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Abstract

Designing faithful yet accurate AI models is challenging, particularly in the field of individual 

treatment effect estimation (ITE). ITE prediction models deployed in critical settings such as 

healthcare should ideally be (i) accurate, and (ii) provide faithful explanations. However, current 

solutions are inadequate: state-of-the-art black-box models do not supply explanations, post-hoc 

explainers for black-box models lack faithfulness guarantees, and self-interpretable models greatly 

compromise accuracy. To address these issues, we propose DISCRET, a self-interpretable ITE 

framework that synthesizes faithful, rule-based explanations for each sample. A key insight behind 

DISCRET is that explanations can serve dually as database queries to identify similar subgroups 

of samples. We provide a novel RL algorithm to efficiently synthesize these explanations from 

a large search space. We evaluate DISCRET on diverse tasks involving tabular, image, and text 

data. DISCRET outperforms the best self-interpretable models and has accuracy comparable to 

the best black-box models while providing faithful explanations. DISCRET is available at https://

github.com/wuyinjun-1993/DISCRET-ICML2024.

1. Introduction

Designing accurate and explainable AI models is a key challenge in solving a wide range 

of problems that require individualized explanations. In this paper, we tackle this challenge 

in the context of individual treatment effect (ITE) estimation. ITE quantifies the difference 

between one individual’s outcomes with and without receiving treatment. Estimating ITE is 

a significant problem not only in healthcare (Basu et al., 2011) but also in other domains 

such as linguistics (Pryzant et al., 2021; Feder et al., 2021) and poverty alleviation (Jerzak 

et al., 2023a;b). A large body of literature has investigated accurately estimating ITE 
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using various machine learning architectures, including GANs (Yoon et al., 2018) and 

transformers (Zhang et al., 2022), among others (Shalit et al., 2017; Liu et al., 2022).

ITE prediction models deployed in critical settings should ideally be (i) accurate, and 

(ii) provide faithful explanations in order to be trustable and usable. In this paper, we 

follow prior work on evaluating the faithfulness of explanations in terms of consistency, 

which measures the degree to which samples with similar explanations have similar model 

predictions (Dasgupta et al., 2022; Nauta et al., 2023).

Current solutions for predicting ITE are either accurate or faithful, but not both, as illustrated 

in the first two rows of Figure 1. While self-interpretable models such as Causal Forest and 

others (Athey & Wager, 2019; Chen et al., 2023b) produce consistent explanations, they 

struggle to provide sufficiently accurate ITE estimations. On the other hand, while black-box 

models like transformers are typically the most accurate, explanations generated by post-hoc 

explainers, such as Anchor (Ribeiro et al., 2018), are not provably consistent.

We therefore seek to answer the following central question: Is it possible to design a 
faithfully explainable yet accurate learning algorithm for treatment effect estimation? To 

this end, we propose DISCRET1, the first provably-faithful, deep learning based ITE 

prediction framework. Given a sample x, DISCRET follows prior work and estimates ITE 

by computing the average treatment effect (ATE) of samples that are similar to x. However, 

in contrast to prior methods that discover similar samples through statistical matching 

(Anderson et al., 1980; Chen et al., 2023a) or clustering (Xue et al., 2023), DISCRET finds 

similar samples by (i) synthesizing a logical rule that describes the key features of sample 

x (and hence explains the subgroup the sample belongs to) and then (ii) evaluating this 

rule-based explanation on a database of training samples (see Figure 2 for our pipeline). 

As shown in Figure 1, DISCRET produces consistent explanations for samples with similar 

predictions; in fact, it is guaranteed to be consistent by construction, as we show later.

How does DISCRET synthesize rules which correctly group similar samples, and thus lead 

to accurate predictions? Learning to synthesize rules is challenging since the execution of 

database queries is non-differentiable and thus we cannot compute an end-to-end loss easily. 

To address this issue, we design a deep reinforcement learning algorithm with a novel and 

tailored reward function for dynamic rule learning. We also state the theoretical results of 

the convergence of DISCRET under some mild conditions suggesting if the ground-truth 

explanations are consistent, then our training algorithm can always discover them.

Due to the widely recognized trade-offs between interpretability and prediction performance 

(Dziugaite et al., 2020), DISCRET slightly underperforms the state-of-the-art black-box 

models (Zhang et al., 2022). In addressing this, we found that regularizing the training loss 

of black-box models such as TransTEE to penalize discrepancy with DISCRET predictions 

yields new state-of-the-art models.

1DIScovering Comparable items with Rules to Explain Treatment Effect
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We evaluate the capabilities of DISCRET through comprehensive experiments spanning 

four tabular, one image, and one text dataset, covering three different types of treatment 

variables. For tabular data, among others, we use the IHDP dataset (Hill, 2011) which 

tracks cognitive outcomes of premature infants. Other datasets used are TCGA (tabular) 

(Weinstein et al., 2013), IHDP-C (tabular), Uganda satellite images for estimating poverty 

intervention (image), and the Enriched Equity Evaluation Corpus (text). Notably, our 

approach outperforms all self-interpretable methods, including by 34% on IHDP, is 

comparable to the accuracy of black-box models, and produces more faithful explanations 

than post-hoc explainers. In addition, regularizing the state-of-the-art black-box models with 

DISCRET reduces their ITE prediction error across tasks, including by 18% on TCGA.

Our contributions can be summarized as follows:

1. We introduce DISCRET, a self-interpretable framework that synthesizes faithful 

rule-based explanations, and apply it to the treatment effect estimation problem.

2. We present a novel Deep Q-learning algorithm to automatically learn these 

rule-based explanations, and supplement it with theoretical results.

3. We conduct an extensive empirical evaluation that demonstrates that DISCRET 

outperforms existing self-interpretable models and is comparable to black-box 

models across tabular, image, and text datasets spanning a diverse range of 

treatment variable types. Moreover, regularizing the state-of-the-art black-box 

models with DISCRET further reduces their prediction error.

2. Preliminaries

2.1. Individual Treatment Effect (ITE) Estimation

Suppose each sample consists of (i) the pre-treatment covariate variable X, (ii) the treatment 

variable T , (iii) a dose variable S associated with T , and (iv) observed outcome Y  under 

treatment T  and dose S. We embrace a versatile framework throughout this study, where T
can take on either discrete or continuous values, S is inherently continuous but can be either 

present or absent, Y  can be discrete or continuous, and X may incorporate structured features 

as well as unstructured features, such as text or image data. In the rest of the paper, we 

primarily explore a broadly studied setting where Y  is a continuous variable, T  is a binary 

variable (T = 1 and T = 0 represent treated and untreated respectively) and there is no dose 

variable. The goal is to estimate individual treatment effects (ITE), i.e., the difference of 

outcomes with T = 1 and T = 0. Typically, the average treatment effect (ATE), the average of 

ITE across all samples (i.e., ATE = E ITE ) is reported. Generalizations to other settings are 

provided in Appendix C.6.

Beyond the treatment effect definitions, the propensity score, represented as the probability 

of treatment assignment T  conditioned on the observed covariates X, often plays a pivotal 

role in regularizing the treatment effect estimation. This propensity score is denoted as 

π T ∣ X .
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Unlike conventional prediction tasks, we are unable to directly observe the counterfactual 

outcomes during training, rendering the ground-truth treatment effect typically unavailable. 

To address this challenge and ensure the causal interpretability of our estimated treatment 

effect, we adhere to the standard assumptions proposed by Rubin (1974), which are 

formulated in Appendix C.1.

2.2. Syntax of Logic Rules

We assume that the covariate variable X is composed of m features, X1, X2, …, Xm, which can 

be categorical or numeric attributes from tabular data or pre-processed features extracted 

from text data or image data. We then build logic rule-based explanations upon those 

features to construct our treatment effect estimator. Those logic rules are assumed to be in 

the form of K disjunctions of multiple conjunctions, i.e., R1 ∨ R2 ∨ ⋯ ∨ RH where each Ri

is a conjunction of K literals: li1 ∧ li2 ∧ li3 ∧ ⋯ ∧ liK. Each lij j = 1,2, …  represents a literal of 

the form lij = A op c , where A ∈ X1, X2, …, Xm ; op is equality or inequality for categorical 

attributes, and op ∈ < , > , =  for numeric attributes; and c is a constant.

3. The DISCRET Framework

Given a database D of individual samples with their covariate variables, and their ground-

truth outcomes under treatment T  and dose S, we want to estimate the treatment effect 

on a new sample x. To do so, DISCRET consists of a two-step process: (i) explanation 
synthesis where a rule-based explanation Rx is synthesized for the given sample x, such that 

Rx captures pertinent characteristics about the sample, and then (ii) explanation evaluation, 

where a subgroup of similar samples Rx D ⊆ D satisfying the explanation is selected from 

D. Finally, the predicted ITE is computed over this subgroup Rx D .

This section first outlines these two steps of DISCRET (§3.1 and §3.2, Fig. 2). We 

then explain the training algorithm (§3.3). Additionally, we show how DISCRET can be 

employed to regularize state-of-the-art deep learning models for maximal performance 

(§3.4).

3.1. Explanation Synthesis

3.1.1. OVERVIEW—DISCRET’s explanation synthesizer consists of a set of three 

models, Θ = Θ0, Θ1, Θ2 . Θ0 is a backbone model for encoding features, Θ1 is a feature-

selector, and Θ2 a thresholding constant selector for features. Note that Θ0 can be any 

encoding model, such as the encoder of the TransTEE model (Zhang et al., 2022). Θ0 can 

be optionally initialized with a pre-trained phase (see Appendix C.2) and can be frozen or 

fine-tuned during the training phase.

