.6 15.6 248.5 241.5 
Node.js 226.1 442.3 21.2 263.1 259.9 144.4 192.5 12.6 164.5 163.9 
C++ 83.4 147.6 8.2 99.5 97.7 86.8 129.6 11.0 105.8 108.4 

Table 3. Time usage (in ms) of the Hello World program on Linux and macOS. The table lists the minimum, maximum, standard 
deviation, average, and median time of the Perl, C++, Lua, Python, Neko, Node.js, and Java Hello World programs 

Program Linux macOS 

Min Max σ Avg Med Min Max σ Avg Med 

Lua 6.1 10.6 0.9 7.6 7.4 7.2 11.0 1.3 9.0 9.6 
Neko 8.5 26.0 3.5 13.9 13.0 9.8 13.1 1.0 11.0 10.7 
Python 32.1 49.0 3.2 37.5 37.2 40.7 61.8 6.6 51.6 53.6 
Perl 5.2 10.5 0.9 6.3 6.14 7.7 12.1 1.3 9.2 9.0 
Java 80.0 136.0 8.6 94.0 93.6 68.7 85.2 4.8 73.9 73.9 
Node.js 75.9 123.2 7.1 87.0 86.5 43.7 53.9 3.7 47.7 47.2 
C++ 5.6 15.9 1.4 6.9 6.6 7.2 15.0 2.2 9.3 9.0 

When comparing the average calculation time needed to con-
vert a FASTA file to a PHASE input file or a PHASE output file 
back into a FASTA file, the C++ version greatly outperformed all 

other versions of the SeqPHASE program, followed by—for small 
datasets—the Python / Neko / Lua versions. However, for larger 
datasets the overhead of starting a virtual machine with a long 
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startup time can pay off. In that case, the Node.js and / or Java 
version may outperform every other versions except for the C++ 
version. 

Although the C++ version was the fastest, we decided to not 
provide it for download as we found it challenging to compile 
a C++ program that runs on all computers. Instead, we opted 
for the Python version because Python is a well-known pro-
gramming language already installed on most computers and 
because speed is not that much of an issue when it comes to 
small, straightforward programs that are running in less then 
100 ms, such as SeqPHASE. However, in case high performance 
is needed, building a C++ version for a particular target com-
puter with platform-specific code optimization would be the best 
option. 

Even though this assumption still needs to be verified, we 
believe that Chrome and Node.js would need, on average, the 
same amount of time to execute the JavaScript version of the 
SeqPHASE program since both Chrome and Node.js are using the 
same JavaScript engine (namely, V8 [23]). 

When comparing the dead code elimination strategies for the 
different target programming languages, we did not observe any 
differences in the execution times of the versions created when 
the dead code elimination strategy was applied to the full source 
code or was limited to the Haxe standard library (the default 
option). However the versions created without any dead code 
elimination were significantly slower for most programming lan-
guages, except for C++, Neko, and Java for which no difference 
was observed. 

Discussion 
Through the example of SeqPHASE’s reimplementation, we illus-
trate how Haxe coding is a valuable yet still underused approach 
for bioinformaticians to make programs available online to large 
audiences, including both biologists with no command-line profi-
ciency and computer scientists requiring command-line tools to 
run on computing clusters. The SeqPHASE website can be used as 
a template for users wishing to experiment with using Haxe as a 
valuable alternative to CGI apps, for instance. 

Although we chose a fairly simple program to illustrate and 
benchmark our proposed approach, another more complex 
example of a bioinformatic tool we reimplemented in Haxe in 
replacement for a previous perl+CGI version is https://eeg-ebe. 
github.io/Champuru [24, 25]. Moreover, three further tools we 
directly implemented in Haxe are available online at https:// 
eeg-ebe.github.io/HaplowebMaker and https://eeg-ebe.github.io/ 
CoMa [26] as well as  https://eeg-ebe.github.io/KoT [27]. 

Since websites are running inside a sandboxed web browser, 
tools that run inside websites are also advantageous for users who 
do not want to install a particular software locally due to secu-
rity concerns. However, compared to Perl, Python and other pro-
gramming languages traditionally used in bioinformatics, Haxe 
suffers from certain drawbacks: (1) the current unavailability of a 
‘BioHaxe’ library of functions facilitating the import and process-
ing of biological data. It is our hope to provide such a library in 
the future; (2) debugging a particular Haxe program may require 
to take a look at its translation into the target language, which 
necessitates some understanding of this language (in addition 
to knowing Haxe); (3) although Haxe supports the languages 
most often used in bioinformatics (Python, C++, JavaScript, Java), 
some other languages such as Perl and R are not supported 
yet. 

Key Points 
• The programming language Haxe allows designers of 

bioinformatic applications to maintain a single code 
for both command-line and graphical-user-interface ver-
sions of their program. 

• This Haxe source code can then be compiled into various 
languages such as C++, JavaScript, or Python. 

• As a case study to illustrate Haxe’s usefulness for bioin-
formatics, we reimplemented in Haxe the previously 
published program SeqPHASE (originally written in Perl) 
and compared the performances of translated C++, Lua,  
Python, Neko, Node.js, and Java versions. 
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