
Chemical Pulping

Jerry Ng*, Yuri Lawryshyn and Nikolai DeMartini

Estimating lags in a kraft mill
https://doi.org/10.1515/npprj-2024-0004
Received January 15, 2024; accepted April 26, 2024;
published online May 17, 2024

Abstract: In pulp mills, lags obscure the effect of upstream
operations on downstream measurements. Here, we
estimate lags in a Canadian pulp mill using autoregressive
exogenous (ARX) models. First, we show that ARX models
can approximate lags in a process simulation that resembles
the liquor storage tanks in pulp mills, a major source of lag
in the kraft recovery cycle. Then, we use ARX models to
estimate the lagged effect of a change in species pulped on
as-fired liquor heating value, viscosity, and boiling point
rise. Additionally, we compare the predictions of the ARX
models to autoregressive (AR) models and a persistence
model. The estimated lags between a change in species and
heating value (49 h) and boiling point rise (41 h) agree with a
detailed simulation of the mill and are close to estimated
hydraulic residence times, suggesting that the liquor tanks
exhibit imperfect mixing. A lagged effect of species change
on viscosity could not be identified. ARX and AR models
produce similar predictions that are slightly better than
those of a persistence model. Finally, we show that process
measurements upstream of units characterized by large
residence times will likely provide little benefit to prediction
accuracy.

Keywords: kraft pulping; system identification; black liquor;
time series analysis; machine learning

1 Introduction

Pulp mills comprise storage tanks that delay the impacts
of upstream disturbances on downstream operations. This

is helpful in preventing issues in one area of a mill from
spreading to other mill areas. However, as a result, models
relating measurements upstream and downstream of
these storage tanks must account for such delays. Here, we
define lag as the time before a change upstream begins to
significantly affect a downstream measurement. While,
in some cases, lags are approximately equal to hydraulic
residence times, this need not be the case. Mixing, other
transport phenomena, reaction kinetics, and non-idealities
can cause the time before significant impact (the lag) and the
hydraulic residence time to differ (Ljung 1998). Lags are
particularly important when developing machine-learning
models or applying statistical techniques as lags affect
how data should be pre-processed before model fitting.
Ideally, these lags would be identifiable from normal oper-
ating data alone (Box et al. 2015).

Black liquor, an aqueous by-product of the pulping
process, is concentrated before being burned in a recovery
boiler to recover pulping chemicals and energy. The liquor
fed into the boiler is as-fired liquor. Specifically, our goal is
to estimate the lag between a change in species pulped and
as-fired heating value, viscosity, and boiling point rise (BPR).
Heating value, typically reported as higher heating value
(HHV), is important as the heat of combustion drives the
recovery of sodium sulfide and production of steam in the
recovery boiler (Adams 1997). Viscosity and BPR affect droplet
formation as liquor is sprayed into the recovery boiler which,
if poorly controlled, can result in excess carryover, fouling,
and depletion of the char bed (Miikkulainen et al. 2005). All
three liquor properties are known to vary with wood species
(Hart 2022). While lag estimation in mills and other process
data has been investigated elsewhere, to our knowledge, in a
mill, the lag between a change in species pulped and the
as-fired properties has not been explored.

1.1 Objectives

In this study, our objective is to identify the lag between
changes in wood species pulped and the corresponding
changes in as-fired black liquor HHV, viscosity, and BPR
based only on process data. If these lags could be identified,
operators could better anticipate when process parameters
would be affected by upstream disturbances, allowing them
to act preemptively to avert negative impacts. Further,
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by using a data-driven approach instead of heuristics, lag
estimates would be repeatable, systematic, and not rely
solely on process experience.

2 Process lag estimation in the
literature

Multiple studies in the recent literature investigate process
lag estimation. Generally, the approaches can be divided
into six categories (Table 1). In many mills and in some
studies (Correia et al. 2018), lags are estimated heuristically.
While these estimates can be accurate, they rely on process
experience which can take years to acquire. In contrast,
we focus on data-driven methods that do not require as
much process experience. In this section, we discuss
data-driven process lag estimation approaches in the
recent literature along with their limitations.