Gven a sample x, and models Θ0, Θ1 and Θ2, we want to synthesize a conjunctive rule 

Rx which takes the form of Rx: − l1 ∧ l2 ∧ l3 ∧ ⋯ ∧ lK. We synthesize Rx by generating 

lk, k = 1,2, ⋯, K recursively, where each lk takes the form A op c . Specifically, for each 

lk = A op c, we select a feature A using Θ1, a thresholding constant c using Θ2, and an operator 

op based on x, A and c. Before illustrating how to synthesize these rules during the inference 
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phase in §3.1.3, we take a light detour to describe some desired properties for them in 

§3.1.2.

3.1.2. Desired Properties of Explanations—We state four desired properties of 

a rule-based explanation, which guide the design of DISCRET. We will refer to these 

properties in §3.1.3 and §3.3.

1. Local interpretability: We aim to synthesize a rule-based explanation Rx

for each individual sample x rather than for a population of samples. Thus, 

explanations may differ for different samples.

2. Satisfiability: For any rule Rx generated for a given sample x, x’s features must 

satisfy Rx. This guarantees that the sample x and any samples retrieved by Rx

share the same characteristics.

3. Low-bias: We expect that Rx can retrieve a set of similar samples so that the bias 

between the estimated ATE over them and the ground-truth ITE is as small as 

possible.

4. Non-emptiness: There should be at least one sample from the database 

whose covariates satisfy Rx. In addition, for those samples satisfying Rx, their 

treatment variables should cover all essential treatment values for treatment 

effect estimations, e.g., containing both treated and untreated units in binary 

treatment settings.

3.1.3. Rule Generation—The generation of the rule Rx during inference is straight-

forward. At each round k, we encode the features Ex and the so-far generated rule 

L1:k − 1 = l1 ∧ l2 ∧ l3 ∧ ⋯ ∧ lk − 1  and select a feature Ak from Θ1 by (see Appendix C.3 for 

details). For each feature Ak, we select a thresholding constant c and operator op to form 

literal lk. Selection of c and op depends on the type of Ak.

Categorical Features.: If A is a categorical attribute, then we assign c = x A , where x A
is the value of attribute A in sample x; and we assign op as =, which guarantees the 

satisfiability of Rx on x.

Numeric Features.: If A is a numeric attribute, we first discretize the range of A into bins, 

and query Θ2 to choose a bin Cj. As suggested in Figure 2, Θ2 takes the encoding of the 

covariates and L1:k − 1, and the one-hot encoding of feature A as the model input. After the 

feature A and the constant c are identified, the operator op is then deterministically chosen by 

comparing the value x A  and c. If x A  is greater than c, then op is assigned as ≥, and as ≤ 

otherwise, thus again guaranteeing the satisfiability of the rule Rx.

In addition, we observe that the samples retrieved by the rule Rx may not contain all essential 

treatment values for treatment effect estimations, thus violating the Non-emptiness. To 

address this issue, we keep track of the retrieved samples for each L1:k k = 1,2, …, K  and 
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whenever the addition of one literal lk + 1 leads to the violation of the Non-emptiness 

property, we stop the rule generation process early and return L1:k as Rx.

To produce multiple disjunctions with DISCRET, multiple literals are generated 

simultaneously at each round, each of which is assigned to one disjunction respectively 

(see Appendix C.4).

3.2. Explanation Evaluation

As Figure 2 shows, given a sample x (e.g., a patient) with X, T , S, Y , and a rule Rx (i.e., 

L1:k in Figure 2), we evaluate the rule Rx on a database D to retrieve a subgroup of similar 

samples, which is denoted by Rx D = xi
*, ti

*, si
*, yi

*
i = 1
n .

ITE Estimation.—The ITE of the sample x is then estimated by computing the average 

treatment effect (ATE) estimated within this subgroup. In this paper, we take the empirical 

mean by default for estimating ATE of Rx D , i.e., ŷ 1 − ŷ 0 , in which y t , t = 0,1  denotes 

the estimated outcome calculated with the following formula:

y t = 1
∑ I ti

* = t ∑ I ti
* = t ⋅ yi

*

(1)

We also estimate the propensity score for discrete treatment variables by simply calculating 

the frequency of every treatment within Rx D :π T = t ∣ X = x = ∑ I ti
* = t / Rx D .

3.3. RL-based Training

We train Θ to satisfy the desired properties mentioned in §3.1.2. In particular, to preserve the 

low-bias property, we need to guide the generation of rules such that the estimated ITE is 

as accurate as possible. However, a key difficulty in training Θ is the non-differentiability 

arising from the explanation evaluation step (§3.2), i.e. evaluating Rx on our database. We 

overcome this issue by formulating the model training as a deep reinforcement learning (RL) 

problem and propose to adapt the Deep Q-learning (DQL) algorithm to solve this problem. 

Briefly, we define a reward function over the selected subgroup of samples Rx D , and use it 

to learn the RL-policy.

We first map the notations from §3.1.1 to classical RL terminology. An RL agent takes one 

action at one state, and collects a reward from the environment, which is then transitioned 

to a new state. In our rule learning setting, a state is composed of the covariates x and the 

generated literals in the first k − 1 rounds, L1:k − 1. With x and L1:k − 1, the model Θ1 and Θ2

collectively determine the ktℎ literal, lk, which is regarded as one action. Our goal is then to 

learn a policy parameterized by Θ, which models the probability distribution of all possible lk

conditioned on the state x, L1:k − 1 , such that the value function calculated over all K rounds 

is maximized:
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V 1:K = ∑k = 1
K rkγk − 1,

(2)

in which γ is a discounting factor. Note that there are only K horizons/rounds in our settings 

since the number of conjunctions in the generated rules is limited. To bias rule generation 

towards accurate estimation of ITE, we expect that the value function V 1:K reflects how small 

the ITE estimation error is. However, since the counterfactual outcomes are not observed in 

the training phase, we therefore use the errors of the observed outcomes as a surrogate of the 

ITE estimation error. Also, we give a zero reward to the case where the retrieved subgroup, 

L1:K D , violates the non-emptiness property. As a result, V 1:K is formulated as

V 1:K = e−α y − y1:K
2

⋅ I L1:K D is non‐empty ,

(3)

in which y1:K represents the estimated outcome by using the generated rule composed 

of literals L1:K and α is a hyper-parameter. As a consequence, the reward collected at 

the ktℎ round of generating lk becomes rk = V 1:k − V 1:k − 1 /γk − 1. We further discuss how to 

automatically fine-tune the hyper-parameter α and incorporate the propensity score defined 

in §3.2 for regularization in Appendix C.9.

Next, to maximize the value function V 1:K, we employ Deep Q-learning (DQL) (Mnih et 

al., 2013) to learn the parameter Θ. To facilitate Q learning, we estimate the Q value with 

the output logits of the models given a state x, L1:k − 1  and an action lk. Recall that since 

DISCRET can generate consistent explanations by design, we can show that if Θ0 is an 

identity mapping and Θ1 is a one-layer neural network, the following theorem holds:

Theorem 3.1. Suppose we have input data xi, ti, si, yi i = 1
N  where xi ∈ ℝm and discrete, 

ti ∈ ℝ, si ∈ ℝ, and yi ∈ ℝ, then the IT̂Ex obtained from DISCRET converges to zero 

generalization error with probability 1 for ITE estimation (i.e. ITEx − IT̂Ex
2 0 w.p. 1) 

for any fixed K ≤ m over the dataset with all discrete features under the data generating 
process y = f XK + c ⋅ t + ϵ, where XK ⊆ X1, X2, ⋯, Xm , c ∈ ℝ, t is the treatment assignment, 

and ϵ N 0, σ2  for some σ > 0.

Intuitively, Theorem 3.1 suggests if the ground-truth explanations are consistent, then our 

training algorithm can perfectly discover them. We prove the theorem and explain our 

algorithm in detail in Appendix C.

3.4. Regularizing black-box models with DISCRET

Due to the widely recognized trade-offs between model interpretability and model 

performance (Dziugaite et al., 2020), self-interpretable models typically suffer from poorer 

performance than their neural network counterparts. To achieve a better balance between 

performance and interpretability, we further propose to regularize the prediction of black-
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box models with that of DISCRET. Since DISCRET also leverages part of the black-box 

model such as the encoder of TransTEE as the backbone Θ0, we thus obtain the predictions 

of black-box models by reusing Θ0. Specifically, starting from the encoded covariates Ex

generated by Θ0, we predict another outcome y′̂ directly with Ex adhering to the mechanism 

employed by state-of-the-art neural models. This prediction is then regularized by the 

predicted outcome y1:K by DISCRET as follows:

y′1:K = y′ + λy1:K / 1 + λ ,

in which λ is a hyperparameter for controlling the impact of ŷ′. Afterward, y1:K is replaced 

with y′1:K in Equation 3 or Equation 9 for model training. In addition, to facilitate accurate y′̂, 
we further minimize the loss involving y′̂ and y along with the Deep Q-learning loss.

4. Experiments

In this section, we aim to answer the following research questions about DISCRET:

RQ1: Does DISCRET produce faithful explanations?

RQ2: How does the accuracy of DISCRET perform compared to existing self-

interpretable models and black-box models?

4.1. Setup

Datasets.—We evaluate across tabular, text, and image datasets, covering diverse 

categories of treatment variables. Specifically, we select IHDP (Hill, 2011), TCGA 

(Weinstein et al., 2013) IHDP-C (a variant of IHDP), and News for tabular setting, the 

Enriched Equity Evaluation Corpus (EEEC) dataset (Kiritchenko & Mohammad, 2018) for 

text setting and Uganda (Jerzak et al., 2023b;a) dataset for the image setting. We summarize 

the modality, categories of treatment and dose variables, and number of features for each 

dataset in Table 7, with more details in Appendix A.

Baselines.—We use extensive baselines for neural network models, self-interpretable 

models, and post-hoc explainers.

