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Abstract: Cold atmospheric plasma (CAP) is a promising alternative to antibiotics and chemical
substances in dentistry that can reduce the risk of unwanted side effects and bacterial resistance.
AmbiJet is a device that can ignite and deliver plasma directly to the site of action for maximum
effectiveness. The aim of the study was to investigate its antimicrobial efficacy and the possible
development of bacterial resistance. The antimicrobial effect of the plasma was tested under aerobic
and anaerobic conditions on bacteria (five aerobic, three anaerobic (Gram +/−)) that are relevant in
dentistry. The application times varied from 1 to 7 min. Possible bacterial resistance was evaluated
by repeated plasma applications (10 times in 50 days). A possible increase in temperature was
measured. Plasma effectively killed 106 seeded aerobic and anaerobic bacteria after an application
time of 1 min per 10 mm2. Neither the development of resistance nor an increase in temperature
above 40 ◦C was observed, so patient discomfort can be ruled out. The plasma treatment proved to
be effective under anaerobic conditions, so the influence of ROS can be questioned. Our results show
that AmbiJet efficiently eliminates pathogenic oral bacteria. Therefore, it can be advocated for clinical
therapeutic use.

Keywords: cold atmospheric plasma; non-thermal plasma; antibacterial agents; antimicrobial; antibiotic
resistance; dentistry

1. Introduction

The peculiarities of the oral cavity in general pose a challenge for the elimination
of pathogenic germs. (i) The complex ecosystem of the oral cavity harbors a variety of
heterogeneous microorganisms, in fact up to 1000 different species [1,2], such as bacteria,
fungi, viruses, archaea and protozoa [3]. (ii) The oral cavity provides diverse niches that
are difficult to access by the patients and therefore favor undisturbed proliferation and
formation of complex three-dimensional (3D) biofilm. (iii) The oral mucosa is particularly
sensitive to chemical substances, e.g., hexetidine-, chlorhexidine- or essential oil-containing
mouthwashes like Listerine, which can lead to oral ulcers [4], reduced cell proliferation and
adhesion [5]. Thus, the elimination of pathogenic germs must be ensured while considering
the preservation of healthy cells. In healthy organisms, the potential pathogenicity of
bacteria is balanced out by the host’s immune system [6]. However, a shift in the balance,
e.g., reduced immune defense or proliferation of pathogenic germs, can contribute to the
development of biofilm and thus various oral diseases, e.g., caries or periodontitis [3].
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In an organized oral biofilm, microorganisms coexist in an extracellular composition of
mostly environmental deoxyribonucleic acid (eDNA), proteins and polysaccharides [7]. As
a component of a biofilm, bacteria are known to have different gene expression, transcrip-
tion and translation compared to their planktonic form, which enables them to grow in
pathogenicity. Additionally, bacteria protected by biofilm layers benefit from the blockage
to antibiotics and host immune cells and, thus, are able to develop 250 to 1000 times higher
resistance to antibiotics [7–9]. Especially in dentistry, where antibiotics should only be used
for severe infections and extra-oral swellings or when systemic complications are expected,
an unnecessarily high number of antibiotics are still regularly given to patients [10–12] dur-
ing routine procedures [13]. For example, studies from the UK as well as the US examining
antibiotic administration in dental practices found that as many as about 80% of antibiotic
applications were administered without the correct indication [14,15].

Hence, since the discovery of antibiotics in 1928, the risk of bacterial resistance has
increased uncontrollably and has become a major global health concern [7]. Without al-
ternative treatments, the annual global death toll from antibiotic resistance is projected to
increase from 700,000 to 10 million by 2050 [16–18]. Therefore, new therapeutic antimicro-
bial approaches, especially in dentistry, are urgently required in which antibiotics can be
avoided. One promising prospect is the application of plasma.

Plasma is an electrically neutral, or quasi-neutral, ionized gas, also referred to as the
fourth state of matter. It contains highly reactive oxygen and nitrogen species (RONS),
excited molecules, charged particles, chemically reactive neutral particles, free radicals and
ultraviolet (UV) radiation [19,20]. Several studies have already proven the effectiveness and
antimicrobial properties of plasma [21–24] depending on the plasma source and parameter
settings [25].

