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Abstract

Center of mass (COM) state, specifically in a local reference frame (i.e., relative to center of 

pressure), is an important variable for controlling and quantifying bipedal locomotion. However, 

this metric is not easily attainable in real time during human locomotion experiments. This 

information could be valuable when controlling wearable robotic exoskeletons, specifically for 

stability augmentation where knowledge of COM state could enable step placement planners 

similar to bipedal robots. Here, we explored the ability of simulated wearable sensor-driven 

models to rapidly estimate COM state during steady state and perturbed walking, spanning 

delayed estimates (i.e., estimating past state) to anticipated estimates (i.e., estimating future state). 

We used various simulated inertial measurement unit (IMU) sensor configurations typically found 

on lower limb exoskeletons and a temporal convolutional network (TCN) model throughout 

this analysis. We found comparable COM estimation capabilities across hip, knee, and ankle 

exoskeleton sensor configurations, where device type did not significantly influence error. We also 

found that anticipating COM state during perturbations induced a significant increase in error 

proportional to anticipation time. Delaying COM state estimates significantly increased accuracy 

for velocity estimates but not position estimates. All tested conditions resulted in models with R2 

> 0.85, with a majority resulting in R2 > 0.95, emphasizing the viability of this approach. Broadly, 

this preliminary work using simulated IMUs supports the efficacy of wearable sensor-driven deep 

learning approaches to provide real-time COM state estimates for lower limb exoskeleton control 

or other wearable sensor-based applications, such as mobile data collection or use in real-time 

biofeedback.
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Introduction

Center of mass (COM) state is central to quantifying and controlling bipedal locomotion, 

where it is frequently used to inform step placement and quantify stability [1–3]. Bipedal 

robots benefit from knowledge of joint kinematics and segment properties, enabling 

accurate, real-time quantification of COM mechanics relative to the ground contact point. 

However, this is not so easily achievable in humans, where knowledge of participant-specific 

segment properties is unknown and joint encoders or goniometers are not necessarily 

available during biomechanics or wearable robotic experiments to provide lower limb 

kinematics. Previous studies have investigated wearable sensor-based methods for global 

COM state estimation, providing information such as walking speed and direction [4]. 

However, estimating COM state in a local frame, relative to the center of pressure (COP), 

would be more influential for understanding biomechanical stability by indicating COM 

mechanics relative to the ground contact point. Thus, real-time estimation of a human’s 

COM state in a local frame could inform new approaches for wearable robotic exoskeleton 

control architectures, or other use cases such as mobile data collection or real-time 

biofeedback.

Specifically, knowledge of COM state during perturbed locomotion could enable the 

autonomous deployment of stability-augmenting wearable robots. Previous studies in this 

area have used COM state to detect environmental perturbations and inform exoskeleton 

assistance profiles, but have relied on simple models or motion capture to quantify COM 

mechanics, which confines use cases to in-lab collections [5–7]. Employing machine 

learning models that use wearable sensors could overcome this limitation by providing 

mobile and real-time COM state estimates. Estimating the current state in time (i.e., zero-lag 

estimation) may not be the only possibility, as recent work has also shown that machine 

learning or other data-driven methods may enable estimates of future human states (i.e., 

anticipated estimation) [8–12]. These estimates could enable wearable robots that anticipate 

changes to human locomotion, rather than simply react to them.

However, COM state estimation during perturbed locomotion, the target for balance-

augmenting wearable robots, is likely more challenging. These discrete and sudden changes 

to COM mechanics are likely more difficult for machine learning models to estimate, 

in comparison to steady state cyclic signals, because input sensor data windows may 

contain some pre-perturbation steady data and output labels are more transient, diverse, 

and may be less represented in the data set. Additionally, anticipated estimation compounds 

the challenge associated with this application, as wearable sensor input data will be less 

representative of perturbed mechanics. This is because machine learning models typically 

use some window of input sensor data to estimate a label; in anticipated estimation instances 

where the window ends right before the perturbation and the anticipated data point occurs 

shortly after the perturbation, it may be challenging for the model to accurately estimate this 
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point. However, recent advancements in human intent recognition using lower limb sensors 

are showing increased robustness across various modes of locomotion that suggest perturbed 

state estimation could be possible [13, 14].