Neural network models.: For neural networks, we select the state-of-the-art models: 

TransTEE (Zhang et al., 2022), TVAE (Xue et al., 2023), Dragonnet (Shi et al., 2019), 

TARNet (Shalit et al., 2017), Ganite (Yoon et al., 2018), DRNet (Schwab et al., 2020), 

and VCNet (Nie et al., 2020). Not all of these models support all categories of treatment 

variables, as discussed in Appendix B. Also, since our regularization strategy can be 

regarded as the integration of two models through weighted summation, we compare 

our regularized backbone (TransTEE) against the integration of TransTEE and another 

top-performing neural network model (Dragonnet for IHDP, EEEC, and Uganda dataset, 

VCNet for TCGA, DRNet for IHDP-C) in the same manner.

Self-interpretable models.: We compare against classical self-interpretable models, e.g., 

Causal Forest (Athey & Wager, 2019), Bayesian Additive Regression Trees (BART) 
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(Chipman et al., 2010; Hahn et al., 2020), decision tree (DT), and random forests (RF), 

in which the latter two are integrated into R-learner (Nie & Wager, 2021) for treatment 

effect estimation. We also adapt three general-purpose self-interpretable models to treatment 

effect estimation—ENRL (Shi et al., 2022), ProtoVAE (Gautam et al., 2022)2, and Neural 

Additive Model (NAM) (Agarwal et al., 2021), which generate rules, prototypes, and feature 

attributes as explanations respectively. For tree-based models among these methods, we 

maintain the same explanation complexity as DISCRET. For the sake of completeness we 

also conduct additional experiments to vary the complexity (e.g., the number of trees and 

tree depth) of all self-interpretable models, provided in Table 1 in Appendix E.1; DISCRET 

outperforms self-interpretable models even when they are configured to high complexity.

Post-hoc explainers.: We apply several post-hoc explainers to the TransTEE model to 

evaluate the consistency of explanations. Thy include Lore (Guidotti et al., 2018), Anchor 

(Ribeiro et al., 2018), Lime (Ribeiro et al., 2016), Shapley values (Shrikumar et al., 2017), 

and decision tree-based model distillation methods (Frosst & Hinton, 2017) (here-inafter 

referred to as Model Distillation). We enforce the complexity of these explanations to be the 

same as DISCRET for fair comparison.

Evaluation metrics.—We primarily evaluate faithfulness by measuring consistency, 

proposed by (Dasgupta et al., 2022); we also measure sufficiency, which is a generalization 

of consistency. Briefly, consistency quantifies how similar the model predictions are 

between samples with the same explanations, while sufficiency generalizes this notion to 

arbitrary samples satisfying the same explanations (but not necessarily producing the same 

explanations). Appendix D provides formal definitions of these two metrics.

We evaluate ITE estimation accuracy using different metrics for datasets to account for 

different settings. For the datasets with binary treatment variables, by following prior studies 

(Shi et al., 2019; Shalit et al., 2017), we employ the absolute error in average treatment 

effect, i.e., ϵATE = 1
n ∑i = 1

n ITE xi − 1
n ∑i = 1

n ITE xi . Both in-sample and out-of-sample ϵATE are 

reported, i.e., ϵATE evaluated on the training set and test set respectively. For the datasets 

with either continuous dose variables or continuous treatment variables, we follow (Zhang 

et al., 2022) to report the average mean square errors AMSE between the ground-truth 

outcome and predicted outcome on the test set. For the image dataset, Uganda, since there 

is no ground-truth ITE, we therefore only report the average outcome errors between the 

ground-truth outcomes and the predicted outcomes conditioned on observed treatments, i.e., 

ϵoutcome = 1
n ∑i = 1

n yi − ŷi .

Configurations for DISCRET.—We consider two variants of DISCRET: vanilla 

DISCRET and backbone models regularized with DISCRET (denoted as DISCRET + 

TransTEE).

2ProtoVAE is designed for image data. We therefore only compare DISCRET against this method on the Uganda dataset.
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For both variants, we perform grid search on the number of conjunctions, K, and the number 

of disjunctions, H, and the regularization coefficient λ, in which K ∈ 2,4, 6 , H ∈ 1,3  and 

λ ∈ 0,2, 5,8, 10 .

Extracting features from text and image data.—For text data, we employ the word 

frequency features such as “Term Frequency-Inverse Document Frequency” (Baeza-Yates et 

al., 1999). For image data, we follow (Fel et al., 2023) to extract interpretable concepts as 

the features, which we further discuss in Appendix G. Note that we only extract features for 

DISCRET and self-interpretable baselines such as Causal Forest while all neural network 

model-based baselines still take raw images or text data as input.

4.2. RQ1: Faithfulness Evaluation on Explanations

We evaluate the consistency and sufficiency of explanations produced by DISCRET, the 

state-of-the-art self-interpretable models, and the post-hoc explainers. For those explainers 

producing feature-based explanations, we also follow (Dasgupta et al., 2022) to discretize 

the feature importance scores, say, by selecting the Top-K most important features, for 

identifying samples with exactly the same explanations. For fair comparison, we evaluate the 

explanations generated w.r.t. the same set of features extracted from NLP and image data.

We graph the consistency scores in Figure 3; full consistency scores are provided in Table 4 

in Appendix E.4. As Figure 3 indicates, DISCRET always achieves near 100% consistency 

since the same explanations in DISCRET deterministically retrieve the same subgroup 

from the database, thus generating the same model predictions. In contrast, the baseline 

explanation methods generally have extremely low consistency scores in most cases. We 

also include the sufficiency score results in Table 5, which shows that DISCRET can still 

obtain higher sufficiency scores in most cases than other explanation methods.

4.3. RQ2: Accuracy Evaluation on ITE Predictions

We include the ITE estimation results for tabular setting, NLP setting, and image setting in 

Table 8. For brevity, the results on News dataset are not reported in Table 8, but are included 

in Table 6 in Appendix E.5.

As Table 8 shows, DISCRET outperforms all the self-interpretable methods, particularly 

on text (ϵATE = 0.011 for DISCRET v/s 0.0011 for causal forest). Compared to black-box 

models, DISCRET only performs slightly worse in most cases, and even outperforms them 

on the Uganda dataset. The outperformance is possibly caused by equivalent outcome values 

among most samples in this dataset as suggested by Figure 6 in Appendix E.6. Hence, 

consistent predictions (e.g., by DISCRET) between samples lead to a lower error rate. 

DISCRET underperforms TransTEE on IHDP-C, likely due to the complexity of the dataset; 

DISCRET still beats all other black-box models on this dataset.

Further, backbone models (TransTEE) regularized with DISCRET outperform the state-of-

the-art neural network models, reducing their estimation errors by as much as 18% (TCGA 

dataset.) Interestingly, for the IHDP dataset, TransTEE outperforms its regularized version 

only on in-sample (i.e. training) error, but underperforms the regularized version when we 
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consider out-of-sample (i.e. test) error. Intuitively, DISCRET’s regularization incentivizes 

the underlying backbone’s training (TransTEE) to focus on only a subset of the most 

important features, thereby reducing its variance and allowing it to perform better.

4.4. Misc. Experiments

Appendix E includes other experiments such as the ablation studies (Appendix E.2) with 

respect to dataset size and reward functions, and evaluating the training cost of DISCRET 

(Appendix E.3).

5. Related Work

Treatment effect estimation.

ML-based approaches to determine treatment effects can be divided into self-interpretable 

(often, tree-based), and deep-learning approaches. Deep-learning approaches mainly focus 

on how to appropriately incorporate treatment variables and covariates by designing various 

ad-hoc neural networks, such as Dragonnet (Shi et al., 2019), DRNet (Schwab et al., 2020) 

and TARNet (Shalit et al., 2017). Recently, it has been demonstrated that transformers 

(Zhang et al., 2022) can encode covariates and treatment variables without any ad-hoc 

adaptations, which outperforms other deep-learning approaches. We thus select transformers 

as our default backbone models.

Self-interpretable models can be further subdivided into approaches specifically meant for 

causal inference, such as causal forests (Wager & Athey, 2018), and general-purpose models 

adapted to ITE such as random forests, Bayesian Additive Regression Trees (BART) (Hahn 

et al., 2020), ENRL (Shi et al., 2022). As shown earlier, these approaches are faithful, 

but often inaccurate. Prior work for treatment recommendation has also used rules to drive 

model decisions (Lakkaraju & Rudin, 2017), but use static rule sets (rules and partitions of 

subgroups are pre-determined) and have been restricted to learning via Markov processes. 

In contrast, DISCRET enables dynamic rule generation for each sample and predicts ITE 

accurately with deep reinforcement learning. Past approaches for treatment recommendation 

such as LEAP (Zhang et al., 2017) have used reinforcement learning to fine-tune models, but 

were not inherently interpretable.

Recent work (Curth et al., 2024; Chen et al., 2023b; Nie & Wager, 2021; Kim & Bastani, 

2019) discusses key challenges in all ML-based solutions to ITE, notably interpretability 

and identifiability (i.e, ensuring the dataset contains appropriate features to infer treatment 

effects). Evidently, our work tackles interpretability by generating rule-based explanations. 

DISCRET enhances identifiability for image data via concept-extraction, in line with a 

suggestion by (Curth et al., 2024) to extract lower-dimensional information from the original 

feature space.

Model interpretability.

There are two lines of work to address the model interpretability issues, one is for 

interpreting black-box models in a post-hoc manner while the other one is for building a 

self-interpretable model. Post-hoc explainers could explain models with feature importance 
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(e.g., Lime (Ribeiro et al., 2016) and Shapley values (Shrikumar et al., 2017)) or logic 

rules (e.g., Lore (Guidotti et al., 2018), Anchor (Ribeiro et al., 2018)). However, post-hoc 

explanations are usually not faithful (Rudin, 2019; Bhalla et al., 2023). To mitigate this 

issue, there are recent and ongoing efforts (Shi et al., 2022; Gautam et al., 2022; Huang 

et al., 2023; You et al., 2023) in the literature to develop self-interpretable models. For 

example, ENRL (Shi et al., 2022) to learn tree-like decision rules and leverage them for 

predictions, ProtoVAE (Gautam et al., 2022) learns prototypes and predicts the label of one 

test sample by employing its similarity to prototypes.