Plasma is already being used regularly in dermatology to improve the healing of
chronically infected wounds by reducing the topical bacterial load and promoting healing
mechanisms [26–29]. Here, even beneficial properties on healthy surrounding tissue were
reported [21]. However, plasma has a limited disinfecting efficacy as it is ignited by a
dielectric barrier discharge (DBD) due to a low energy input. An additional limitation
comes with the decreasing efficacy with increasing working distance between the plasma
source and the target [30].

Recent studies qualify plasma jet applications as especially efficient in deactivating
biofilms. Through the production of small, handy devices, e.g., plasma jets, oral appli-
cation seems to be within reach [6]. Fields of dental application that are already under
investigation, such as sterilization [31], carious lesion control [32] and improvement of
adhesive systems [33], as well as tooth whitening [34], root canal disinfection [25] and peri-
implantitis therapy [35], have so far delivered consistently positive results [36]. However,
as mentioned above, it is also required for plasma jets to keep the distance to the plasma
source as small as possible. As the distance between the device and the inflammation
process increases, the power of the plasma device must also be increased to achieve the
same efficacy. Unfortunately, this leads to a rise in temperature and possible damage of
cells in the treated tissue [36]. The near-tissue ignition of conventional plasma jets is still
not possible.

In general, plasma can be classified into high-temperature, thermal and non-thermal
groups. Unlike high-temperature and thermal plasma, in non-thermal plasma, i.e., cold
atmospheric plasma (CAP), heavy particles are at room temperature, which enables it to be
used at <40 ◦C [6]. In medicine, temperature control is one of the most important factors in
preserving surrounding cells and tissue [36].

The disinfecting mechanism of CAP is not fully established yet. However, different
approaches have been described. For one, biological pathways, like DNA damage, lipid per-
oxidation, protein modulation, induced apoptosis, cell leakage, electrostatic rupture of the
membrane, etc., were proposed to explain the disinfecting effect of plasmas [37,38]. Some
studies claim that those pathways are triggered by one or more components constituting
the plasma. Electricity (in forms of electrical field, ions and electrons) may play a dominant
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role in deactivating/eliminating Gram-negative bacteria, whereas reactive species (oxygen-
or nitrogen-based species, so-called ROS and RNS) may be decisive criterion for eliminating
Gram-positive bacteria [20,39–42].

To improve the mechanism of CAP, a device with a disruptive electrode arrangement
for plasma ignition was developed for our study. In contrast to other devices, this arrange-
ment uses the target surface as an electrode so that CAP is ignited directly and directed into
the treated area. The effectiveness of the plasma device, called AmbiJet, was tested under
aerobic and anaerobic conditions and can be explained by two mechanisms. Firstly, the
effect caused by the helium plasma itself, and secondly, the effect of ROS created indirectly
by the helium plasma reacting with the oxygen-containing atmosphere. The amount of
ROS diffusing away from the immediate plasma jet outskirt increases over time, which
results in an increase in the width of the bacteria-free area as a function of time under
aerobic conditions (Figure 1, Left). Under anaerobic conditions, on the other hand, no ROS
is created, and the results show the direct plasma effectiveness only (Figure 1, right).
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Figure 1. Scheme of plasma effect and influence of ROS under aerobic (left) vs. anaerobic conditions
(right).

The aim of this study was to present and evaluate the efficacy and safety of a device
AmbiJet, which can generate a helium (He) plasma jet on the infected tissue. The elimination
of aerobic and anaerobic bacteria that are relevant in dentistry and their potential formation
of bacterial resistance after plasma application should be determined. Also, the temperature
increase during plasma application was investigated.

Overall, these examinations should contribute to the daily clinical use of plasma in
dentistry and to the search for an alternative to antibiotic administration to combat bacterial
resistance and maintain antibiotic efficacy for severe, possibly life-threatening, diseases.

