
Received: October 17, 2023. Revised: May 19, 2024. Accepted: July 17, 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2024, 25(5), bbae367

https://doi.org/10.1093/bib/bbae367

Problem Solving Protocol

Haxe as a Swiss knife for bioinformatic applications: the
SeqPHASE case story
Yann Spöri1 and Jean-François Flot1,2, *

1Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
2Interuniversity Institute of Bioinformatics in Brussels — (IB)2, 1050 Brussels, Belgium

*Corresponding author: Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium. E-mail: jf lot@ulb.be

Abstract
Haxe is a general purpose, object-oriented programming language supporting syntactic macros. The Haxe compiler is well known for its
ability to translate the source code of Haxe programs into the source code of a variety of other programming languages including Java,
C++, JavaScript, and Python. Although Haxe is more and more used for a variety of purposes, including games, it has not yet attracted
much attention from bioinformaticians. This is surprising, as Haxe allows generating different versions of the same program (e.g. a
graphical user interface version in JavaScript running in a web browser for beginners and a command-line version in C++ or Python for
increased performance) while maintaining a single code, a feature that should be of interest for many bioinformatic applications. To
demonstrate the usefulness of Haxe in bioinformatics, we present here the case story of the program SeqPHASE, written originally in Perl
(with a CGI version running on a server) and published in 2010. As Perl+CGI is not desirable anymore for security purposes, we decided
to rewrite the SeqPHASE program in Haxe and to host it at Github Pages (https://eeg-ebe.github.io/SeqPHASE), thereby alleviating the
need to configure and maintain a dedicated server. Using SeqPHASE as an example, we discuss the advantages and disadvantages of
Haxe’s source code conversion functionality when it comes to implementing bioinformatic software.

Keywords: programming languages; source-to-source compilation; graphical user interface; bioinformatics; web application; phasing

Introduction
Few biologists are proficient in using command-line tools [1].
As a result, bioinformatic software needs to be usable without
the need to open a terminal. Nevertheless, some computer-savvy
users prefer interacting with a tool via a command-line interface
[2] (CLI) or need a command-line version to integrate the tool
into a pipeline such as Galaxy [3–5]. Thus, in practice, most
bioinformatic programs require two interfaces—a graphical user
interface (GUI) and a CLI.

Even though it is pretty straightforward to program a CLI,
adding a GUI to a program can be trickier. GUIs can either be pro-
vided in form of a standalone application or via an external pro-
gram such as a web browser (e.g. Chrome, Firefox, Edge, or Safari).
Although specialized toolkits such as Swing, SWT and JavaFX
for Java, or Flutter for Dart/C++, allow the creation of platform-
independent standalone GUIs, this solution requires installing
and maintaining the corresponding piece of software. In contrast,
a web browser is preinstalled on most operating systems and is
therefore more practical for biologists to use.

Historically, embedding code into a website was usually done
using Java Applets or Flash applications with the Netscape Plu-
gin Application Programming Interface [6]. However, newer web
browsers do not allow this integration anymore due to security
concerns [7]. Instead, modern browsers only allow the interpre-
tation of a particular set of programming languages, namely
WebAssembly [8, 9] and ECMAScript (with its better known dialect

JavaScript) [10]. Due to this limitation, most programming lan-
guages cannot directly execute code inside a web browser. Thus,
when programmers want to avoid maintaining two distinct ver-
sions of the same software (e.g. one written in JavaScript and the
other one in Python), there are three possible ways to write a
program that can be run both using a CLI and via a GUI running
in a web browser:

• writing the whole program in JavaScript, then using e.g.
Node.js (https://nodejs.org) to execute the JavaScript program
in a terminal environment. However, high-level programming
constructs such as classes are rather awkward to use in
JavaScript, except with the help of a scripting language such
as CoffeeScript [11];