Machine learning models using wearable sensors have shown significant promise in being 

able to estimate and predict human intent, especially from a reduced set of sensors [15, 

16]. Specifically, deep learning models, such as temporal convolutional networks (TCN), 

have shown robustness in estimating continuous human states across various modes of 

locomotion [9, 13]. Previous work suggests that TCN models may outperform other deep 

learning methods, such as Long Short-Term Memory (LSTM) or Convolutional Neural 

Network (CNN) models, for wearable sensor-driven human state estimation [13]. The TCN 

architecture maintains the temporal order of input data and is relatively light-weight in 

terms of trainable parameters compared to a CNN. This reduced weight requires less data 

to sufficiently train the network, which is particularly appealing for human biomechanics 

applications in which data acquisition is time intensive. Thus, a TCN is a promising 

approach to investigate how well wearable sensor-informed data-driven models can estimate 

COM state during perturbed locomotion.

In this work, our broad goal was to investigate the ability of a wearable sensor-driven 

approach to estimate COM state during steady state and perturbed walking. We also 

evaluated how forward (anticipated) and backward (delayed) estimation influenced model 

accuracy, as anticipated estimation could enable more responsive exoskeleton controllers 

while delayed estimation could provide estimates with lower error at the expense of 

some delay [9]. To compare various exoskeleton sensor configurations, we simulated 

inertial measurement unit (IMU) sensors on the torso, pelvis, and lower limbs from a 

perturbed walking biomechanics data set. We quantified COM state as the mediolateral 

(ML) and anteroposterior (AP) COM position and velocity relative to the center of 

pressure (COP), shown in Fig. 1. First, we investigated the estimation capability of 

models that use only an inertial measurement unit (IMU) on the pelvis as well as sensor 

configurations that would be found on various lower limb robotic exoskeletons that combine 

multiple sensors. Next, we evaluated the delayed and anticipated estimation capability of a 

candidate exoskeleton sensor configuration. Lastly, we evaluated how various environmental 

perturbation conditions (magnitude, direction, and timing) influenced estimation accuracy. 

This work provides insight into the efficacy of COM estimation using wearable sensors for 

use in wearable robotic control during unstable locomotion.

Materials and Methods

Data Collection

All participants provided written informed consent for this study approved by the Georgia 

Institute of Technology Institutional Review Board. Eleven participants walked on a 

treadmill mounted in a six degree-of-freedom Stewart platform (CAREN, Motek Medical, 

Netherlands) [17]. Throughout the experiment, participants walked at 1.25 m/s. Participants 

were perturbed using surface translations that varied in magnitude (5, 10, 15 cm), direction 

(ML, AP, corresponding four diagonal combinations), and onset time (double stance; early, 

mid, late single stance), resulting in 96 unique conditions (Fig. 1). One perturbation occurred 
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approximately every 20 s, with the exact time being randomized to inhibit participant 

anticipation of the perturbation. The foot that the perturbation was applied on was also 

randomized to inhibit anticipation. Each participant walked for three sessions, resulting in 

three repetitions of each perturbation condition for a total of 288 perturbation trials per 

participant.

We collected a full-body marker set and five markers on the platform at 100 Hz, as well 

as bilateral ground reaction forces from the split-belt treadmill at 2000 Hz (Vicon, Oxford, 

United Kingdom). We collected readings from four tri-axial accelerometers (Model 4030, ± 

2 G dynamic range, TE Connectivity, Switzerland) mounted on the Stewart platform at 2000 

Hz for inertial compensation, which is discussed in the next section.

Calculation of COM State Relative to COP

Due to the large inertia of the system, acceleration of the platform induced forces and 

moments on the force plates that needed to be corrected to obtain the forces and moments 

caused by the participant. We adapted and applied a previously published method that used 

platform-mounted accelerometers to identify and correct for induced forces and moments 

[18]. We used these corrected outputs to recalculate the COP and corrected the COP to 

accurately reflect the translation of the force plates with the platform relative to the global 

coordinate frame.

The motion capture marker data were lowpass filtered at 6 Hz using a fourth-order 

Butterworth filter. The COM was approximated by the mean of the four pelvis markers. 

We then calculated the ML and AP position and velocity relative to the combined COP 

from both force plates, providing continuous position and velocity measures throughout the 

gait cycle (Fig. 1). Across the 3168 collected perturbation trials, 27 resulted in a jump in 

response to the perturbation, defined by an aerial phase in the period after the perturbation 

onset. Because this results in a period of no center of pressure due to lack of ground 

contact, these trials were eliminated from the data set used in this work. The remaining 3141 

perturbation trials were used in this analysis. The ML and AP position and velocity COM 

states were used as the data labels for the machine learning models.