2. Results
2.1. Plasma Effect on Aerobic Bacterial Cultures

In a first setup, plasma was applied to various aerobic bacteria, such as Gram-negative
bacteria E. coli and P. aeruginosa, as well as Gram-positive bacteria, like S. aureus, S. mutans
and E. faecalis, which generally showed efficacy, i.e., led to elimination of the selected
monocultured bacterial forms in all samples (examples: Figure 2).
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Figure 2. (a) Microscopic image showing the effective range of the plasma jet device applied to an
E. coli bacterial lawn at a speed of 1 s/mm (4 runs). The dark area on the top and bottom represents
the thick bacterial lawn. The light gray area in the center represents bacteria-free zone (3–4 mm); the
inner line corresponds with the inner diameter of the nozzle. Scale bar: 1 mm. (b) Photographs of
different bacterial lawns on agar plates after plasma application at a speed of 1 s/mm. (b0) Template
showing treatment area for 1 to 7 min, (b1) S. mutans, (b2) P. aeruginosa, (b3) S. aureus, (b4) E. faecalis,
(b5) E. coli.

For all bacteria, a dependency of treatment time and line width could be observed.
However, the minimum width of the bacteria-free area was at least equal to the width of the
inner diameter of the nozzle in all samples. For one minute of treatment, the bacteria-free
line was wider on samples with P. aeruginosa and narrower with S. mutans and E. faecalis
(Figure 2b). In general, plasma appeared to be slightly more effective with Gram-negative
than Gram-positive bacteria, though the difference was not significant. As shown in
Figure 2a, the bacteria-free line for the 1-minute treatment is about 2 mm wide for E. coli,
which is much larger than the inner diameter of the nozzle (0.8 mm). The width of the
bacteria-free line increases with treatment time (Figures 2b and 3). The application of
plasma on E. coli resulted in complete eradication of all bacterial species up to a bacterial
load of 6 log10 of a surface area of 40 mm2 (10 mm length × 4 mm width) after 3 min.

In general, plasma appeared to be most effective with P. aeruginosa and least effective
with E. faecalis and E. coli, whereas the elimination efficacy decreased with time with E. coli
and increased with E. faecalis. As a side observation, no negative effects appeared on the
surrounding agar.

Correlation between Efficacy and Treatment Time under Aerobic Conditions

For all aerobic bacteria, a strong linear effect could be observed between treatment
time and treatment effect (width of the eradicated area) when R2 = 0.715.

2.2. Plasma Effect on Anaerobic Bacteria

The plasma treatment showed a high bactericidal effect in all samples with the anaero-
bic bacteria even under anaerobic conditions. Here again, the plasma seemed to be slightly
more efficient against Gram-negative than against Gram-positive bacteria, though not
significantly (Figure 4).
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Figure 3. Width of the bacteria-free area with respect to the treatment time. Examined aerobic
bacteria: S. mutans, E. coli, E. faecalis, S. aureus and P. aeruginosa. Chart indicated mean width with
95% confidence interval (CI) for treatment times of 1, 2, 3, 4, 5, 6 and 7 min.
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Figure 4. Time-dependent plasma effect on anaerobic bacteria. y-axis: bacteria-free area measured in
width in µm. x-axis: examined bacteria from left to right: A. actinomycetemcomitans, A. odontolyticus
and F. nucleatum with 95% CI; bars show treatment times of 1, 2, 3, 4, 5, 6 and 7 min.

No time-dependency could be observed with anaerobic bacteria. The width of the
bacteria-free line remained consistent for F. nucleatum and A. odontolyticus. For A. acti-
nomycetemcomitans, variations in efficacy could be observed. These were not caused by
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experimental variations in the distance between the nozzle and the substrate because seven
different treatment times were used on each agar plate.

Correlation between Efficacy and Treatment Time under Anaerobic Conditions

In contrast to the findings with aerobic bacteria, no linear time dependency in relation
to plasma application could be found for anaerobic bacteria. This is explained by the
disinfection mechanisms described in Figure 1.