Integrating rules into neural models.

How to integrate logic rules into neural models has been extensively studied (Seo et al., 

2021b;a; Khope & Elias, 2022; Naik et al., 2023; 2024). For instance, DeepCTRL (Seo 

et al., 2021b) has explored the use of existing rules to improve the training of deep 

neural networks; in contrast, DISCRET does not require existing rules; it effectively learns 

(i.e. synthesizes) rules from training data and can be incorporated into neural models as 

regularization.

Program synthesis.

Program synthesis concerns synthesizing human-readable programs out of data, which has 

been extensively studied in the past few decades. Initial solutions, e.g., ILASP (Law et al., 

2020) and Prosynth (Raghothaman et al., 2020) utilize pure symbolic reasoning to search 

logic rules. Recent approaches have explored neural-based synthesis, such as NeuralLP 

(Yang et al., 2017) and NLIL (Yang & Song, 2019) for guiding the rule generation process.

6. Conclusion & Limitations

In this work, we tackled the challenge of designing a faithful yet accurate AI model, 

DISCRET, in the context of ITE estimation. To achieve this, we developed a novel deep 

reinforcement learning algorithm that is tailored to the task of synthesizing rule-based 

explanations. Extensive experiments across tabular, image, and text data demonstrate that 

DISCRET produces the most consistent (i.e. faithful) explanations, outperforms the self-

interpretable models, is comparable in accuracy to black-box models, and can be combined 

with existing black-box models to achieve state-of-the-art accuracy.

However, some limitations remain. DISCRET requires users to fix the grammar of 

explanations and set suitable hyper-parameters like the number of literals prior to training. 

Additionally, DISCRET relies on the extraction of interpretable symbols from unstructured 

data, like images. While the extraction of concepts from unstructured data is a widespread 

practice [8–10], DISCRET requires these concepts as input, which may not always be 

readily available. We leave these as avenues for future work.
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A.: Datasets

IHDP is a semi-synthetic dataset composed of the observations from 747 infants from 

the Infant Health and Development Program, which is used for the effect of home visits 

(treatment variable) by specialists on infants’ cognitive scores (outcome) in the future.

TCGA. We obtain the covariates of TCGA from a real data set, the Cancer Genomic Atlas 

(Bica et al., 2020). We then follow the data generation process of (Zhang et al., 2022) to 

generate synthetic treatments, dosage values and outcomes.

IHDP-C is a variant of the IHDP dataset, where we modify the treatment variable to become 

continuous, and follow (Nie et al., 2020) to generate the synthetic treatment and outcome 

values.

News is composed of 3000 randomly sampled news items from the NY Times corpus 

(Newman, 2008). Bag-of-Word features are used for treatment effect estimation and we 

follow prior studies (Bica et al., 2020) to generate synthetic treatment and outcome values.

EEEC consists of 33738 English sentences. Each sentence in this dataset is produced by 

following a template such as “ <Person> made me feel <emotional state word> “ where 

<Person> and <emotional state word> are placeholders to be filled. To study the effect 

of race or gender on the mood state, placeholders such as <Person> are replaced with 

race-related or gender-related nouns (say an African-American name for <Person>) while 

the placeholder is filled with one of the four mood states: Anger, Sadness, Fear and Joy. The 

replacement of those placeholders with specific nouns is guided by a pre-specified causal 

graph (Feder et al., 2021). Throughout this paper, we only consider the case in which gender 

is the treatment variable.

Uganda is composed of around 1.3 K satellite images collected from around 300 different 

sites from Uganda. In addition to the image data, some tabular features are also collected 

such as age and ethnicity. However, as reported by (Jerzak et al., 2022), such tabular 

features often fail to cover important information such as the neighborhood-level features 

and geographical contexts, which, are critical factors for determining whether anti-poverty 

intervention for a specific area is needed.

Note that the generation of synthetic treatments and outcomes on IHDP-C, News and TCGA 

dataset relies on some hyper-parameters to specify the number of treatments or the range of 

dosage. For our experiments, we used the default hyper-parameters provided by (Zhang et 

al., 2022).

B.: Additional notes on baseline methods

TVAE and Ganite can only handle binary treatments without dose variables, which are thus 

not applicable to TCGA, IHDP-C, and News datasets. VCNet is not suitable for continuous 

treatment variables, and hence is not evaluated on IHDP-C and News datasets.

Wu et al. Page 13

Proc Mach Learn Res. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C.: Additional Technical Details

C.1. Conventional Assumptions for Treatment Effect Estimation

Assumption 1. (Strong Ignorability) Y T = t ⊥ T ∣ X. In the binary treatment case, 

Y 0 , Y 1 ⊥ T ∣ X.

Assumption 2. (Positivity) 0 < π T ∣ X < 1, ∀X, ∀T .

Assumption 3. (Consistency) For the binary treatment setting, 

Y = TY 1 + 1 − T Y 0 .

C.2. Pre-training phase

As mentioned in Section 3.1.1, the backbone model Θ0 can be initialized with a pre-

training phase. Specifically, we perform pre-training by training a black-box model, such 

as TransTEE, that leverages Θ0 as the encoder. We utilize the same training set during the 

pre-training phase as the one used during the training phase of DISCRET.

C.3. Encoding Rules

To encode a literal, lk = A op c, we perform one-hot encoding on feature A and operator op, 

which are concatenated with the normalized version of c (i.e., all the values of A should 

be rescaled to [0, 1]) as the encoding for lk. We then concatenate the encoding of all lk to 

compose the encoding of L1:K.

C.4. Generalizing to Disjunctive Rules

The above process of building a conjunctive rule can be viewed as generating the most 
probable conjunctive rules among all the possible combinations of A, op and c. This can be 

generalized to building a rule with multiple disjunctions, by generating the H most probable 

conjunctive rules instead, where H represents the number of disjunctions specified by users. 

Specifically, for the model Θ1, we simply select the H most probable features from its model 

output while for the model Θ2, we leverage beam search to choose the H most probable A, c
pairs.

C.5. Generalizing to Categorical Outcome Variables

To generalize DISCRET to handle categorical outcome variables, by following (Feder et al., 

2021), the treatment effect is defined by the difference between the probability distributions 

of all categorical variables. Additionally, to estimate outcomes within a subgroup of similar 

samples, we simply compute the frequency of each outcome as the estimation.

C.6. Generalizing to Other Categories of Treatment Variables

We first discuss general settings for various treatment variables and then discuss how to 

estimate the treatment effect for each of them.
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The settings for all treatment variables that our methods can deal with:

1. Tabular data with a binary treatment variable T  and no dose variables. In this 

setting, T = 1 represents treated unit while T = 0 represents untreated unit, and 

the ITE is defined as the difference of outcomes under the treatment and 

under the control, respectively (i.e., ITE x = y1 x − y0 x , where y1 x  and y0 x
represents the potential outcome with and without receiving treatment for a 

sample x). The average treatment effect, ATE, is the sample average of ITE 

across all samples (i.e., ATE = E ITE ).

2. Tabular data with a continuous treatment variable T . Following (Zhang et al., 

2022), the average dose-response function is defined as the treatment effect, i.e., 

E Y ∣ X, do T = t .

3. Tabular data with a discrete treatment variable T  with one additional continuous 

dose variable S. Following (Zhang et al., 2022), the average treatment effect is 

defined as the average dose-response function: E Y ∣ X, do T = t, S = s .

The treatment effect for each of the above settings is then estimated as follows:

1. With a binary treatment variable and no dose variable, we can estimate the ATE 

of Rx D  via arbitrary treatment effect estimation methods, such as the classical 

statistical matching algorithm (Kline & Luo, 2022), or state-of-the-art neural 

network models. In this paper, we adopt the K-Nearest Neighbor Matching by 

default for estimating the ATE of Rx D : ITE = y1 x − y0 x . We can also obtain 

the estimated outcome by averaging the outcome of samples from Rx D  with the 

same treatment as the sample x, i.e.:

y t = 1
∑ I ti

* = t ∑ I ti
* = t ⋅ yi

*

(4)

2. With a continuous treatment variable T  but without dose variables, then as per 

2, the ITE is represented by the outcome conditioned on the observed treatment. 

One straightforward way to estimate it is to employ the average outcome of 

samples within Rx D  that receive similar treatments to x, which is also the 

estimated outcome for this sample:

ŷ = ∑ I xi
*, ti

*, yi
* ∈ topk Rx D ⋅ yi

*

∑ I xi
*, ti

*, yi
* ∈ topk Rx D ,

(5)

in which topk Rx D  is constructed by finding the top-k samples from Rx D
with the most similar treatments to x. But again, any existing treatment effect 

estimation methods for continuous treatment variables from the literature are 

applicable to estimate ITEx.
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3. With a discrete treatment variable T  and one associated continuous dose variable 

S, ITE is estimated in a similar way to equation 5. Specifically, we estimate ATE 

over the subgroup of similar samples with the following formula:

ŷ = ∑ I xi
*, ti

*, si
*, yi

* ∈ topk Rx D ⋅ yi
*

∑ I xi
*, ti

*, si
*, yi

* ∈ topk Rx D .

(6)

In the above formula, topk Rx D  is constructed by first selecting the samples 

with the same treatment as the sample x and then only retaining the k samples 

with the most similar dose values to x.