Inverse Kinematics and Simulated IMU Generation

From the collected biomechanics data set, we calculated simulated IMU sensor signals to 

represent the IMU set that would be found on a hip, knee, or ankle exoskeleton. We utilized 

simulated IMUs for this work because we did not have the ability to collect the entire 

set of physical IMUs required for this analysis. Utilizing simulated sensors allowed us to 

capitalize on this large and diversely perturbed data set while also allowing us to analyze 

a number of different sensor configurations that we believe would be informative for the 

wearable robotics and biomechanics communities. We calculated inverse kinematics using 

OpenSim 4.1 [19]. We used the OpenSim Scale Tool to scale a full-body musculoskeletal 

model to each participant [20]. We then used the OpenSim Inverse Kinematics Tool to obtain 

full-body joint kinematics. The resulting segment kinematics were then used to simulate 

linear acceleration and angular velocity recordings for mid-segment-mounted sensors on the 
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torso, pelvis, thigh, shank, and foot segments according to the protocol in [13]. This set of 

simulated IMUs was used as the inputs for the machine learning models.

TCN Model Structure

We implemented a subject-independent TCN model that was previously found to outperform 

other deep learning models when estimating human outcomes during locomotion [13]. 

We altered the model to include a four-headed output to enable the estimation of ML 

and AP COM position and velocity with a single model. The model was split into four 

heads after the fully connected layer. All model hyperparameters were set as the optimal 

hyperparameters determined in [13], which investigated the capability of a comparable 

sensor set to estimate biomechanical outcomes during multimodal locomotion. The kernel 

size and levels hyperparameters dictate the required input data time history for a TCN 

model. The optimized hyperparameters in [13] require 187 points of time history, or 930 ms, 

based on the 200 Hz collection frequency used in the study.

TCN Model Training and Testing Data

All collected perturbation trials, with the exception of the 27 eliminated trials discussed 

above, were used to provide the training and testing data for these analyses. All sensor and 

COM state data were upsampled from 100 to 200 Hz to replicate the collection frequency 

used in the study that provided the TCN hyperparameters used in this work [13]. For 

each perturbation trial, COM state labels were included for 2.95 s before and 6.05 s after 

the perturbation; this ensured the same labels were being estimated across delayed and 

anticipated estimation times, in which the sensor inputs window shifted relative to the 

COM state time point being estimated. We determined the across-participant mean steady 

state range of ML and AP position and velocity. These range values were 224 mm, 361 

mm, 2956 mm/s, and 4126 mm/s for the ML position, AP position, ML velocity, and AP 

velocity, respectively. These across-participant means were used to scale all data labels, 

resulting in steady state signals with approximately the same range across all labels. These 

resulting labels are in units of percent of steady state range. We did this to prevent the 

multi-headed network from being biased toward outcome measures with larger ranges, and 

therefore larger error values for comparable error as a percentage of the steady state signal, 

during model training. Several perturbations in the data set regularly caused COM state 

deviations up to and surpassing 25% of the steady state range; thus, the model would need 

to achieve error values significantly below this to provide utility over a baseline approach 

of assuming steady state gait. We extracted input and label data for 50, 100, and 150 ms 

anticipated estimations (label was ahead in time from the last sensor input), 50, 100, and 150 

ms delayed estimations (label was behind in time from the last sensor input), and zero-lag 

estimation (label was at same point in time as last sensor input, no delay or anticipation). 

Input data included all simulated IMUs and was 930 ms (or 187 data points) in length 

as discussed in the previous section. Label data included ML and AP COM position and 

velocity. Each TCN model was trained using 11-fold leave-one-subject-out validation using 

a mean squared error (MSE) loss function. Each model ran for 200 epochs, with a patience 

term of 50 epochs that enabled early stopping.
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We trained and validated three sets of models. First, we trained a set of models to evaluate 

the performance of different wearable device sensor configurations for standard estimation. 

We evaluated configurations for pelvis only (pelvis IMU), hip exoskeleton (torso and thigh 

IMUs), knee exoskeleton (thigh and shank IMUs), ankle exoskeleton (shank and foot IMUs), 

and all sensors (torso, pelvis, thigh, shank, and foot IMUs). This resulted in 55 models 

being trained due to 11-fold leave-one-subject-out validation and 5 configuration conditions. 