2.1 Hydraulic residence time

One approach is to assume that hydraulic residence times
are equal to process lags. A simple hydraulic residence time
can be used:

Td(t) = V(t)
Q(t), (1)

where Td is residence time, V is tank volume, and Q is
the volumetric flowrate through the tank. This approach
is the simplest, quickly providing a rough lag estimate.
Zenger and Ylinen (1994) expanded on this residence time
calculation:

V(t) = ∫
t

t−Td(t)
Q(τ)dτ. (2)

Unlike Equations (1) and (2) accounts for variations in
volumetric flowrate and tank volume as fluid travels
through the tank. Sayda and Taylor (2003) used Equation (2)
to estimate lags in a mechanical pulp bleaching process.
Unfortunately, as mentioned earlier, hydraulic residence
times may incorrectly predict lags as a result of ignoring
mixing effects, reaction kinetics, and non-idealities.

2.2 Lipschitz index

In order to account for non-idealities, a popular alternative
is the method by He and Asada (1993). They define the
Lipschitz quotient

qi, j =
|yi − yj|
|xi − xj|, i ≠ j, (3)

where y is the system output, x is the system input. This can
be expanded to

qni, j =
|δy|̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(δx1)2 +⋯ + (δxn)2
√ (4)

and used to calculate the Lipschitz index q of model order n

qn = ∏
p

k=1

̅̅
n

√
qn(k)( )1

p

, (5)

where qn(k) is the kth largest Lipschitz quotient among
all qni, j, and p is a positive number (usually p = 0.01N).
Generally, the Lipschitz index qn decreases as model
order n increases. The value of n at which qn plateaus is the
chosen model order. This approach has been used in a
number of studies (Rebello et al. 2022; Sainlez and
Heyen 2013; Wang and Chen 2006). It is popular because it
has been shown to identify lags in non-linear systems.
Unfortunately, this method can result in prohibitively large
input sizes, and if the lags are large or if the sampling
frequency is high, uninformative input data will be
retained, bloating the model. The importance of minimiz-
ing model size is discussed by Galicia et al. (2011).

Table : Categorization of lag estimation methods in the recent
literature.

Lag estimation method Example

Heuristic Correia et al. ()
Hydraulic residence time
(Zenger and Ylinen )

Sayda and Taylor ()

Lipschitz index
(He and Asada )

Wang and Chen ()
Sainlez and Heyen ()
Rebello et al. ()

Correlation analysis Dahlbäck ()
Graziani and Xibilia ()
Topalian et al. ()
Ekbåge et al. ()

Feature engineering Lee et al. ()
Galicia et al. ()
Graziani and Xibilia ()
Graziani and Xibilia ()
Chen and Zhao ()
John and Ferbinteanu ()

Hyperparameter tuning Ettaleb et al. ()
Almeida and Park ()
Matos et al. ()
Mechaqrane and Zouak ()
Chetouani ()
El-Din and Smith ()
Galicia et al. ()
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2.3 Hyperparameter tuning

Other approaches treat lag estimation as a type of hyper-
parameter tuning. Souza and Araújo (2011) combined
forward-selection with a support vector machine model,
treating increasingly lagged values of inputs as possible,
additional inputs. Their approach suffers the same
drawback as the Lipschitz index: uninformative inputs can
be retained. Almeida and Park (2013) used trial-and-error to
estimate the necessary time delay for a neural network
model of an evaporation plant in a pulp mill. However, this
brute force method can become intractable if the model is
large and if many possible time delays must be checked.

2.4 Correlation analysis

Sometimes, the cross-correlation between the output and
varying lagged values of the input are compared to identify
lags. Graziani and Xibilia (2019) estimated lags based on the
cross-correlation of engineered features, going as far as to
experiment with other types of cross-correlation metrics
(Graziani and Xibilia 2021). However, the proposed correla-
tions do not account for autocorrelation in the input
(Bisgaard and Kulahci 2011; Box et al. 2015). Since the inputs
are usually autocorrelated, their impact on the output is
“smeared” over time. By not accounting for the dynamics of
the input, spurious correlations emerge, such as positive
cross-correlations between input measurements in the
future and output measurements in the past.