C.7. Deep Q-learning and Training Algorithm

To facilitate Q-learning, we estimate the Q value with the output logits of the models given a 

state (x, L1:k − 1) and an action lk, which is denoted by Q lk, x, L1:k − 1 . Note that lk is generated 

collaboratively by using two models, Θ1 and Θ2, we therefore need to collect two sub- Q 

values from these two models, and then aggregate (say average) them as the overall Q 

value, which follows prior multi-agent Q-learning literature (Wang et al., 2021). In the end, 

by following the classical DQL framework, we optimize the following objective function 

adapted from the Bellman equation (Dixit, 1990):

LΘ = E Q lk, x, L1:k − 1 − γ ⋅ max
lk + 1

Q lk + 1, x, L1:k + rk

2
,

(7)

which is estimated over a sampled mini-batch of cached experience taking the form of 

x, L1:k − 1 , lk, rk, x, L1:k > during the experience replay process. The training algorithm for 

rule learning is outlined in Algorithm 1 below.

C.8. Proof of Theorem 3.1

We first state some additional preliminary notations and settings for Q-learning. We denote 

the Markov decision process (MDP) as a tuple Sk, ℒk, Pk, rk  where

• Sk is the state space with a state x, L1:k ;

Wu et al. Page 16

Proc Mach Learn Res. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• ℒk is the action space with an action lk;

• Pk represents the transition probability;

• rk represents the reward function.

Theorem 3.1 is a direct implication of Lemma C.1 below.

Lemma C.1. Suppose we have input data xi, ti, si, yi i = 1
N  where xi ∈ ℝm and discrete, 

ti ∈ ℝ, si ∈ ℝ and yi ∈ ℝ, then the ŷ obtained from DISCRET converges to zero generalization 

error with probability 1 (i.e. y − ŷ 2 0 w.p. 1) for any fixed K ≤ m over the dataset 

with all discrete features under the data generating process y = f XK + c ⋅ t + ϵ, where 

XK ⊆ X1, X2, ⋯, Xm , c ∈ ℝ, t is the treatment assignment, and ϵ N 0, σ2  for some σ > 0.

To prove Lemma C.1, we need to use results from C.2.

Theorem C.2. Given a finte Markov decision process Sk, ℒk, Pk, rk , given by the update rule

Q lk, x, L1:k = Q lk − 1, x, L1:k − 1 + αk − 1 lk − 1, x, L1:k − 1 ×

rk − 1 + γ max
x*, L1:k − 1

* ∈ Sk × ℒk

Q lk − 1, x*, L1:k − 1
* − Q lk − 1, x, L1:k − 1

(8)

converges with probability 1 to the optimal Q-function as long as

k
αk lk, x, L1:k − 1 = ∞,

k
αk

2 lk, x, L1:k − 1 < ∞

for all lk, x, L1:k − 1 ∈ Sk × ℒk.

Proof. We start rewriting equation (8) as

Q lk, x, L1:k = 1 − αk − 1 lk − 1, x, L1:k − 1 Q lk − 1, x, L1:k − 1 + αk − 1 lk − 1, x, L1:k − 1 ×

rk − 1 + γ max
x*, L1:k − 1

* ∈ Sk × ℒk

Q lk − 1, x*, L1:k − 1
*

Denote the optimal Q function be Q* lk, x, L1:k , subtracting equation above from both sides 

the quantity Q* lk, x, L1:k  and letting

Δk lk, x, L1:k = Q lk, x, L1:k − Q* lk, x, L1:k

yields
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Δk lk, x, L1:k = 1 − αk − 1 lk − 1, x, L1:k − 1 Δk lk, x, L1:k + αk − 1 lk − 1, x, L1:k − 1

rk + γ max
x*, L1:k − 1

* ∈ Sk × ℒk

Q lk − 1, x*, L1:k − 1
* − Q* lk, x, L1:k .

If we write

Fk lk, x, L1:k = rk x, L1:k , lk, S x, L1:k + γ max
x*, L1:k − 1

* ∈ Sk × ℒk

Q lk − 1, x*, L1:k − 1
* − Q* lk, x, L1:k

where S x, L1:k  is a random sample state obtained from the Markov chain Sk, Pk , we have

E Fk lk, x, L1:k ∣ ℱk

=
b ∈ Sk

Pk lk, x, L1:k , b rk lk, x, L1:k , lk + γ max
x*, L1:k − 1

* ∈ Sk × ℒk

Q lk − 1, x*, L1:k − 1
* − Q* lk, x, L1:k

= HQ x, L1:k − Q* lk, x, L1:k .

Using the fact that Q* = HQ x, L1:k ,

E Fk lk, x, L1:k ∣ ℱk = HQ x, L1:k − HQ* x, L1:k ≤ γ∥ Q − Q* ∥ = γ∥ Δk ∥∞ .

We could also verify that

V ar Fk lk, x, L1:k ∣ ℱk ≤ C 1 + ∥ Δk ∥W
2

for some constant C. Then by the theorem below, Δk converges to zero with probability 1. 

Hence, Q converges to Q* with probability 1. □

Theorem C.3 (Jaakkola et al. (1993)). The random process Δt  taking values in ℝn and 

defined as

Δt + 1 x = 1 − αt x Δt x + αt x F t x

converges to zero with probability 1 under the following assumptions:

• 0 ≤ αt ≤ 1, ∑t αt x = ∞ and ∑t αt
2 x < ∞;

• ∥ E F t x ∣ ℱt ∥W ≤ γ∥ Δt ∥W , witℎ γ < 1;

• V ar ℱt x ∣ ℱt ≤ C 1 + ∥ Δt ∥W
2 , for C > 0.

Proof. See Jaakkola et al. (1993) for the proof. □

Proof of Lemma C.1. Using Theorem C.2, we can see that Q obtained from DISCRET 

converges to optimal Q*. As a result, haty obtained from DISCRET converges to optimal y*. 
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We left to prove that y* leads to a zero mean square error (i.e., ∥ y − y* ∥2
2). We can prove 

this using the fact that all features are discrete. Since all features are discrete and the optimal 

feature being selected in each step leads to a zero mean square error and other features lead 

to non-zero mean square error, it turns out that y* obtained from DISCRET leads to a zero 

mean square error. □

C.9. Additional Reward Function Optimizations

We further present some strategies to optimize the design of the cumulative reward function 

defined in equation 3, which includes incorporating estimated propensity scores into this 

formula and automatically fine-tuning its hyper-parameters.

Regularization by estimating propensity scores

Similar to prior studies on ITE estimation (Shi et al., 2019; Zhang et al., 2022), 

we regularize the reward function rk by integrating the estimated propensity score, 

π T = t ∣ X = x . Specifically, for discrete treatment variables, we re-weight equation 9 with 

the propensity score as a regularized reward function, i.e.:

V 1:K
reg = e−α y − y1:K

2
+ β ⋅ π1:k T = t ∣ X = x ⋅ I L1:K D is non‐empty ,

(9)

Automatic hyper-parameter fine-tuning

We further studied how to automatically tune hyper-parameter α and β in equation 9. For α, 

at each training epoch, we identify the training sample producing the median of y − y1:K
2

among the whole training set and then ensure that for this sample, equation 3 is 0.5 through 

adjusting α. This can guarantee that for those training samples with the smallest or largest 

outcome errors, equation 3 approaches 1 or 0 respectively.

We also designed an annealing strategy to dynamically adjust β by setting it as 1 during the 

initial training phase to focus more on treatment predictions, and switching it to 0 so that 

reducing outcome error is prioritized in the subsequent training phase.

D.: Addendum on Performance Metrics

D.1. Faithfulness Metrics

We evaluate the faithfulness of explanations with two metrics, i.e., consistency and 

sufficiency from (Dasgupta et al., 2022). For a single sample x with local explanation ex, 

the consistency is defined as the probability of getting the same model predictions for the 

set of samples producing the same explanations (denoted by Cx) as x while the sufficiency is 

defined in the same way, except that it depends on the set of samples satisfying ex (denoted 

by Sx) rather than generating explanation ex. These two metrics could be formalized with the 

following formulas:
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Consistency x = Prx′ ∈μ Cx ŷ x = = ŷ x′

Sufficiency x = Prx′ ∈μ Sx ŷ x = = ŷ x′

in which μ represents the probability distribution of Cx and Sx. To evaluate explanations with 

these two metrics, (Dasgupta et al., 2022) proposed an unbiased estimator for Consistency x
and Sufficiency x , i.e.,:

Consistency x = 1
N ∑

i = 1

N
I Cx > 1 ⋅ Cx, y x − 1

Cx − 1

Sufficiency x = 1
N ∑

i = 1

N
I Sx > 1 ⋅ Sx, y x − 1

Sx − 1

in which Cx, ŷ x  represents the set of samples sharing the same explanation and the same 

model predictions as the sample x while Sx, ŷ x  represents the set of samples that satisfy 

the explanation produced by x and share the same explanation as x. As the above formula 

suggests, both the consistency and sufficiency scores vary between 0 and 1.

But note that for typical ITE settings, the model output is continuous rather than discrete 

numbers. Therefore, we discretize the range of model output into evenly distributed buckets, 

and the model outputs that fall into the same buckets are regarded as having the same model 

predictions. As (Dasgupta et al., 2022) mentions, the sufficiency metric is a reasonable 

metric for evaluating rule-based explanations since it requires retrieving other samples with 

explanations. So we only report sufficiency metrics for methods that can produce rule-based 

explanations in Table 7.

D.2. Additional Notes for the EEEC Dataset

Note that for EEEC dataset, ϵATE is used for performance evaluation but the ground-truth ITE 

is not observed, which is approximated by the difference of the predicted outcomes between 

factual samples and its ground-truth counterfactual alternative (Feder et al., 2021).

D.3. AMSE for Continuous Treatment Variable or Dose Variable

To evaluate the performance of settings with continuous treatment variables or continuous 

dose variables, we follow (Zhang et al., 2022) to leverage AMSE as the evaluation metrics, 

which is formalized as follows:
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AMSE =

1
N ∑i = 1

N ∫t y xi, t − y xi, t π t dt continuous treatment variable

1
NT ∑

i = 1

N
∑
t = 1

T
∫

s
y xi, t − y xi, t π t dt continuous dose variable,

in which we compute the difference between the estimated outcome ŷ and the observed 

outcome y conditioned on every treatment t, and average this over the entire treatment space 

and all samples for evaluations. Due to the large space of exploring all possible continuous 

treatments t or continuous dose values s, we collect sampled treatment or sampled dose 

rather than enumerate all s and t for the evaluations of AMSE.