• writing the program with a CLI that runs on a web server. The
GUI can then communicate with the program running on the
web server and visualize its results (e.g. via BioJS [12]). Many
scripting language such as PHP, Perl, Python, or Ruby support
communication via the common gateway interface (CGI) [13].
Nevertheless, setting up and maintaining such a dedicated
public server can be time and resource-costly. It also requires
users’ data to be sent over to the server via internet, which
can be a problem in case of large and/or sensitive datasets;

• using a programming language that allows the conversion
of the source code into the source code of various other
programming languages (a process variously called ‘trans-
compiling’, ‘transpiling’, or ‘cross-compiling’ depending on

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

 39744
15374 a 39744 15374 a

mailto:jflot@ulb.be
mailto:jflot@ulb.be
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://nodejs.org
https://nodejs.org
https://nodejs.org

2 | Spöri and Flot

authors, and that is perhaps better described as ‘source-to-
source translation’). A JavaScript version of the code can then
run inside a web browser while another version of the pro-
gram (e.g. in Python) can be used in a terminal environment.

One example of programming language enabling the latter
approach is Haxe, a general purpose, highly versatile object-
oriented programming language [14]. Although other source-to-
source compilers exist, such as Dafny [15], Haxe is the most widely
used among them. The source code of Haxe programs can be
converted into the source code of a variety of other languages
including Java, C++, JavaScript and Python [16]. Using Haxe, it is
thus relatively easy to create multiple versions of the same tool—
e.g. a JavaScript version that runs inside a web browser and a
Python version that can run as a terminal application. Further-
more, Haxe supports sophisticated programming paradigms such
as syntactic macros [17], making it an excellent choice for writing
bioinformatic applications.

To illustrate the usefulness of Haxe as a Swiss knife for bioin-
formatic applications, we tell here the story of how we used Haxe
to revive an old but very useful piece of code, SeqPHASE [18],
originally written in Perl + CGI code, by reimplementing it in
Haxe and then converting the Haxe code into JavaScript (for the
graphical version) and Python (for the command-line one).

Material and methods
SeqPHASE was written in 2010 to address a pressing practical
issue in population genetics: how to input FASTA files into PHASE
[19] (a program originally written to infer the most probable pairs
of haplotypes in a population of diploid organisms for which
genotypes have been determined, but designed for microsatellite
length polymorphism data and not for DNA sequences), and how
to turn the output of PHASE back into FASTA [18].

Until that point, a tool allowing this conversion existed as
part of the Windows program DNAsp [20, 21], but with several
severe shortcomings [18], and conversion was impossible on other
operating systems such as Linux or macOS. Because it filled
an important need in the biological community, SeqPHASE was
immediately adopted and cited a relatively large number of times
(more than 500 times since published in 2010).

However, its implementation in Perl + CGI posed important
security issues, and, at some point, university computer infras-
tructure administrators became very reluctant to host this piece
of code on public servers as it could offer an entrance point to
hackers. Out of this necessity, it was therefore decided to reim-
plement SeqPHASE completely, this time in Haxe, as we needed
to provide both a user-friendly web browser tool and a command-
line version for use in pipelines and on computer clusters.

For the sake of simplicity and cost saving, a choice was
made to host the Haxe source code on GitHub (https://github.
com/eeg-ebe/SeqPHASE). Compiling the Haxe part of the code
into JavaScript resulted in a fully functional web browser tool
accessible via GitHub Pages (https://eeg-ebe.github.io/SeqPHASE),
whereas compiling the same Haxe code into Python produced
a cross-platform Python script (with a CLI) made available
for download on the same website (https://eeg-ebe.github.io/
SeqPHASE/download.html).

Results
The source code of the reimplemented SeqPHASE program is
available at https://github.com/eeg-ebe/SeqPHASE and licensed
under the Apache 2.0 license. A web page allowing the user to

Table 1. Versions of the different compilers/interpreters used for
our benchmark

Linux macOS

Haxe haxe 4.2.4 haxe 4.2.4
Lua lua 5.1.5 lua 5.4.6
Neko neko 2.3.0 neko 2.3.0
Python python 3.10.12 python 3.9.10
Perl perl 5.34.0 perl 5.30.3
Java java 11.0.22 java 15.0.1
Node.js node 12.22.9 node 20.11.0
C++ g++ 11.4.0 clang 1300.0.27.3

run and/or download the program is available on GitHub Pages
(https://eeg-ebe.github.io/SeqPHASE).