Second, we trained a set of models using the hip exoskeleton sensor configuration for each 

of the delayed (50, 100, 150 ms) and anticipated (50, 100, 150 ms) estimation cases. This 

resulted in 66 more models being trained due to 11-fold leave-one-subject-out validation and 

6 total delayed and anticipated estimation cases. Third, we trained and tested an additional 

set of models to investigate how well models trained on steady state and perturbed data were 

able to estimate steady state and perturbed COM states. Our primary goal was to investigate 

the importance of including perturbed data in the training set and what, if any, impact it 

would have on steady state and perturbed outcomes. To do this, we used a subset of the 

trials discussed above, producing two data sets; the steady state data set included 1 s of 

data before the perturbation for each trial, while the perturbed data set included 1 s of data 

after the perturbation for each trial. We then trained models using each data set using the 

same 11-fold leave-one-subject-out validation approach, testing both the steady state and 

perturbed data for each hold-out subject. This resulted in training 22 more models for this 

analysis. This resulted in training 143 total models for these analyses.

Statistics

We performed statistical analyses using custom Matlab scripts (Mathworks, Natick, MA) 

and Minitab (Minitab 19, United States). For each trial, we evaluated the model performance 

on a steady state and perturbed subset of the data; we defined the steady state subset as the 

1 s before the perturbation and defined the perturbed subset as the 1 s after perturbation. 

For both the steady state and perturbed subsets, we calculated the mean absolute error 

(MAE) and correlation strength (R2) between the model’s estimated and actual COM states. 

The mean of both MAE and R2 were taken for every participant. All analyses were done 

on the participant means for every condition. To evaluate the effect of exoskeleton sensor 

configuration on mean absolute error (MAE) and correlation strength (R2), we performed 

a oneway repeated measures ANOVA with sensor configuration as a fixed effect and 

participant as a random effect for each COM state outcome. We used post hoc comparisons 

with Bonferroni correction to evaluate sensor configuration comparisons. Resulting ANOVA 

p values and significant comparisons are shown in Fig. 2. To evaluate the influence of 

estimation time, we again performed a one-way repeated measures ANOVA with estimation 

time as a fixed effect and participant as a random effect. We used post hoc comparisons with 

Bonferroni correction to evaluate the differences between zero-lag estimation and the six 

anticipated and delayed estimation times. Significant comparisons are shown in Fig. 3. To 

evaluate if perturbation conditions affected COM state estimates, we again used a one-way 

repeated measures ANOVA with perturbation condition as a fixed effect and participant as 

a random effect. We used post hoc comparisons with Bonferroni correction to evaluate the 

differences between perturbation conditions for groups with significant effects detected by 

the ANOVA. Resulting ANOVA p values and significant comparisons are shown in Fig. 

4. Lastly, to evaluate the influence of steady state and perturbed training data on various 
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outcomes, we performed a series of paired-sample t tests. Significance between pairs is 

shown in Fig. 5. Across all analyses, the threshold for significance was set at α = 0.05.

Results

Simulated Exoskeleton Sensor Configurations

We evaluated how various lower limb exoskeleton sensor configurations influenced MAE 

and R2 of COM state estimates, with comparisons to baseline conditions that included a 

pelvis only IMU and all sensors (Fig. 2). During steady state walking, sensor configuration 

significantly affected MAE for all COM states except AP velocity and significantly affected 

R2 for all COM state variables. During perturbed walking, sensor configuration significantly 

affected MAE and R2 for all COM state outcomes. For perturbed ML position and velocity, 

the pelvis only MAE was higher than all other configurations, while the pelvis only R2 

was lower than the hip exoskeleton and knee exoskeleton configurations. For perturbed AP 

position, hip exoskeleton and all sensors configurations had significantly lower MAE than 

the other configurations; R2 showed many differences between configurations, with the hip 

and all sensors configurations having the highest R2. For perturbed AP velocity, the pelvis 

only MAE was higher than all other configurations, while the pelvis only R2 was lower than 

all other configurations.

Delayed and Anticipated Estimates

We evaluated the influence of estimation time on the MAE and R2 of COM state estimates 

(Fig. 3). We aimed to determine if anticipated estimations (into the future) and delayed 

estimations (already occurred) significantly differed from zero-lag estimation. We evaluated 

the hip exoskeleton configuration as it showed the best performance of the lower limb 

exoskeletons evaluated in the across-configuration analysis. We chose to evaluate the hip 

exoskeleton configuration because the all sensors configuration did not provide significantly 

higher accuracy for any outcome and because it better represents a limited sensor set that 

would more feasible for implementation in wearable device or biomechanics experiments. 