E.: Additional Experimental Results

E.1. Performance of Self-interpretable Models with Varying Complexity

On evaluating the performance of self-interpretable models when trained with a high depth, 

i.e number of conjunctive clauses (K = 100, as opposed to low-depth K = 6, see Table 3), we 

see that DISCRET K = 6  outperforms these models despite having lower depth, and thus 

better interpretability.

It is worth noting that in both Table 2 and Table 3, the ITE errors for the IHDP-C dataset 

are pretty high for the baseline self-interpretable models and some black box models. This 

is because computing ITE for the IHDP-C dataset is a particularly hard problem, and 

necessitates the use of powerful models with high complexity. Indeed, IHDP-C dataset is 

a semi-synthetic dataset where values of the outcome variable are generated by a very 

complicated non-linear function (Zhang et al., 2022). Hence, tree-based models may not be 

able to capture such complicated relationships well. This is evidenced by high training errors 

and likely underfitting (training error was 48.17 for random forest v/s 0.58 for DISCRET). 

Even simple neural networks such as TARNet and DRNet, also significantly underperform 

as Table 2 suggests. Thus, ITE for IHDP-C can only be effectively encoded by powerful 

models, such as DISCRET and transformer-based architectures like TransTEE.

E.2. Ablation Studies

We further perform ablation studies to explore how different components of DISCRET 

such as the database and featurziation process (for NLP and image data), affect the ITE 

estimation performance. In what follows, we analyze the effect of the size of the database, 

different featurization steps, and different components of the reward function.

Ablating the reward functions for DISCRET.

Recall that in Section 3.3, the reward function used for the training phase could be 

enhanced by adding propensity scores as one regularization and automatically tuning the 

hyper-parameters, α and β. We removed these two components from the reward function one 

after the other to investigate their effect on the ITE estimation performance. We perform 

this experiment on Uganda dataset and report the results in Table 4. As this table suggests, 
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throwing away those two components from the reward function incurs higher outcome 

errors, thus justifying the necessity of including them for more accurate ITE estimation.

Ablating the database size.

Since DISCRET estimates ITE through rule evaluations over a database, the size of this 

database can thus influence the estimation accuracy. We therefore vary the size of the IHDP 

dataset, i.e., the number of training samples, and compare DISCRET against baselines with 

varying database size. The full results are included in Table 5. As expected, error drops with 

increasing dataset size, and DISCRET outperforms baselines (particularly self-interpretable 

models) at smaller dataset sizes. The results suggest that with varied dataset sizes, TransTEE 

+ DISCRET still outperforms all baseline methods while DISCRET performs better than 

all self-interpretable models. It is also worth noting that when the database size is reduced 

below certain level, e.g., smaller than 200, DISCRET can even outperform TransTEE. This 

implies that DISCRET could be more data-efficient than the state-of-the-art neural network 

models for ITE estimations, which is left for future work.

Table 3.

ITE estimation errors (lower is better) at varying complexities for self-interpretable models.

Modality 
→ Tabular

Dataset → IHDP TCGA IHDP-C

Method ↓ Trees Depth
ϵATE(In-
sample)

ϵATE(Out-of-
sample)

ϵATE(In-
sample)

ϵATE (Out-of-
sample)

AMSE

Decision 
Tree

- 6 0.693±0.028 0.613±0.045 0.200±0.012 0.202±0.012 21.773±0.190

- 100 0.638±0.031 0.549±0.052 0.441±0.004 0.445±0.004 23.382±0.342

Random 
Forest

1 6 0.801±0.039 0.666±0.055 19.214±0.163 19.195±0.163 21.576±0.185

1 100 0.734±0.041 0.653±0.056 0.536±0.011 0.538±0.012 33.285±0.940

10 100 0.684±0.033 0.676±0.034 0.536±0.011 0.538±0.012 38.299±0.841

NAM - - 0.260±0.031 0.250±0.032 - - 24.706±0.756

ENRL

1 6 4.104±1.060 3.759±0.087 10.938±2.019 10.942±2.019 24.720±0.985

1 100 4.094±0.032 4.099±0.107 10.938±2.019 10.942±2.019 24.900 ± 
0.470

Causal 
Forest

1 6 0.144±0.019 0.275±0.035 - - -

1 100 0.151±0.019 0.278±0.033 - - -

100 max 0.124±0.015 0.230±0.031 - - -

BART
1 - 1.335±0.159 1.132±0.125 230.74±0.312 236.81±0.531 12.063±0.410

N - 0.232±0.039 0.284±0.036 - - 4.323±0.342

DISCRET 
(ours) - 6 0.089±0.040 0.150±0.034 0.076±0.019 0.098±0.007 0.801±0.165

TransTEE 
+ 

DISCRET 
(ours)*

- - 0.082±0.009 0.120±0.014 0.058±0.010 0.055±0.009 0.102±0.007

We bold the smallest estimation error for each dataset, and underline the second smallest one. Results in the first row for 
each method are duplicated from Table 2. For BART, we set N = 200 for IHDP, and N = 10 for TCGA and IHDP-C 
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due to large feature number of features in the latter. We show that DISCRET outperforms self-interpretable models and has 
simpler rules regardless of the model complexity used. Asterisk (*) indicates model is not self-interpretable.

Table 4.

Ablation studies on the reward function in DISCRET

Outcome error

DISCRET 1.662±0.136

DISCRET without propensity score 1.701±0.161

DISCRET without propensity score or auto-finetuning 1.742±0.151

E.3. Training Cost of DISCRET

We further plot Figure 5 to visually keep track of how the ATE errors on test set are evolved 

throughout the training process. As this figure suggests although the best test performance 

occurs after 200 epochs (ATE error is around 0.12). However, the performance in the 

first few epochs is already near-optimal (ATE error is around 0.14). Therefore, despite the 

slow convergence in typical reinforcement learning training processes, our methods obtain 

reasonable treatment effect estimation performance without taking too many epochs.

Table 5.

ITE test errors (out-of-sample) with varied numbers of samples randomly selected from 

IHDP dataset

Method 100 200 400 Full (747)

Decision Tree 7.08±4.61 1.04±0.30 1.19±0.52 0.73±0.13

Random Forest 8.05±5.15 1.43±0.39 0.63±0.19 0.87±0.12

NAM 1.56±0.86 0.46±0.21 0.75±0.46 0.29±0.13

ENRL 4.40±0.33 4.05±0.04 4.40±0.33 4.05±0.05

Causal forest 0.87±0.47 0.88±0.24 0.31±0.14 0.18±0.06

BART 3.32±0.71 1.54±0.59 1.46±0.80 0.71±0.22

DISCRET 0.55±0.13 0.47±0.10 0.32±0.15 0.21±0.05

Dragonnet 0.94±0.47 0.46±0.09 1.06±0.61 0.23±0.08

TVAE 4.35±0.33 4.00±0.04 4.35±0.33 3.87±0.05

TARNet 0.33±0.12 0.23±0.03 0.16±0.03 0.17±0.03

Ganite 0.65±0.23 0.32±0.04 0.75±0.26 0.57±0.11

DRNet 0.37±0.11 0.43±0.23 0.19±0.06 0.17±0.03

VCNet 4.27±0.29 3.98±0.04 4.09±0.31 3.95±0.06

TransTEE 0.33±0.05 0.35±0.15 0.16±0.07 0.15±0.03

DISCRET 0.55±0.13 0.47±0.10 0.32±0.15 0.21±0.05

TransTEE + DISCRET 0.24±0.05 0.21±0.06 0.09±0.03 0.08±0.03
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Figure 5. 
The curve of ATE errors on test split of IHDP by DISCRET

E.4. Consistency and Sufficiency Scores

We provide the full results of the consistency and sufficiency scores below.

Table 6.

Explanation sufficiency scores across datasets

IHDP TCGA IHDP-C News EEEC Uganda

Model distillation 0.243±0.126 0.562±0.026 0.127±0.008 0.816±0.032 0.004±0.001 0.198±0.008

Lore 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.001

Anchor 0.084±0.083 0.001±0.000 0.293±0.022 0.000±0.000 0.000±0.000 0.066±0.015

Lime 0.182±0.129 0.000±0.000 0.001±0.001 0.000±0.000 0.000±0.000 0.000±0.000

Shapley 0.009±0.017 0.005±0.002 0.046±0.027 0.031±0.035 0.034±0.003 0.412±0.195

NAM 0.343±0.065 0.120±0.002 0.045±0.006 0.493±0.110 - 0.082±0.018

ENRL 0.134±0.002 0.231±0.043 0.053±0.002 0.002±0.000 - 0.102±0.032

DISCRET 1.00±0.00 1.00±0.00 1.00±0.00 0.982±0.00 0.974±0.000 0.789±0.011
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Table 7.

Explanation sufficiency scores across datasets (larger score indicates better sufficiency)

IHDP TCGA IHDP-C News EEEC Uganda

Model distillation 0.243±0.126 0.529±0.001 0.029±0.003 0.712±0.032 0.004±0.001 0.198±0.008

Lore 0.320±0.084 0.034±0.013 0.030±0.009 0.142±0.012 0.002±0.001 0.265±0.008

Anchor 0.084±0.083 0.125±0.002 0.332±0.016 0.391±0.040 0.002±0.001 0.221±0.007

ENRL 0.452±0.012 0.512±0.005 0.032±0.018 0.053±0.020 - 0.004±0.002

DISCRET 0.562±0.056 0.9999±0.000 0.588±0.019 0.697±0.017 0.926±0.067 0.104±0.011

E.5. Results for News dataset

Table 8 shows the results for the News dataset.