The reimplementation consists of the following files:

• a series of static HTML pages including a menu page, a FAQ
page, and so on;

• two dynamic web pages where users can run respectively the
first (FASTA to PHASE) and second step (PHASE to FASTA)
of the SeqPHASE program. The web pages directly call the
corresponding JavaScript codes;

• a download page that allows users to obtain a zipped archive
of the GUI version of the program (once unzipped, users can
run SeqPHASE offline inside a web browser by double-clicking
the index.html file found inside that archive) as well as
Python command-line versions of the two steps of SeqPHASE.

During the reimplementation process we discovered small
bugs in the original code and corrected them, namely:

• for Step 1 (FASTA to PHASE), every sequence in the inputted
FASTA files should have the same length, but it was possible
to bypass this check by ordering the sequences by decreasing
length;

• for Step 2 (PHASE to FASTA), the sequences of individuals
were sorted apart if the name of one sequence was a full
prefix of a longer name of another sequence (e.g. the name
of sample1a and sample1b would be sorted apart if there was
another sequence with the name sample1abc1a).

Although it is unlikely that these bugs had an impact on the
accuracy of the results, it sometimes resulted in the program
running on inputs that contained errors, instead of reporting
those errors.

Time usage
In order to analyze the runtime usage of the SeqPHASE programs,
we used Haxe to create different program versions with C++,
Lua, Neko, Python, JavaScript (Node.js), and Java as target lan-
guages (Table 1): one program version where Haxe’s dead code
elimination algorithm was turned on, one version where Haxe’s
dead code elimination algorithm was turned off, and one version
where Haxe’s dead code elimination algorithm was limited to
classes in the Haxe standard library. This process resulted in 18
executables (= six target programming languages ∗ three dead
code elimination strategies) for the FASTA to PHASE conversion
process as well as 18 other executables for the PHASE to FASTA
conversion process.

Twenty FASTA data files of variable sizes were generated using
SimCoal [22]. We then launched the 18 programs as well as the
two original Perl programs 120 times on each of these 20 datasets
and measured the corresponding time usages (compare Fig. 1 and
Table 2). To evaluate startup times, we also created Hello World

https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE/download.html
https://eeg-ebe.github.io/SeqPHASE/download.html
https://eeg-ebe.github.io/SeqPHASE/download.html
https://eeg-ebe.github.io/SeqPHASE/download.html
https://eeg-ebe.github.io/SeqPHASE/download.html
https://eeg-ebe.github.io/SeqPHASE/download.html
https://eeg-ebe.github.io/SeqPHASE/download.html
https://eeg-ebe.github.io/SeqPHASE/download.html
https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://github.com/eeg-ebe/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE
https://eeg-ebe.github.io/SeqPHASE

Haxe as a Swiss knife for bioinformatic applications | 3

Figure 1. Measurement of the average time usage the SeqPHASE program takes to convert different dataset sizes. The top panels show the calculation
time needed for the conversion of the FASTA file into the PHASE input file format, while the bottom panels show the conversion of the PHASE output
file format to FASTA file format, for Linux (left) and macOS (right). The error bars indicate the measured minimum and the maximum calculation
time measured. The minimum, maximum, standard deviation, average, and median time usage of these runs for the different program versions and
conversions are listed in Table 2.

Figure 2. For this plot, each of the seven Hello World executables (one Perl executable + six executables created by source-to-source translation of
the Haxe Hello World source code into the corresponding target language) were launched 120 times. The left panel shows the time usage of the Hello
World programs on a Linux machine, while the right panel shows the corresponding analysis on a computer running the macOS operating system. The
minimum, maximum, standard deviation, average, and median time usage of these runs for the different program versions and conversions are listed
in Table 3.

executables by source-to-source translating a Haxe Hello World
program to the different target programming languages, as well
as writing a Perl Hello World program (Fig. 2 and Table 3).