2.3. Resistances after Repeated Plasma Application

As presented in Figure 5, plasma treatment was effective with all bacterial species,
for all treatment times and over all treatment cycles. The area of efficacy was larger than
the outlet of the nozzle in all cases. The width of the bacteria-free agar-agar remained
steady over the observation period with slight inconsistences. The development of bacterial
resistance would have led to a decrease in the line width over the cycle number, which is
not the case. This effect of inconsistences could be seen in groups treated for one minute
in cycle 4 to 7 with a decreased efficacy. However, the efficacy increased from cycle 8 on.
All in all, plasma efficiency could be reliably demonstrated in the comparison of the 1st
and 10th cycles for each tested bacterial culture. No CFUs appeared on the agar gel at any
observation time in the efficacy area.
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Figure 5. Long-term plasma effect on aerobic bacteria in an observation period of 50 days. Examined
bacteria from left to right: S. aureus, E. faecalis, E. coli, S. aureus and P. aeruginosa with 95% CI. y-axis:
bacteria-free area measured in width in µm. The bars show repeated treatment times of cycle 1, 2, 3,
4, 5, 6, 7, 8, 9 and 10. The rows represent the different treatment times.

2.4. Temperature Measurements

A rapid rise in temperature could be observed on the implant (sensor 1 measuring the
implant temperature) in the first minute of both treatment positions A and B (Figure 6).
In treatment position A (sensor and treated site on opposite sides of the implant), the
temperature reached a plateau of 37.5 ◦C and a maximum of 39.5 ◦C after 5 min. In
treatment position B (sensor at an angle of 90◦ to the treated spot), the temperature reached
a plateau of 39.5 ◦C and a maximum of 40 ◦C after 5 min. In both cases, the temperature
of the bone (measured by sensor 2) rose slowly and reached a maximum temperature of
38.5 ◦C, which is clinically acceptable.
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Figure 6. Temperature profile of the various sensors (implant position A and B, bone position A and
B marked as lines), x-axis: time in s; y-axis: temperature in ◦C.

3. Discussion

Medical devices are susceptible to bacterial adhesion, a latter biofilm accumulation
and formation causing host defenses and possible failure of the medical device [43]. Known
causes of such infections are so-called ESKAPE bacteria, such as Enterococcus faecalis, Staphy-
lococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and
Enterobacter spp. [44,45]. This problem also occurs in dentistry among various biofilm-
associated dental infections, but especially with dental implants, where the oral microbiome
neighbors the implant surface and thus can easily contaminate the implant surface [46].
Several studies have suggested that plasma application can successfully eliminate or inacti-
vate bacterial colonization (overview in [47]), even biofilms [48]; thus, plasma could offer
great advantages in dental medicine. Additionally, antibiotic therapy and antimicrobial
chemical substances like CHX [49] are being increasingly criticized due to the development
of bacterial resistance, which could increase the risk of global health [7], meaning that
innovative antibacterial techniques are urgently required.

Unlike antibiotics or other chemical substances, the plasma does not require a specific
target to act, so the bacteria have no chance to adapt and find defense mechanisms [50].
Recent studies suggest that CAP can eliminate bacteria such as Porphyromonas gingivalis [24],
P. aeruginosa, E. coli and even multi-drug-resistant S. aureus, which is particularly difficult
to manage with conventional antibiotic therapy [51,52]. In addition, a steady elimination of
the oral Gram-negative bacterium Fusobacterium nucleatum was observed. This bacterium
can communicate between various oral biofilm colonizers and, for example, assist Porphy-
romonas gingivalis in pathogenicity [53], but above all, it is currently criticized for promoting
certain types of cancer such as colorectal carcinoma [54].

As far as we are aware, all studies reported in the literature were conducted with the
presence of oxygen, whether directly as a gas admixture in the plasma or indirectly from
the surrounding air. Thus, for the first time, the present study included an experimental
setup with the absence of oxygen. Hence, the findings deliver further clues on how plasmas
interact with microorganisms.