Table 8.

ITE estimation errors for the News dataset

News

AMSE

Decision Tree 0.428±0.051

Random Forest 0.452±0.048

NAM 0.653±0.026

ENRL 0.638±0.019

Causal Forest 0.829±0.042

BART 0.619±0.040

DISCRET(ours) 0.385±0.083

Dragonnet -

TVAE -

TARNet 0.073±0.020

Ganite -

DRNet 0.065±0.021

VCNet -

TransTEE 0.063±0.005

TransTEE + NN 0.383±0.041

DISCRET+ TransTEE (ours) 0.043±0.005

E.6. Consistent Ground-truth Outcomes in the Uganda Dataset

We observe that in Uganda dataset, the ground-truth outcome values are not evenly 

distributed, which is visually presented in Figure 6. As this figure suggests, the outcome 

value of most samples is −0.8816 while other outcome values rarely occur. This thus 

suggests that our method is preferable in such datasets due to its consistent predictions 

across samples, which can explain the performance gains of DISCRET over baseline 

methods.
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F.: Additional Qualitative Analysis

As shown in Figure 4, DISCRET generates one rule for one example image from Uganda 

dataset, which is defined on two concepts, i.e., one type of patches mainly containing 

reddish pink pixels that represent “soil moisture content” and the other type of patches 

mainly comprised of brown pixels indicating little soil. This rule thus represents the images 

from one type of location where there is plenty of soil moisture content that is suitable 

for agricultural development. Therefore, after the government grants are distributed in such 

areas, a more significant treatment effect is observed, i.e., 0.65. This is an indicator of 

significantly increasing working hours on the skilled jobs by the laborers in those areas. This 

is consistent to the conclusions from (Jerzak et al., 2023b;a) which states that government 

grant support is more useful for areas with more soil moisture content.

G.: Feature Extraction from Image Data

To extract concepts from images of Uganda dataset, we segment each image as multiple 

superpixels (Achanta et al., 2012), embed those superpixels with pretrained clip models 

(Radford et al., 2021), and then perform K-means on these embeddings.

Figure 6. 
Frequency of the outcome values on Uganda dataset

Each of the resulting cluster centroids is regarded as one concept and we count the 

occurrence of each concept as one feature for an image. Specifically, we extract 20 concepts 

from the images of Uganda dataset, which are visually presented in Figure 7.

Figure 7. 
Extracted concepts from Uganda dataset

Various patterns of image patches are captured by Figure 7. For example, patch 12 is 

almost all black, which represents the areas with water, say, river areas or lake areas. 

Also, as mentioned in Figure 4, patch 11 with reddish pink pixels represents “soil moisture 
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content”, which is an important factor for determining whether to take interventions in the 

anti-poverty program conducted in Uganda.

References

Achanta R, Shaji A, Smith K, Lucchi A, Fua P, and Süsstrunk S Slic superpixels compared to 
state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 
34(11):2274–2282, 2012. [PubMed: 22641706] 

Agarwal R, Melnick L, Frosst N, Zhang X, Lengerich B, Caruana R, and Hinton GE Neural additive 
models: Interpretable machine learning with neural nets. Advances in neural information processing 
systems, 34: 4699–4711, 2021.

Anderson DW, Kish L, and Cornell RG On stratification, grouping and matching. Scandinavian 
Journal of Statistics, pp. 61–66, 1980.

Athey S and Wager S Estimating treatment effects with causal forests: An application. Observational 
studies, 5 (2):37–51, 2019.

Baeza-Yates R, Ribeiro-Neto B, et al. Modern information retrieval, volume 463. ACM press New 
York, 1999.

Basu A, Polsky D, and Manning WG Estimating treatment effects on healthcare costs under 
exogeneity: is there a ‘magic bullet’? Health Services and Outcomes Research Methodology, 11:1–
26, 2011. [PubMed: 22199462] 

Bhalla U, Srinivas S, and Lakkaraju H Verifiable feature attributions: A bridge between post hoc 
explainability and inherent interpretability. In ICML 3rd Workshop on Interpretable Machine 
Learning in Healthcare (IMLH), 2023.

Bica I, Jordon J, and van der Schaar M Estimating the effects of continuous-valued interventions using 
generative adversarial networks. Advances in Neural Information Processing Systems, 33:16434–
16445, 2020.

Chen K, Heng S, Long Q, and Zhang B Testing biased randomization assumptions and quantifying 
imperfect matching and residual confounding in matched observational studies. Journal of 
Computational and Graphical Statistics, 32(2):528–538, 2023a. [PubMed: 37334200] 

Chen K, Yin Q, and Long Q Covariate-balancing-aware interpretable deep learning models for 
treatment effect estimation. Statistics in Biosciences, pp. 1–19, 2023b. [PubMed: 35615750] 

Chipman HA, George EI, and McCulloch RE BART: Bayesian additive regression trees. The Annals of 
Applied Statistics, 4(1):266 – 298, 2010. doi: 10.1214/09-AOAS285. URL 10.1214/09-AOAS285.

Curth A, Peck RW, McKinney E, Weatherall J, and van der Schaar M Using machine 
learning to individualize treatment effect estimation: Challenges and opportunities. Clinical 
Pharmacology & Therapeutics, 115(4): 710–719, 2024. doi: 10.1002/cpt.3159. URL https://
ascpt.onlinelibrary.wiley.com/doi/abs/10.1002/cpt.3159. [PubMed: 38124482] 

Dasgupta S, Frost N, and Moshkovitz M Framework for evaluating faithfulness of local explanations. 
In International Conference on Machine Learning, pp. 4794–4815. PMLR, 2022.

Dixit AK Optimization in economic theory. Oxford University Press, USA, 1990.

Dziugaite GK, Ben-David S, and Roy DM Enforcing interpretability and its statistical impacts: Trade-
offs between accuracy and interpretability. arXiv preprint arXiv:2010.13764, 2020.

Feder A, Oved N, Shalit U, and Reichart R Causalm: Causal model explanation through counterfactual 
language models. Computational Linguistics, 47(2):333–386, 2021.

Fel T, Boutin V, Moayeri M, Cadène R, Bethune L, Chalvidal M, Serre T, et al. A holistic approach 
to unifying automatic concept extraction and concept importance estimation. arXiv preprint 
arXiv:2306.07304, 2023.

Frosst N and Hinton G Distilling a neural network into a soft decision tree. arXiv preprint 
arXiv:1711.09784, 2017.

Gautam S, Boubekki A, Hansen S, Salahuddin S, Jenssen R, Höhne M, and Kampffmeyer M Protovae: 
A trustworthy self-explainable prototypical variational model. Advances in Neural Information 
Processing Systems, 35:17940–17952, 2022.

Wu et al. Page 27

Proc Mach Learn Res. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1002/cpt.3159
https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1002/cpt.3159


Guidotti R, Monreale A, Ruggieri S, Pedreschi D, Turini F, and Giannotti F Local rule-based 
explanations of black box decision systems. arXiv preprint arXiv:1805.10820, 2018.

Hahn PR, Murray JS, and Carvalho CM Bayesian Regression Tree Models for Causal Inference: 
Regularization, Confounding, and Heterogeneous Effects (with Discussion). Bayesian Analysis, 
15(3):965 – 2020, 2020. doi: 10.1214/19-BA1195. URL 10.1214/19-BA1195.

Hill JL Bayesian nonparametric modeling for causal inference. Journal of Computational and 
Graphical Statistics, 20(1):217–240, 2011.

Huang Y, Luo F, Wang X, Di Z, Li B, and Luo B A one-size-fits-three representation learning 
framework for patient similarity search. Data Science and Engineering, 8(3):306–317, 2023.

Jaakkola T, Jordan M, and Singh S Convergence of stochastic iterative dynamic programming 
algorithms. Advances in neural information processing systems, 6, 1993.

Jerzak CT, Johansson F, and Daoud A Image-based treatment effect heterogeneity. arXiv preprint 
arXiv:2206.06417, 2022.

Jerzak CT, Johansson F, and Daoud A Integrating earth observation data into causal inference: 
Challenges and opportunities. ArXiv Preprint, 2023a.

Jerzak CT, Johansson F, and Daoud A Image-based treatment effect heterogeneity. Proceedings of 
the Second Conference on Causal Learning and Reasoning (CLeaR), Proceedings of Machine 
Learning Research (PMLR), 213: 531–552, 2023b.

Khope SR and Elias S Critical correlation of predictors for an efficient risk prediction framework 
of icu patient using correlation and transformation of mimic-iii dataset. Data Science and 
Engineering, 7(1):71–86, 2022.

Kim C and Bastani O Learning interpretable models with causal guarantees. arXiv preprint 
arXiv:1901.08576, 2019.

Kiritchenko S and Mohammad SM Examining gender and race bias in two hundred sentiment analysis 
systems. arXiv preprint arXiv:1805.04508, 2018.

Kline A and Luo Y Psmpy: a package for retrospective cohort matching in python. In 2022 44th 
Annual International Conference of the IEEE Engineering in Medicine & Biology Society 
(EMBC), pp. 1354–1357. IEEE, 2022.

Lakkaraju H and Rudin C Learning Cost-Effective and Interpretable Treatment Regimes. In Singh A 
and Zhu J (eds.), Proceedings of the 20th International Conference on Artificial Intelligence and 
Statistics, volume 54 of Proceedings of Machine Learning Research, pp. 166–175. PMLR, 20-22 
Apr 2017. URL https://proceedings.mlr.press/v54/lakkaraju17a.html.

Law M, Russo A, and Broda K The ilasp system for inductive learning of answer set programs. arXiv 
preprint arXiv:2005.00904, 2020.

Liu Q, Chen Z, and Wong WH Causalegm: a general causal inference framework by encoding 
generative modeling. arXiv preprint arXiv:2212.05925, 2022.