All datasets and source codes used in this benchmark
are available at https://github.com/eeg-ebe/SeqPHASE_time_
mesurements.

https://github.com/eeg-ebe/SeqPHASE_time_mesurements
https://github.com/eeg-ebe/SeqPHASE_time_mesurements
https://github.com/eeg-ebe/SeqPHASE_time_mesurements
https://github.com/eeg-ebe/SeqPHASE_time_mesurements
https://github.com/eeg-ebe/SeqPHASE_time_mesurements
https://github.com/eeg-ebe/SeqPHASE_time_mesurements
https://github.com/eeg-ebe/SeqPHASE_time_mesurements
https://github.com/eeg-ebe/SeqPHASE_time_mesurements

4 | Spöri and Flot

Table 2. Time usage (in ms) for different dataset sizes for the two different steps of SeqPHASE on Linux and macOS. The table lists the
minimum, maximum, standard deviation, average, and median time of the Perl, C++, Lua, Python, Neko, Node.js, and Java SeqPHASE
programs

Program Linux macOS

Min Max σ Avg Med Min Max σ Avg Med

Smallest dataset (4kb)

FASTA -> PHASE

Lua 22.3 62.6 10.9 34.4 28.4 22.7 53.7 9.8 33.9 30.2
Neko 18.3 86.2 6.7 31.6 31.7 31.9 46.8 4.1 40.9 41.6
Python 52.9 160.8 32.7 87.3 68.1 66.3 192.9 38.7 107.9 89.6
Perl 19.1 33.2 2.5 23.6 23.2 26.4 31.8 1.9 28.4 27.9
Java 176.1 372.9 19.9 208.3 205.5 103.6 148.9 9.7 124.0 124.2
Node.js 86.3 221.9 11.9 104.9 102.7 46.5 64.6 5.2 56.8 58.3
C++ 7.1 27.3 1.8 9.5 9.1 8.3 14.2 1.3 11.0 11.1

PHASE -> FASTA

Lua 18.5 59.0 9.2 29.7 24.8 19.9 49.5 9.9 30.1 26.0
Neko 14.8 41.6 5.6 25.3 24.8 25.6 44.9 4.9 33.2 32.3
Python 42.3 149.3 31.8 73.8 54.2 53.8 166.8 35.8 90.9 70.4
Perl 12.0 22.9 2.0 14.3 13.8 13.6 21.0 2.3 17.3 17.4
Java 134.4 310.8 15.5 162.8 161.5 106.4 132.8 8.0 118.6 118.8
Node.js 79.1 150.5 9.9 99.1 97.6 41.1 66.1 6.1 54.9 56.6
C++ 6.4 14.6 1.1 8.2 7.9 8.0 23.5 2.6 10.7 10.2

Largest dataset (156kb)

FASTA -> PHASE

Lua 1700.0 2643.1 127.3 2086.5 2070.8 2030.6 2846.0 265.1 2392.9 2397.2
Neko 634.9 1495.4 105.9 1110.4 1120.6 2257.7 3211.8 287.5 2710.3 2689.1
Python 632.3 1300.6 78.7 793.6 776.7 834.1 1188.7 118.8 1034.0 1089.4
Perl 664.0 990.5 46.1 761.7 756.7 871.1 1144.8 98.3 1014.7 1043.1
Java 371.3 646.4 34.2 449.6 445.8 241.9 315.8 22.0 274.2 272.7
Node.js 353.7 629.5 28.8 401.0 395.9 193.5 265.8 20.0 231.5 235.1
C++ 69.6 109.8 6.4 81.7 81.1 84.2 124.3 9.4 100.8 102.0