The present study confirms the high disinfecting efficiency of the AmbiJet CAP device
on aerobic, anaerobic, Gram-positive and Gram-negative bacteria. The treatment led to
a complete eradication of the bacterial load of up to 6 log10 in the treated region within
1 min. The bacteria-free zone was larger than the nozzle of the device because it is partly
related to the width of the plasma jet, which is, in turn, related to the diameter of the gas
canal that helium is forming as it flows out of the nozzle. Inconsistences in efficacy with
A. actinomycetemcomitans can be associated with different growing times and inaccuracies
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in agar plating. Decisive factors influencing the result of plasma efficacy appear to be the
type of bacteria as well as plasma exposure time [24].

The effect of plasma on the membrane integrity has also been observed on Gram-
negative and -positive bacteria [55]. In this study, CAP from the AmbiJet device is in direct
contact with the bacteria, and electricity-based (physical) processes dominate, leading to
faster processes and less difference between Gram-positive and Gram-negative bacteria, as
is the case in the present investigation for short treatment times. The process can be led by
an electrical field [42] and/or charged particles such as electrons; UV radiation does not
seem to play a significant role [56,57].

For aerobic bacteria, a linear dependency could be observed between treatment time
and treatment effect (width of the eradicated area), which is in good agreement with the
literature [58]. In contrast, the results of the present investigation showed no such effect for
anaerobic bacteria. The general different behavior between aerobic and anaerobic bacteria
strains may not be rooted in the kind of bacteria but in the conditions in which the plasma
develops. Reactive oxygen species (ROS such as O2

− or OOH−) are believed to play a role
in the decontamination efficacy [42]. Others have reported to observe the development
of bacterial tolerance to CAP when the effect of the plasma process relies on intracellular
processes mediated by ROS [59–62]. In this study, under aerobic conditions, the energy
within the helium plasma is partly transferred to surrounding oxygen molecules creating
ROS around the plasma jet, with a decreasing density with increasing distance from the
plasma jet. ROS may therefore propagate the bactericidal effect further away from the
plasma (in the so-called “afterglow”), though with a lower efficacy. This would explain the
observed steady increase in the line width with the treatment time under aerobic conditions
(with aerobic bacteria) and the constant width of the bacteria-free line under anaerobic
conditions (with anaerobic bacteria). The influence of oxygen rather than the bacteria
type is confirmed by the experiment of Mahasneh et al. who observed an increase in the
inhibition zone with the exposure time for helium plasma for anaerobic Porphyromonas
gingivalis with a plasma treatment performed under aerobic conditions and explained by
the presence of ROS [63]. This indicates two things. Firstly, that RNS play no role in the
plasma disinfection mechanism in the present study because, otherwise, the bacteria-free
line would increase in width under anaerobic conditions in the present study (anaerobic
chamber filled with nitrogen). Secondly, that ROS are not necessary, at least when the
plasma is in direct contact with the target. Here, ROS may play only a secondary role on the
outskirts of the plasma jet in contact with the target (Figure 1, Left). After repeated plasma
application in the present study, no development of bacterial resistance could be observed
in an observation period of 10 cycles in 50 days, which is corresponding to recent studies
investigating bacterial resistance development after stress application [64,65]. One possible
explanation is the non-selective elimination by the plasma. In fact, previous studies suggest
that plasma application can inhibit bacterial gene transfer by conjugation [59].

In order to provide safe, comfortable and efficient plasma application without over-
heating the surrounding tissue, the ignition should be insured directly at the site of action.
The present study confirms the high efficiency of the presented plasma device AmbiJet,
even with an effective area larger than that of the plasma exit point, without temperature
increase or visible effects on the adjacent area. The light phenomenon of AmbiJet can be
used to visualize the treated surface and might serve to navigate during latter free-hand
treatment. Some bacteria such as E. faecalis or S. aureus carry heat chaperone proteins that
help to protect the bacterial proteins from overheating and maintain homeostasis. This
means that the bacteria have also developed adaptation mechanisms in this area. In turn,
repeated overheating of the application site could lead to bacterial resistance [62]. Therefore,
an application < 40 degrees is all the more important.
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4. Materials and Methods
4.1. Preparation of Bacteria and Plasma Treatment