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, and Riedmiller M Playing 
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Naik A, Wu Y, Naik M, and Wong E Do machine learning models learn statistical rules inferred from 
data? In International Conference on Machine Learning, pp. 25677–25693. PMLR, 2023.

Naik A, Stein A, Wu Y, Naik M, and Wong E Torchql: A programming framework for 
integrity constraints in machine learning. Proceedings of the ACM on Programming Languages, 
8(OOPSLA1):833–863, 2024.

Nauta M, Trienes J, Pathak S, Nguyen E, Peters M, Schmitt Y, Schlötterer J, van Keulen M, and 
Seifert C From anecdotal evidence to quantitative evaluation methods: A systematic review on 
evaluating explainable ai. 55 (13s), jul 2023. ISSN 0360–0300. doi: 10.1145/3583558. URL 
10.1145/3583558.

Newman D Bag of Words. UCI Machine Learning Repository, 2008. DOI: 10.24432/C5ZG6P.

Nie L, Ye M, Nicolae D, et al. Vcnet and functional targeted regularization for learning causal effects 
of continuous treatments. In International Conference on Learning Representations, 2020.

Nie X and Wager S Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 
108(2):299–319, 2021.

Wu et al. Page 28

Proc Mach Learn Res. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://proceedings.mlr.press/v54/lakkaraju17a.html


Pryzant R, Card D, Jurafsky D, Veitch V, and Sridhar D Causal effects of linguistic properties. 
In Proceedings of the 2021 Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, pp. 4095–4109, 2021.

Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark 
J, et al. Learning transferable visual models from natural language supervision. In International 
conference on machine learning, pp. 8748–8763. PMLR, 2021.

Raghothaman M, Mendelson J, Zhao D, Naik M, and Scholz B Provenance-guided synthesis of 
datalog programs. In Proceedings of the ACM Symposium on Principles of Programming 
Languages (POPL), 2020.

Ribeiro MT, Singh S, and Guestrin C “ why should i trust you?” explaining the predictions of any 
classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge 
discovery and data mining, pp. 1135–1144, 2016.

Ribeiro MT, Singh S, and Guestrin C Anchors: High-precision model-agnostic explanations. In 
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Rubin DB Estimating causal effects of treatments in randomized and nonrandomized studies. Journal 
of educational Psychology, 66(5):688, 1974.

Rudin C Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead. Nature machine intelligence, 1(5):206–215,2019.

Schwab P, Linhardt L, Bauer S, Buhmann JM, and Karlen W Learning counterfactual representations 
for estimating individual dose-response curves. In Proceedings of the AAAI Conference on 
Artificial Intelligence, volume 34, pp. 5612–5619, 2020.

Seo S, Arik S, Yoon J, Zhang X, Sohn K, and Pfister T Controlling neural networks with rule 
representations. Advances in Neural Information Processing Systems, 34: 11196–11207, 2021a.

Seo S, Arik SÖ, Yoon J, Zhang X, Sohn K, and Pfister T Controlling neural networks 
with rule representations. In Neural Information Processing Systems, 2021b. URL https://
api.semanticscholar.org/CorpusID:235435676.

Shalit U, Johansson FD, and Sontag D Estimating individual treatment effect: generalization bounds 
and algorithms. In International conference on machine learning, pp. 3076–3085. PMLR, 2017.

Shi C, Blei D, and Veitch V Adapting neural networks for the estimation of treatment effects. 
Advances in neural information processing systems, 32, 2019.

Shi S, Xie Y, Wang Z, Ding B, Li Y, and Zhang M Explainable neural rule learning. In Proceedings of 
the ACM Web Conference 2022, pp. 3031–3041, 2022.

Shrikumar A, Greenside P, and Kundaje A Learning important features through propagating activation 
differences. In International conference on machine learning, pp. 3145–3153. PMLR, 2017.

Wager S and Athey S Estimation and inference of heterogeneous treatment effects using random 
forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018.

Wang J, Ren Z, Han B, Ye J, and Zhang C Towards understanding cooperative multi-agent q-learning 
with value factorization. Advances in Neural Information Processing Systems, 34:29142–29155, 
2021.

Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, 
and Stuart JM The cancer genome atlas pan-cancer analysis project. Nature genetics, 45(10):1113–
1120, 2013. [PubMed: 24071849] 

Xue B, Said AS, Xu Z, Liu H, Shah N, Yang H, Payne P, and Lu C Assisting clinical decisions 
for scarcely available treatment via disentangled latent representation. In Proceedings of the 29th 
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5360–5371, 2023.

Yang F, Yang Z, and Cohen WW Differentiable learning of logical rules for knowledge base reasoning. 
Advances in neural information processing systems, 30, 2017.

Yang Y and Song L Learn to explain efficiently via neural logic inductive learning. arXiv preprint 
arXiv:1910.02481, 2019.

Yoon J, Jordon J, and Van Der Schaar M Ganite: Estimation of individualized treatment effects using 
generative adversarial nets. In International conference on learning representations, 2018.

You W, Qu H, Gatti M, Jain B, and Wong E Sum-of-parts models: Faithful attributions for groups of 
features. arXiv preprint arXiv:2310.16316, 2023.

Wu et al. Page 29

Proc Mach Learn Res. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://api.semanticscholar.org/CorpusID:235435676
https://api.semanticscholar.org/CorpusID:235435676


Zhang Y, Chen R, Tang J, Stewart WF, and Sun J Leap: Learning to prescribe effective and 
safe treatment combinations for multimorbidity. In Proceedings of the 23rd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, KDD ‘17, pp. 1315–1324, 
New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450348874. doi: 
10.1145/3097983.3098109. URL 10.1145/3097983.3098109.

Zhang Y-F, Zhang H, Lipton ZC, Li LE, and Xing EP Exploring transformer backbones for 
heterogeneous treatment effect estimation. arXiv preprint arXiv:2202.01336, 2022.

Wu et al. Page 30

Proc Mach Learn Res. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Impact Statement

Our work aims at the societally pertinent problem of Individual Treatment Estimation. A 

key positive impact of our work is improving trust in the faithfulness and explainability 

of ML predictions, especially in healthcare and poverty alleviation. In addition, we 

provide transparency to decision-makers who rely on treatment outcomes such as 

clinicians and policymakers. We do not foresee negative impacts of our work. As with all 

ML models, we caution end-users to rigorously test models for properties such as fairness 

(e.g. for implicit bias) before deploying them.
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Figure 1. 
Motivating examples from the Uganda dataset. We predict how providing economic aid (the 

treatment) helps to develop remote regions of the country (the outcome) via satellite images. 

The task is to estimate the ITE for each sample x1 and x2. DISCRET predicts that, because 

both images have several indicators of rich soil and urbanization, they will have similar 

ITE if given aid. Self-interpretable models such as Causal Forest (Athey & Wager, 2019) 

produce consistent ITE estimates (i.e., samples with same explanations have same model 

predictions, viz. 3.97 and 3.97), but have poor accuracy (ITÊx1 ≪ ITEx1 = 4.25). Black-box 

models such as TransTEE (Zhang et al., 2022), are accurate but do not produce similar 

predictions for samples x1 and x2 with similar explanations, when the explanations are 

sourced from post-hoc explainers such as Anchor (Ribeiro et al., 2018). DISCRET produces 

both consistent and accurate predictions.
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Figure 2. 
Illustration of DISCRET on the IHDP dataset, which tracks premature infants. Given a 

sample x, DISCRET synthesizing an explanation L1:k where it iteratively constructs each 

literal in the explanation. In particular, DISCRET (i) embeds the given sample and any 

previously generated literals (Θ0), (ii) passes the embedding to the feature selection network 

Θ1  to pick a feature, and then (iii) passes the embedding and selected feature to the constant 

selection network Θ2  to get a thresholding constant. The operator is auto-assigned based on 

the feature and sample. DISCRET executes this explanation on the database to find relevant 

samples, which are used (i) during training to compute a reward function for Θ0, Θ1 and Θ2, 

and (ii) during testing to calculate the ITE.
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Figure 3. 
Consistency scores (higher is better) for DISCRET and a black-box model (TransTEE) 

combined with a post-hoc explainer. Our results confirm that DISCRET produces faithful 

explanations, and importantly, show that post-hoc explanations are rarely faithful, as 

evidenced by low consistency scores across datasets.
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Figure 4. 
DISCRET identifies similar samples across diverse datasets – tabular (IHDP), image 

(Uganda), and text (EEEC). 1) In the first setting, given a tabular sample x describing a 

premature infant, DISCRET establishes a rule associating extremely underweight (weight ≤ 

1.5) infants born to teenage mothers (mom age ≤ 19) with a history of drug use; such groups 

likely benefit from childcare visits (treatment), and will have highly improved cognitive 

outcomes. 2) In the second scenario on satellite images, for a sample x, DISCRET discerns 

a rule based on the presence of concepts like “high soil moisture” (reddish-pink pixels) and 

absence of minimal soil (brown pixels); thus characterizing areas with high soil moisture. 

DISCRET’s synthesized rule aligns with findings that government grants (treatment) are 

more effective in areas with higher soil moisture content (outcome) (Jerzak et al., 2023b). 

3) Likewise, the text setting aims to measure the impact of gender (treatment) on the mood 

(outcome). Given a sentence x where the gendered noun (“Betsy”) does not affect the 

semantic meaning, DISCRET’s rule focuses on mood-linked words in the sentence, i.e., 

“hilarious”.
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Table 1.

Datasets used for evaluation (cont. means continous)

Dataset Type Treatment Dose # Features

IHDP Tabular 2 ✗ 25

TCGA Tabular 3 ✓ 4000

IHDP-C Tabular cont. ✗ 25

News Tabular cont. ✗ 2000

EEEC Text 2 ✗ 500

Image 2 ✗ 20
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