PHASE -> FASTA

Lua 5547.6 8167.4 317.7 6459.5 6406.4 11602.5 16211.3 1502.0 13441.0 13343.5
Neko 716.1 1447.3 103.8 1035.9 1052.9 2695.3 3888.6 409.4 3266.8 3200.4
Python 696.4 1153.8 67.5 816.5 810.0 874.0 1318.2 115.7 1040.3 1064.1
Perl 155.9 217.2 12.4 177.8 175.6 189.4 241.1 16.6 216.4 215.1
Java 309.6 573.4 29.8 366.7 362.3 223.7 275.6 15.6 248.5 241.5
Node.js 226.1 442.3 21.2 263.1 259.9 144.4 192.5 12.6 164.5 163.9
C++ 83.4 147.6 8.2 99.5 97.7 86.8 129.6 11.0 105.8 108.4

Table 3. Time usage (in ms) of the Hello World program on Linux and macOS. The table lists the minimum, maximum, standard
deviation, average, and median time of the Perl, C++, Lua, Python, Neko, Node.js, and Java Hello World programs

Program Linux macOS

Min Max σ Avg Med Min Max σ Avg Med

Lua 6.1 10.6 0.9 7.6 7.4 7.2 11.0 1.3 9.0 9.6
Neko 8.5 26.0 3.5 13.9 13.0 9.8 13.1 1.0 11.0 10.7
Python 32.1 49.0 3.2 37.5 37.2 40.7 61.8 6.6 51.6 53.6
Perl 5.2 10.5 0.9 6.3 6.14 7.7 12.1 1.3 9.2 9.0
Java 80.0 136.0 8.6 94.0 93.6 68.7 85.2 4.8 73.9 73.9
Node.js 75.9 123.2 7.1 87.0 86.5 43.7 53.9 3.7 47.7 47.2
C++ 5.6 15.9 1.4 6.9 6.6 7.2 15.0 2.2 9.3 9.0

When comparing the average calculation time needed to con-
vert a FASTA file to a PHASE input file or a PHASE output file
back into a FASTA file, the C++ version greatly outperformed all

other versions of the SeqPHASE program, followed by—for small
datasets—the Python / Neko / Lua versions. However, for larger
datasets the overhead of starting a virtual machine with a long

Haxe as a Swiss knife for bioinformatic applications | 5

startup time can pay off. In that case, the Node.js and / or Java
version may outperform every other versions except for the C++
version.

Although the C++ version was the fastest, we decided to not
provide it for download as we found it challenging to compile
a C++ program that runs on all computers. Instead, we opted
for the Python version because Python is a well-known pro-
gramming language already installed on most computers and
because speed is not that much of an issue when it comes to
small, straightforward programs that are running in less then
100 ms, such as SeqPHASE. However, in case high performance
is needed, building a C++ version for a particular target com-
puter with platform-specific code optimization would be the best
option.

Even though this assumption still needs to be verified, we
believe that Chrome and Node.js would need, on average, the
same amount of time to execute the JavaScript version of the
SeqPHASE program since both Chrome and Node.js are using the
same JavaScript engine (namely, V8 [23]).

When comparing the dead code elimination strategies for the
different target programming languages, we did not observe any
differences in the execution times of the versions created when
the dead code elimination strategy was applied to the full source
code or was limited to the Haxe standard library (the default
option). However the versions created without any dead code
elimination were significantly slower for most programming lan-
guages, except for C++, Neko, and Java for which no difference
was observed.

Discussion
Through the example of SeqPHASE’s reimplementation, we illus-
trate how Haxe coding is a valuable yet still underused approach
for bioinformaticians to make programs available online to large
audiences, including both biologists with no command-line profi-
ciency and computer scientists requiring command-line tools to
run on computing clusters. The SeqPHASE website can be used as
a template for users wishing to experiment with using Haxe as a
valuable alternative to CGI apps, for instance.

Although we chose a fairly simple program to illustrate and
benchmark our proposed approach, another more complex
example of a bioinformatic tool we reimplemented in Haxe in
replacement for a previous perl+CGI version is https://eeg-ebe.
github.io/Champuru [24, 25]. Moreover, three further tools we
directly implemented in Haxe are available online at https://
eeg-ebe.github.io/HaplowebMaker and https://eeg-ebe.github.io/
CoMa [26] as well as https://eeg-ebe.github.io/KoT [27].