2.5 Feature engineering

Finally, some studies transform process data into a latent
space and estimate the lags in the latent space. For example,
Chen and Zhao (2020) used dynamic principal component
analysis (diPCA) to transform process data into latent
variables and compared the cross-correlations between
the latent variables and other variables, where peak cross-
correlations indicated lags. Similarly, John and Ferbinteanu
(2021) transformed time series data into graphs before
performing cross-correlation analysis. Unfortunately, due
to the use of engineered features, these methods can be
difficult to interpret.

2.6 ARX models

In this study, we model the relationships for a variety of
input-output pairs in a simulated two-tank system and in a

Canadian kraft pulp mill using autoregressive exogeneous
(ARX) models, which account for autocorrelations in both
the input and output. In the process of identifying these
models, the lags between inputs and outputs are identified.
Ettaleb et al. (1998) demonstrated this approach with simu-
lated autoregressive moving-average exogenous (ARMAX)
processes, and Matos et al. (2008) used ARX models to
model the relationship between digester parameters and
the viscosity of bleached pulp. While Galicia et al. (2011)
used DPLS regression to approximate kappa number, they
considered using ARX models to estimate the necessary
amount of historical data and dead times to incorporate
into the model. Wasson (2016) used Box-Jenkins transfer
function models, which belong to the same family of models
as ARX models (Ljung 1998), to estimate the lags of inputs to
a hog fuel boiler.

We first validate the use of ARX models using a simple,
numerical simulation of two tanks in series with an added
artificial delay. Then, we apply the approach to mill data.
The estimated lags of the mill are compared to estimated
hydraulic residence times and the estimated lags from a
detailed simulation of the mill (Rogerson 2022).

3 Methodology

3.1 Two tank simulation

Liquor storage tanks are predicted to create the largest lags in mills.
As a result, using CADSIM Plus (Aurel Systems 2019), we developed a
simulation of a water-NaCl solution flowing through two tanks in
series (Figure 1). In the simulation, tank volumes, flowrates, and
feed concentration are manipulated. Proportional-integral level
controllers with noisy, oscillating setpoints and large integral terms
manipulate flowrates to simulate the oscillating tank level control in a
mill: while a mill pulps softwood, the volume of stored black liquor
increases; during hardwood operation, the volume of stored liquor
decreases. Additionally, all simulation parameters can be injected
with noise. The magnitude of this noise varies for each parameter and
is indicated in Table 2. Finally, a transport lag (box labelled “delay”) is
placed before the first tank to simulate imperfect mixing (i.e., a dead-
time). Once the simulation was initiated (Table 2), it was allowed to
run for 15,000 time steps (1 time step = 1 min). The first 2000 time steps
of data were not analyzed as the simulation was reaching steady-state
during this time.

The simulation data is shown in Figure 2. Allmeasurements exhibit
noise except for the outlet flowrate from Tank 2, which was oscillated
without noise. While the feed concentration is quite noisy, most of that
noise is attenuated in Tank 1. This is likely due to the large volume of
fluid in Tank 1 (initially 250m3) relative to its inlet flowrate (30 LPS): the
NaCl is diluted in the tank. The marginal amount of noise in the con-
centration exiting Tank 1 is attenuated in Tank 2. This is expected: the
inlet flowrate of Tank 2 is similar to Tank 1, but Tank 2 contains less fluid
to dilute its inlet (50 m3 vs. 250m3).
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3.2 Mill data

Mill data (Figure 3) was obtained from a North American mill that pulps
both hardwood and softwood. The dataset spans November 2022 to April
2023, contains 90measurements from the digester to the recovery boiler,
and was sampled at a 10-min frequency. The 90 measurements were
chosen based on mill expertise, and the data was filtered for normal
operation: digester production rate above 400 ADMTPD and recovery
boiler production rate above 1.5 tons per day DS. HHV was calculated as