During both steady state and perturbed walking, estimation time significantly affected MAE 

and R2 for all COM state outcomes (all p < 0.001). During steady state walking, + 100 

and + 150 ms (anticipated) estimates were significantly different from zero-lag estimation 

for all COM state variables for both MAE and R2. The only significant differences detected 

for delayed estimates were for ML COM velocity MAE (− 100 and − 150 ms) and AP 

COM velocity MAE (− 150 ms). During perturbed walking, + 50, + 100, and + 150 ms 

(anticipated) estimates were significantly different from zero-lag estimates for all COM state 

variables for both MAE and R2. For perturbed delayed estimates, significant differences 

were detected for ML COM position (− 150 for R2), ML COM velocity (− 100 and − 150 

ms for both MAE and R2), and AP COM velocity (− 50, − 100, and − 150 ms for MAE and 

R2).

Influence of Perturbation Conditions

We evaluated the influence of perturbation magnitude, direction, and timing on MAE of 

zero-lag COM estimation (no delay or anticipation time; Fig. 4). We again evaluated the 

hip exoskeleton sensor configuration. Perturbation magnitude significantly affected all COM 
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state estimates, with MAE increasing with increased perturbation magnitude. We detected 

significant differences between all perturbation magnitude conditions for all outcomes 

except between small (5 cm) and medium (10 cm) as well as medium (10 cm) and large 

(15 cm) perturbations for the ML position estimates. However, perturbation direction only 

affected ML and AP velocity estimates, with lateral (shown in pink) and anterolateral 

perturbations (shown in red) typically causing the highest MAE. Anterior and posterior 

perturbations (shown in orange and blue, respectively) tended to cause the lowest error 

across COM state outcomes. We only detected significant differences between individual 

conditions for the ML velocity estimates; we detected differences between the lateral (pink)/

anterior (orange), lateral (pink)/posterior (blue), anterolateral (red)/anterior (orange), and 

anterolateral (red)/posterior (blue) conditions. Representative trials for the purely AP and 

ML perturbations are shown in Fig. 6. Lastly, perturbation timing did not significantly affect 

any of the COM state estimates.

Influence of Training Data Type

We evaluated the influence of steady state and perturbed training data on steady state 

and perturbed estimation outcomes (Fig. 5). We aimed to investigate how models trained 

on different types of data (steady state, perturbed) would influence the accuracy of 

COM estimates. We evaluated zero-lag estimation outcomes using the hip exoskeleton 

configuration as it showed the best performance of the lower limb exoskeletons evaluated 

in the across-configuration analysis. The steady state COM state estimate MAE values were 

not significantly affected by the training data types. However, the R2 value for the AP 

position estimates was significantly higher for the steady state-trained model in comparison 

to the perturbed-trained model. The perturbed COM state estimate MAE and R2 values 

between steady state-trained models and perturbed-trained models were significant for all 

COM state outcomes.

Discussion

Exoskeleton Sensor Configurations

The first question that we aimed to investigate in this work was how well various lower 

limb exoskeletons could estimate COM state given a standard IMU sensor set on each 

device. To provide baseline comparisons, we also evaluated the performance of a single 

simulated pelvis IMU, which is on the same segment used to approximate COM from 

biomechanical data, as well as all sensors. We found that the pelvis sensor performed 

significantly worse than the other exoskeleton configurations, primarily when estimating 

COM state during perturbed walking (Fig. 2). This indicates that a single sensor is likely 

not sufficient for COM state estimation but using segment-mounted sensors on a single 

joint exoskeleton is sufficient to maximize accuracy. Interestingly, we found few significant 

differences between exoskeleton sensor configurations. This finding includes the comparison 

to the all sensors configuration, indicating that increasing the number of sensors, relative to 

the three or four sensors on single joint exoskeletons, does not further improve predictions. 

This indicates that various lower limb exoskeletons could provide accurate COM estimates 

without the need for additional sensors, enhancing the efficacy of this approach. Because 

the hip exoskeleton sensor set outperformed the pelvis more than the other exoskeleton 
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configurations, we evaluated the hip exoskeleton configuration for the remainder of the 

analysis.