Since websites are running inside a sandboxed web browser,
tools that run inside websites are also advantageous for users who
do not want to install a particular software locally due to secu-
rity concerns. However, compared to Perl, Python and other pro-
gramming languages traditionally used in bioinformatics, Haxe
suffers from certain drawbacks: (1) the current unavailability of a
‘BioHaxe’ library of functions facilitating the import and process-
ing of biological data. It is our hope to provide such a library in
the future; (2) debugging a particular Haxe program may require
to take a look at its translation into the target language, which
necessitates some understanding of this language (in addition
to knowing Haxe); (3) although Haxe supports the languages
most often used in bioinformatics (Python, C++, JavaScript, Java),
some other languages such as Perl and R are not supported
yet.

Key Points
• The programming language Haxe allows designers of

bioinformatic applications to maintain a single code
for both command-line and graphical-user-interface ver-
sions of their program.

• This Haxe source code can then be compiled into various
languages such as C++, JavaScript, or Python.

• As a case study to illustrate Haxe’s usefulness for bioin-
formatics, we reimplemented in Haxe the previously
published program SeqPHASE (originally written in Perl)
and compared the performances of translated C++, Lua,
Python, Neko, Node.js, and Java versions.

Funding
Open access fees for the present article were supported by the
Fonds de la Recherche Scientifique - FNRS via Grant n◦T.0078.23
to JFF.

Conflicts of interest: None declared.

References
1. Troyanskaya OG. Don’t fear the command line! Cell 2011;144:

842–3. https://doi.org/10.1016/j.cell.2011.02.042.
2. Voronkov A, Martucci LA, Lindskog S. System administrators

prefer command line interfaces, don’t they? An exploratory
study of firewall interfaces. In: Fifteenth Symposium on Usable Pri-
vacy and Security (SOUPS 2019). Berkeley, CA: USENIX Association,
2019, p. 259–271.

3. Goecks J, Nekrutenko A. James Taylor, and the Galaxy team.
Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the
life sciences. Genome Biol 2010;11:R86. https://doi.org/10.1186/
gb-2010-11-8-r86.

4. Blankenberg D, Von Kuster G, Coraor N. et al. Galaxy: a web-
based genome analysis tool for experimentalists. Curr Protoc
Mol Biol 2010;89:19.10.1–21. https://doi.org/10.1002/0471142727.
mb1910s89.

5. Taylor J, Schenck I, Blankenberg D. et al. Using galaxy to perform
large-scale interactive data analyses. Curr Protoc Bioinformat-
ics 2007;19:10.5.1–25. https://doi.org/10.1002/0471250953.bi1005
s19.

6. Lammarsch T, Aigner W, Bertone A. et al. A comparison of
programming platforms for interactive visualization in web
browser based applications. In: 12th International Conference Infor-
mation Visualisation, London, UK: IEEE, 2008, p. 194–199. https://
doi.org/10.1109/IV.2008.34.

7. Ayyagari R, Figueroa N. Is seeing believing? Training users on
information security: evidence from Java applets. J Inf Syst Educ
2017;28:115.

8. Haas A, Rossberg A, Schuff DL. et al Bringing the web up to speed
with WebAssembly. In: Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, New
York: Association for Computing Machinery, 2017, p. 185–200.

9. Perkel JM. No installation required: how WebAssembly is chang-
ing scientific computing. Nature 2024;627:455–6. https://doi.
org/10.1038/d41586-024-00725-1.