The following bacteria were used for the experiments: aerobic Gram-negative bac-
teria Pseudomonas aeruginosa (ATCC 27853) and Escherichia coli (ATCC 25922), aerobic
Gram-positive bacteria Streptococcus mutans (DSM 20523), Staphylococcus aureus (ATCC
25923) and Enterococcus faecalis (T9), anaerobic Gram-negative bacteria Aggregatibacter acti-
nomycetemcomitans (SUNY1039-9) and Fusobacterium nucleatum (DSM20482) and anaerobic
Gram-positive bacteria Actinomyces odontolyticus (HP-6-13).

The different bacteria strains were cultivated in tryptic soy broth (TSB) medium (Becton
Dickinson GmbH, Heidelberg, Germany), applied on Müller–Hinton agar plates (diameter
85 mm, Biomerieux, Nürtingen, Germany) with a glass spatula and stored in an incubation
chamber (CellXpert® C170i, Eppendorf, Wesseling-Berzdorf, Germany) for 30 min to
immobilize the bacteria on the agar by evaporating the TSB. The bacterial density applied
on the agar corresponded to a concentration of approximately 106 bacteria/mL, which
was confirmed by dilution series and colony forming unit (CFU) counting using a light
microscope (Zeiss Axiovision, Oberkochem, Germany). The bacterial density in relation
to multiplication speed of the individual bacteria had been determined in preliminary
tests in order to maintain reproducibility and equal experimental conditions. Atmospheric
low temperature plasma was ignited using AmbiJet (Freiburger Medizintechnik GmbH,
Freiburg, Germany) with a customized applicator (equivalent to the inDrive applicator,
Freiburger Medizintechnik GmbH, Freiburg, Germany). The device generates a pulsed
AC helium discharge between the nozzle (powered electrode) of the applicator and the
target (agar), which is contacted electrically to form the counter-electrode. The electric field
between the powered electrode and the counter-electrode guides the plasma towards the
target. The nozzle has an inner diameter of 0.8 mm. The helium flow is as low as 0.5 L/min.
This low amount of gas can be extracted very easily by the aspiration system of a dental
chair and is therefore unproblematic. The temperature of the plasma jet is about 40 ◦C. To
standardize the plasma application, the applicator was mounted in a modified 3D printer
(Renkforce, Conrad Electronic SE, Hirschau, Germany) after removing the printer head
(Figure 7). The x-, y- and z-axis movement were programmed in g-code using a text editor.
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Figure 7. Experimental setup of the plasma. (left) Picture of the plasma device with integrated gas
cartridge. (right) Schematics of setup. The nozzle comprises the powered electrode and the gas
outlet. The counter-electrode is connected to the agar. The electrical field built between the powered
electrode and the counter-electrode guides the plasma to the substrate. The footswitch is used to
activate the plasma.

4.2. Evaluation of the Efficacy of Cold Atmospheric Plasma on Different Bacterial Strains

Aerobic bacterial strains were plasma-treated in an aerobic facility, while anaerobic
bacteria were plasma-treated in the same setup but under anaerobic conditions in a nitrogen-
flooded glovebox.

The treated areas were lines of 1 cm in length. The infected agar surfaces were treated
for 1, 2, 3, 4, 5, 6 and 7 min. The treatment time was varied by varying the number of
passes over the same line (e.g., 1 min means 6 passes over the 1 cm line). The distance from
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the tip of the nozzle to the agar surfaces amounted between 1 and 2 mm and the nozzle
moved with a velocity of 60 mm/min (=1 s/mm). During the treatment, the plasma could
be seen touching the agar (Figure 8). Because the plasma could easily be seen, it was used
to visualize the treated area and navigate during manual treatment.
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Figure 8. Nozzle and ignited plasma on the agar plate during plasma treatment in the customized
3D printer.

After the respective treatment, the agar plates were stored in an incubator unless the
colony forming units (CFUs) were already clearly visible and countable. Subsequently, the
width of the bacteria-free areas (lines) were photographed and measured (n = 10) using the
software Fiji (based on ImageJ2) including a ruler for calibration.