Delayed and Anticipated Estimates

We also wanted to evaluate how anticipated and delayed estimation times affected accuracy 

and correlation strength relative to zero-lag estimation (Fig. 3). Across all COM state 

estimates, steady state estimates were more accurate than perturbed. Because perturbations 

abruptly and transiently disrupt a usually cyclic COM state, we expected that the model 

would estimate perturbed COM state with lower accuracy. Across all COM state estimates, 

greater anticipation times decreased accuracy. This is the expected result, as predicting 

future CoM state changes during perturbed locomotion becomes highly challenging due 

to the lack of relevant time history information. However, the anticipated estimates are 

still promising, as the error for even the 150 ms anticipated estimates did not even double 

the error of zero-lag (0 ms) estimates. Greater anticipation times are possible, but will 

likely cause increasing error and poorer performance, specifically immediately following the 

perturbation onset. These anticipated estimates could be used to enable faster exoskeleton 

responses, due to the system anticipating the user’s state rather than simply reacting to it. 

We expected better performance for delayed estimates, as the input data span the point in 

time that the estimate is being made for (i.e., the sensors include data from before and 

after the desired COM state estimate) [9]. Our results suggest that this is the case, with 

delayed estimates improving accuracy relative to zero-lag estimates across multiple COM 

state outcomes, particularly for COM velocity estimates. However, greater delay times (up 

to or exceeding 150 ms) may not be necessary to achieve this bump in accuracy, as there 

is relatively little difference in error across 50, 100, and 150 ms delays. The more accurate 

delayed estimates could be employed to enable mobile data collection, update machine 

learning models in real time to customize models to individual users, or in applications 

where a small amount of delay is acceptable.

Influence of Perturbation Conditions

We also investigated how different perturbation characteristics affected COM state 

estimation error (Fig. 4). First, perturbation magnitude had a clear effect on error, with 

increased perturbation magnitude causing increased error across all COM state variables. 

Additionally, perturbation direction significantly affected COM velocity error, but not 

position error; lateral and anterolateral perturbations, which induce a widening step 

maneuver, caused the most error across all COM state outcomes. Previous work has shown 

comparable trends in how balance is influenced by these perturbation conditions [17, 21]. 

This may suggest that error simply scales with the magnitude of the COM state signal, 

as higher magnitude perturbations and lateral perturbations have been shown to cause 

greater deviations in balance metrics and human recovery strategies. Lastly, we found 

that perturbation onset timing during the gait cycle did not significantly affect error for 

any COM state estimate. This suggests that this approach could be viable when deployed 

in uncontrolled environments where perturbations can onset at any time. The thoroughly 

significant effect of perturbation magnitude but not necessarily direction or timing is 

possibly caused by the represented data in the training set. Generally, machine learning 

models are better at interpolating than extrapolating. Both the direction and timing variables 
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are uniformly sampled from a “cyclic” or “circular” space in which all possible direction 

or timing conditions are reasonably captured by the training data. However, perturbation 

magnitude exists in a linear space where larger perturbations are near the bounds of the data 

represented in the training set, likely causing higher estimation errors for those conditions.

Influence of Training Data Type

We aimed to investigate the importance of including perturbed data in the training set. We 

predicted that including perturbed data in the training set would be necessary to reduce 

error in perturbed estimates, with steady state-trained models providing poor estimates of 

perturbed outcomes. However, we also predicted that perturbation-trained models would 

slightly reduce the accuracy of steady state estimates in comparison to models that were 

trained only on steady state data. We found that, largely, training models with perturbed 

data did not reduce the accuracy of steady state estimates. However, we also found that 

including perturbed data in the training set is crucial to improve the accuracy of perturbed 

COM state estimates. Broadly, this work implies that you may not need to choose between 

accurate steady state and perturbed estimates. Rather, expanding training sets to include 

diversely perturbed locomotion enhances perturbed estimates without sacrificing steady state 

accuracy.

Broader Implications, Limitations, and Future Directions

This work has shown that estimating COM state using sensors typically onboard a single 

joint lower limb robotic exoskeleton is feasible. Specifically, the comparable performance 

of sensor sets for hip and ankle exoskeletons is a promising sign for balance-augmenting 

exoskeleton research. Previous work in this area has focused on hip and ankle exoskeletons 

due to the role of these joints in generating balance-correcting responses [5–7, 22, 23]. Our 

approach to estimate COM state could be deployed on hip or ankle exoskeleton devices 

to enable exoskeleton controllers that correct for COM changes following perturbations. 

Additionally, this work demonstrates the ability of machine learning approaches to generate 

anticipated estimates that could enable wearable robots to be proactive rather than reactive 

by using future COM states to drive control. Our findings suggest that it is crucial to train 

models using perturbation conditions or other destabilizing conditions that are representative 

of the desired use case, and that doing so will not sacrifice steady state estimation accuracy.