10. Brock AW, Eich B. Javascript: the first 20 years. Proc ACM Program
Lang 2020;4:1–189. https://doi.org/10.1145/3386327.

https://eeg-ebe.github.io/Champuru
https://eeg-ebe.github.io/Champuru
https://eeg-ebe.github.io/Champuru
https://eeg-ebe.github.io/Champuru
https://eeg-ebe.github.io/Champuru
https://eeg-ebe.github.io/Champuru
https://eeg-ebe.github.io/HaplowebMaker
https://eeg-ebe.github.io/HaplowebMaker
https://eeg-ebe.github.io/HaplowebMaker
https://eeg-ebe.github.io/HaplowebMaker
https://eeg-ebe.github.io/HaplowebMaker
https://eeg-ebe.github.io/HaplowebMaker
https://eeg-ebe.github.io/CoMa
https://eeg-ebe.github.io/CoMa
https://eeg-ebe.github.io/CoMa
https://eeg-ebe.github.io/CoMa
https://eeg-ebe.github.io/CoMa
https://eeg-ebe.github.io/CoMa
https://eeg-ebe.github.io/KoT
https://eeg-ebe.github.io/KoT
https://eeg-ebe.github.io/KoT
https://eeg-ebe.github.io/KoT
https://eeg-ebe.github.io/KoT
https://eeg-ebe.github.io/KoT
https://doi.org/10.1016/j.cell.2011.02.042
https://doi.org/10.1016/j.cell.2011.02.042
https://doi.org/10.1016/j.cell.2011.02.042
https://doi.org/10.1016/j.cell.2011.02.042
https://doi.org/10.1016/j.cell.2011.02.042
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1002/0471142727.mb1910s89
https://doi.org/10.1002/0471142727.mb1910s89
https://doi.org/10.1002/0471142727.mb1910s89
https://doi.org/10.1002/0471142727.mb1910s89
https://doi.org/10.1002/0471142727.mb1910s89
https://doi.org/10.1002/0471250953.bi1005s19
https://doi.org/10.1002/0471250953.bi1005s19
https://doi.org/10.1002/0471250953.bi1005s19
https://doi.org/10.1002/0471250953.bi1005s19
https://doi.org/10.1002/0471250953.bi1005s19
https://doi.org/10.1109/IV.2008.34
https://doi.org/10.1109/IV.2008.34
https://doi.org/10.1109/IV.2008.34
https://doi.org/10.1109/IV.2008.34
https://doi.org/10.1038/d41586-024-00725-1
https://doi.org/10.1038/d41586-024-00725-1
https://doi.org/10.1038/d41586-024-00725-1
https://doi.org/10.1038/d41586-024-00725-1
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327

6 | Spöri and Flot

11. Burnham T. CoffeeScript: accelerated JavaScript development. The
Pragmatic Bookshelf, 2015. ISBN 978-1-941222-26-3.

12. Gómez J, García LJ, Salazar GA. et al. BioJS: an open source
JavaScript framework for biological data visualization. Bioinfor-
matics 2013;29:1103–4. https://doi.org/10.1093/bioinformatics/
btt100.

13. Gundavaram S. CGI Programming on the World Wide Web. St.
Sebastopol, CA: O’Reilly & Associates, 1996. ISBN 978-1-56592-
168-9.

14. Dasnois B. haXe 2 Beginner’s Guide. Birmingham, UK: Packt Pub-
lishing Ltd, 2011. ISBN 978-1-849512-56-5.

15. Koenig J, Leino KRM. Getting started with Dafny: a guide. In:
Nipkow T, Grumberg O, Hauptmann B (eds). Software Safety
and Security, Amsterdam, The Netherlands: IOS Press, 2012,
p. 152–81. https://doi.org/10.3233/978-1-61499-028-4-152.

16. Štrekelj D, Leventić H, Galić I. Performance overhead of Haxe
programming language for cross-platform game development.
Int J Electr Comput Eng Syst 2015;6:9–13.

17. Standish TA. Extensibility in programming language design. In:
Proceedings of the May 19-22, 1975, National Computer Conference
and exposition, Anaheim, California: ACM Press, 1975, p. 287.
https://doi.org/10.1145/1499949.1500003.

18. Flot J-F. SeqPHASE: a web tool for interconverting PHASE
input/output files and FASTA sequence alignments. Mol Ecol
Resour 2010;10:162–6. https://doi.org/10.1111/j.1755-0998.2009.
02732.x.