4.3. Evaluation of Possible Resistance of the Bacteria against the Plasma Treatment

Dealing with bacterial resistance is a major challenge in the healthcare sector and
should be limited or at best eliminated. Therefore, AmbiJet was tested for possible develop-
ment of resistance. Four bacterial strains (Escherichia coli, Enterococcus faecalis, Pseudomonas
aeruguinosa and Staphylococcus aureus) were cultivated in TSB, plated out on agar plates,
plasma-treated, harvested and cultivated again. To breed bacteria that are possibly more
resistant to the plasma, an area of 1.5 × 1.5 cm on the agar plate was treated with a higher
nozzle speed to stress the bacteria. Based on our preliminary tests and to maintain repro-
ducibility we kept around 30% of the originally seeded bacteria alive. The plates were then
stored in an incubator until CFUs were clearly visible. These CFUs were harvested from the
agar surface and cultivated in TSB. This breed was plated again on agar plates for the next
cycle. At the end of each cycle, the selected bacteria were placed on an agar plate and an
efficacy evaluation test was performed as described in the previous section. This selection
procedure was repeated 10 times (10 cycles) in accordance with recent studies [64,65] over
a period of 50 days.

4.4. Statistical Analysis

The data were analyzed and presented in figures and tables using IBM SPSS Statistics
29.0.0.0 (241) (IBM Deutschland GmbH, Ehningen, Germany).

4.5. Temperature Measurement

To evaluate a possible temperature increase at the dental implant or alveolar bone
during plasma application, an implant (Straumann 4.1 mm 14 mm, SLA active bone level)
was inserted into the lower jaw of a pig (Figure 9, Left). Temperature sensors were placed
on the implant and in the bone around the implant (Figure 9, Right). The access flap
was closed with a continuous seam. The plasma was ignited either in position A (on the
opposite side of the implant in regard to the position of the sensor) or in position B (on the
side of the implant).
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Figure 9. Temperature measurement setup displaying the sensors on and around the dental implant.
(Left) picture of the implant inserted in the jawbone placed in a temperature-controlled bath. (Right)
position of the temperature sensors. (Sensor 1 is located on the implant; sensor 2 is located in the
bone 5 mm from the implant and 5 mm below the surface of the bone; a reference sensor measures the
temperature of the bath; position A and B refer to the application spot of the plasma on the implant).

The calibrated pt100 temperature sensors were connected via a MAX31865-Interface to
an Arduino Uno R3 (all: Conrad Electronic SE, Hirschau, Germany) to log the temperature
before, during and after the treatment. Each setup was placed in a water-bath and the
measurement was started once the surrounding agar or jaw had reached 35 ◦C.

5. Conclusions

AmbiJet was designed specifically for application in dentistry. It is very effective,
unselective toward the bacteria and does not harm the surrounding tissues. The present
study confirms the high efficiency of the AmbiJet plasma device without thermal impact
on the adjacent tissue. Nevertheless, the underlying experiments were performed on
monocultures. Further analyses using oral biofilm, which is known to be more pathogenic
and resistant [7–9], are necessary and intended to reflect the realistic situation in vivo. The
temperature of the implant and of the bone always remained under 40 ◦C. The application
on aerobic, anaerobic, Gram-positive and Gram-negative bacteria led to a complete eradica-
tion of a bacterial load up to 6 log10 in the treated region. The size of the effective regions
was always several times the diameter of the applicator nozzle. Even for a treatment time
as short as 1 min, a complete eradication was observed over an area at least twice the size
of the nozzle. Because the plasma can easily be seen, it serves as an important indicator
for later clinical use to visualize and help navigate the area to be treated during a manual
procedure. Thus, AmbiJet appears to be suitable for the prevention of periimplantitis, i.e.,
the inflammation of the tissue surrounding the dental implant. In addition, the electric field
directs the plasma to the dental implant, which simplifies handling and helps to remove
pathogenic biofilm in a controlled manner.
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