This work also has limitations that should be considered by researchers looking to build 

off of these findings. First, the use of simulated IMUs assumes perfect coupling between 

the sensors and the participant’s skeleton. When implemented with physical sensors, soft 

tissue noise and decoupling between the user and exoskeleton, especially during periods 

of high torque assistance, could affect the IMU data. These challenges could be mitigated 

by layering noise profiles onto simulated IMU data for more representative training data, 

using high-fidelity IMUs that present cleaner signals than IMUs more traditionally used 

in wearable robotic applications, or placing IMUs directly on the user rather than on the 

device to minimize user-exoskeleton decoupling during torque assistance. Additionally, the 

user’s COM was approximated in this work using the average of four pelvis-mounted 

motion capture markers. Depending on the use case of this model, this could be altered to 

better approximate the whole-body COM by considering the combined COM of all body 
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segments. Another important limitation to note is that this work was performed on a fixed 

speed instrumented treadmill. Though the perturbation platform and treadmill provide an 

opportunity for repeatable and controlled perturbations to study, the fixed speed and lateral 

boundaries of the treadmill also limit the participants’ natural response. Future studies could 

build off of this work by training and testing COM estimation models in unconstrained 

overground environments.

Though simulated IMUs are one of the limitations of this work, our approach mitigates 

some of the shortcomings that IMUs often present for position-based estimation. IMUs 

are typically sensors that introduce issues such as noise and drift over time, with drift 

becoming increasingly problematic for position-based estimates that require single or double 

integration of the native gyroscope and accelerometer signals (e.g., dead reckoning). This 

emphasizes a key benefit of machine learning-based approaches, which do not utilize 

integration and thus do not experience any drift. Our approach creates a mapping between 

the previous 930 ms of accelerometer and gyroscope data and the COM state, rather than 

directly integrating signals over time, to attain a position estimate which avoids issues 

associated with sensor drift. However, these IMUs still only provide kinematic information 

and are likely far less reflective of COP changes underneath the foot. Though the approach 

presented in this work is promising, additional sensing could further enhance COM state 

estimation accuracy. The use of pressure insoles, which typically measure the vertical force 

and the ML and AP COP underneath the foot, would likely further enhance this approach. 

This addition could be particularly helpful in better estimating the sudden COM state 

changes immediately following perturbations or other transient, rapid changes to the COM.

The work presented here utilizes previously optimized TCN hyperparameters from [13]. 

Because the estimation, and especially anticipated estimation, of biomechanical outcomes 

during unsteady locomotion is a relatively nascent area of research, there are many possible 

avenues that could expand on the results presented here. First, further tuning the TCN’s 

hyperparameters could assist in bettering tailoring the model to perturbed applications. 

Specifically, there are opportunities to explore how input data time history should be tailored 

for perturbed applications, where longer time histories that have utility during steady state 

locomotion may not be as relevant to estimate rapid, transient changes in biomechanical 

outcomes. However, due to the structure of a TCN, increased time history also correlates 

with increased model depth that may enhance the model’s ability to learn from the training 

data. Thus, there are opportunities for hyperparameter tuning, as well as the exploration 

of different or hybrid structures that optimize model structures for perturbed locomotion 

[24, 25]. Further model alterations and tuning could also be beneficial depending on the 

eventual use case of such a model. If used for perturbation detection, researchers may want 

to optimize the model’s performance in the immediate time windows after the perturbation. 

If used for continuous exoskeleton control, researchers may need to consider max error 

in addition to MAE to smooth out continuous model performance, as well as constrain 

exoskeleton output torques to mitigate transient model errors. If used for intermittent 

exoskeleton control, researchers could modify testing data sets to isolate model tuning and 

performance evaluation to the exact targeted use cases. Broadly, this work provides strong 

initial support for the feasibility of real-time COM state estimates for exoskeleton control 

and opens many avenues for further refining these models for various use cases.
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In future applications, the COM state estimation models in this work could be used to 

develop intelligent exoskeleton control architectures that react to COM state changes using 

concepts such as capture point and extrapolated center of mass to drive step placement, 

ankle moment modulation, or other balance-correcting responses [1, 2, 5, 26]. Other 

applications of this work could be collecting COM state data outside of a traditional 

biomechanics lab or using COM state for biofeedback in balance rehabilitation applications. 