19. Stephens M, Smith NJ, Donnelly P. A new statistical method for
haplotype reconstruction from population data. Am J Hum Genet
2001;68:978–89. https://doi.org/10.1086/319501.

20. Rozas J, Rozas R. DnaSP, DNA sequence polymorphism: an inter-
active program for estimating population genetics parameters
from DNA sequence data. Comput Appl Biosci 1995;11:621–5.
https://doi.org/10.1093/bioinformatics/11.6.621.

21. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC. et al. DnaSP
6: DNA sequence polymorphism analysis of large data sets.
Mol Biol Evol 2017;34:3299–302. https://doi.org/10.1093/molbev/
msx248.

22. Excoffier L, Novembre J, Schneider S. SIMCOAL: a general coales-
cent program for the simulation of molecular data in intercon-
nected populations with arbitrary demography. J Hered 2000;91:
506–9. https://doi.org/10.1093/jhered/91.6.506.

23. Heller M. What is Node.js? The JavaScript Runtime Explained.
InfoWorld, 2017.

24. Flot J-F. Champuru 1.0: a computer software for unraveling
mixtures of two DNA sequences of unequal lengths. Mol
Ecol Notes 2007;7:974–7. https://doi.org/10.1111/j.1471-8286.2007.
01857.x.

25. Spöri Y, Flot J-F. Champuru 2: improved scoring of alignments
and a user-friendly graphical interface (arXiv:2405.06032). 2024.
https://doi.org/10.48550/arXiv.2405.06032.

26. Spöri Y, Flot J-F. HaplowebMaker and CoMa: two web tools
to delimit species using haplowebs and conspecificity
matrices. Methods Ecol Evol 2020;11:1434–8. https://doi.org/10.
1111/2041-210X.13454.

27. Spöri Y, Stoch F, Dellicour S. et al. KoT: an automatic imple-
mentation of the K/θ method for species delimitation bioRxiv,
page 2021.08.17.454531, 2021. https://doi.org/10.1101/2021.08.
17.454531.

https://doi.org/10.1093/bioinformatics/btt100
https://doi.org/10.1093/bioinformatics/btt100
https://doi.org/10.1093/bioinformatics/btt100
https://doi.org/10.1093/bioinformatics/btt100
https://doi.org/10.1093/bioinformatics/btt100
https://doi.org/10.3233/978-1-61499-028-4-152
https://doi.org/10.3233/978-1-61499-028-4-152
https://doi.org/10.3233/978-1-61499-028-4-152
https://doi.org/10.1145/1499949.1500003
https://doi.org/10.1145/1499949.1500003
https://doi.org/10.1145/1499949.1500003
https://doi.org/10.1111/j.1755-0998.2009.02732.x
https://doi.org/10.1086/319501
https://doi.org/10.1086/319501
https://doi.org/10.1086/319501
https://doi.org/10.1093/bioinformatics/11.6.621
https://doi.org/10.1093/bioinformatics/11.6.621
https://doi.org/10.1093/bioinformatics/11.6.621
https://doi.org/10.1093/bioinformatics/11.6.621
https://doi.org/10.1093/molbev/msx248
https://doi.org/10.1093/jhered/91.6.506
https://doi.org/10.1093/jhered/91.6.506
https://doi.org/10.1093/jhered/91.6.506
https://doi.org/10.1093/jhered/91.6.506
https://doi.org/10.1111/j.1471-8286.2007.01857.x
https://doi.org/10.48550/arXiv.2405.06032
https://doi.org/10.48550/arXiv.2405.06032
https://doi.org/10.48550/arXiv.2405.06032
https://doi.org/10.48550/arXiv.2405.06032
https://doi.org/10.1111/2041-210X.13454
https://doi.org/10.1101/2021.08.17.454531

	 Haxe as a Swiss knife for bioinformatic applications: the SeqPHASE case story
	Introduction
	Material and methods
	Results
	Time usage
	Discussion
	Key Points
	Funding