Broadly, this work demonstrates that COM state estimation is possible with reduced sensor 

sets, for different delayed and anticipated estimation times, and across a large diversity of 

perturbation conditions.
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Fig. 1. 
Perturbations varied in magnitude (left, shown by colored arrows), direction (left, shown by 

colored arrow outlines), and timing (top walking diagram). Center of mass (COM) state was 

defined using the mediolateral (ML) and anteroposterior (AP) position and velocity vectors 

between the COM and continuous center of pressure (COP) spanning both feet, representing 

the COM in a local reference frame defined by the point of ground contact
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Fig. 2. 
The effect of exoskeleton sensor configuration on mean absolute error (MAE, lower is 

better) and R2 (higher is better) for center of mass (COM) state estimation. MAE and R2 

are shown for mediolateral (ML) and anteroposterior (AP) position and velocity estimates 

during both steady state (1 s before perturbation) and perturbed (1 s after perturbation) 

estimates. These values were calculated from the across-trial means for each participant, 

causing 11 samples to make up each distribution. The bars and error bars show the across-

participant mean and ± 1 standard deviation, respectively. Results are shown for zero-lag 

estimation, not delayed or anticipated estimation. For each subplot, the p value shows 

the results of a one-way repeated measures ANOVA and the comparison bars indicate 

significant differences detected between exoskeleton sensor configurations. For both, the 

threshold for significance was set at α = 0.05

Leestma et al. Page 15

Ann Biomed Eng. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The effect of estimation time on mean absolute error (MAE, lower is better) and R2 

(higher is better) for center of mass (COM) state estimation. MAE and R2 are shown for 

mediolateral (ML) and anteroposterior (AP) position and velocity estimates during both 

steady state (1 s before perturbation, shown in gray) and perturbed (1 s after perturbation, 

shown in red) COM state estimates. These values were calculated from the across-trial 

means for each participant, causing 11 samples to make up each distribution. The circular 

markers and error bars show the across-participant mean and ± 1 standard deviation, 

respectively. Slight offsets were used along the x-axis for better clarity of overlapping 

standard deviation bars and do not reflect different estimation times between the steady state 

and perturbed models. All results are shown for the hip exoskeleton sensor configuration 

(right). Comparison bars indicate significant differences detected between zero-lag (0 ms) 

estimation and other estimation times. The threshold for significance was set at α = 0.05

Leestma et al. Page 16

Ann Biomed Eng. Author manuscript; available in PMC 2024 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The effect of perturbation conditions on mean absolute error (MAE, lower is better) 

for perturbed center of mass (COM) state estimation. MAE is shown for mediolateral 

(ML) and anteroposterior (AP) position and velocity estimates. The rows show the effect 

of magnitude, direction, and timing, with the colored diagrams (right) illustrating the 

represented conditions. These values were calculated from the across-trial means for each 

participant, causing 11 samples to make up each distribution. The circular markers and 

error bars show the across-participant mean and ± 1 standard deviation, respectively. All 

results are shown for the hip exoskeleton sensor configuration (right) for zero-lag estimation. 

For each subplot, the p value shows the result of a one-way repeated measures ANOVA. 

Comparison bars indicate significant differences detected between conditions. The threshold 

for significance was set at α = 0.05
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Fig. 5. 
The effect of steady state and perturbed training data on mean absolute error (MAE, lower 

is better) and R2 (higher is better) for steady state and perturbed center of mass (COM) 

state estimation. MAE and R2 are shown for mediolateral (ML) and anteroposterior (AP) 

position and velocity estimates. These values were calculated from the across-trial means 

for each participant, meaning 11 samples make up each distribution. The bars and error bars 

show the across-participant mean and ± 1 standard deviation, respectively. All results are 

shown for the hip exoskeleton sensor configuration for zero-lag estimation. Comparison bars 

indicate significant differences detected between models that were trained on steady state 

and perturbed data. The threshold for significance was set at α = 0.05
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Fig. 6. 
Representative labels (black) and estimates (colors) for a single trial across four perturbation 

directions; lateral (pink), anterior (orange), medial (green), and posterior (blue) perturbations 

are shown in columns one through four, respectively. Results are shown for mediolateral 

(ML) and anteroposterior (AP) position and velocity estimates. The perturbation is 

represented by the dashed line, where the left side is steady state data and the right 

side is the second following perturbation onset. All trials shown above were for a 10 cm 

perturbation and double stance onset time. The mean absolute error (MAE) shown for each 
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subplot indicates perturbed COM state MAE (after 0 s. on x-axis). The left and right y-axes 

show normalized and unnormalized units, respectively
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