HHV =
A+20
γ − g
0.7

r
24
, (6)

where A is the total flowrate of air to the boiler, γ is an excess air
characterization, g is the flowrate of air consumed by natural gas, and r
is the liquor firing rate. Themill verified Equation (6) against laboratory
measurements of black liquor heating value. Viscosity was calculated
using

Viscosity = 0.1351L3 − 26.8456L2 + 1795.92L − 40314.5, (7)

where L is the pumpmotor load. Equation (7)was developed in-house by
themill using an online viscometer whichmeasured a sidestream of the
as-fired tank’s re-circulation pump. Finally, BPR was calculated as

BPR = TLiq − TVap, (8)

where TLiq is the temperature of liquor exiting the as-fired tank and TVap
is the temperature of the vapour exiting the as-fired tank. The temper-
ature of the vapour is estimated based on the pressure of the vapour and
a steam table, assuming that the vapour exiting the tank is at saturation.

Equations (6) and (7) are empirical correlations while Equation (8)
is the definition of BPR. Measurements falling outside of the 0.5 and 99.5
percentiles were dropped to remove spurious measurements, and
missing data (roughly 12 % of the data) was imputed using linear
interpolation.

3.3 ARX models

ARXmodels, which belong to the family of polynomial models described
by Ljung (1998), represent the output as a linear combination of lagged
inputs and outputs:

A(q)Yt = B(q)Xt + εt ,
A(q) = 1 + a1q−1 +⋯ + anaq

−na ,
B(q) = b1q−nk +⋯ + bnbq

−nk−nb ,
Yt = a1Yt−1 +⋯ + anaY t−na + b1Xt−nk +⋯ + bnbXt−nk−nb + εt ,

(9)

Figure 1: Schematic of the two-tank simulation.

Table : Two-tank simulation initial conditions.

Parameter Initial
value

Noise primary
standard
deviation

Noise secondary
standard
deviation

Oscillation
amplitude

Oscillation
frequency

Oscillation noise
amplitude
primary standard
deviation

Oscillation noise
amplitude
secondary
standard
deviation

Ramp
rate

Tank  volume m None None None None None None None
Tank  volume m None None None None None None None
Feed water flowrate  LPS None None None None None None None
Feed NaCl flowrate . kg/s . . None None None None None
Tank  level SP %    .   

Tank  level SP %    .   

Tank  outlet flowrate  kg/s None None  . None None .
Transport lag min None None None None None None None
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whereYt is the systemoutput;Xt is the system input; na and nb are the lag
orders of the polynomials A(q) and B(q), respectively; q is the shift
operator; and ε∼N 0, σε( ) is a white noise process. Importantly, nk is the
lag between input and output, and its identification is the focus of this

work. Equation (9) is analogous to the combination of a filtered input
and filtered white noise. This is the preferred representation by Ljung
(1998) and Box et al. (2015) as it makes explicit that the system is driven
by noise ɛt.

Figure 2: Data from two-tank simulation.
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3.4 Model fitting procedure

The same fitting procedure was used for both the simulation data and
the mill data. Model identification was done using the System Identi-
fication Toolbox in MATLAB 2022 (The MathWorks Inc 2022). First, the
data was split into training, validation, and testing sets. For the simu-
lation data, the first 4000 rows were used as training data, and the
proceding 2000 rowswere used as validation data, resulting in a 30/15/55
train/validation/test split. For themill data, thefirst 1500 rowswere used
as training data, and the proceeding 500 rows were used as validation
data, resulting in a 28/15/57 train/validation/test split. For fitting linear
models, datasets on the order of hundreds of samples are typical. We
favoured a smaller training and validation set in order to create as large
of a testing set as possible. A larger unseen testing set leads to a more
robust assessment of the fitted model and estimated lags. Additionally,
smaller training and validation sets demonstrate that, in practice, lags
can be estimated sooner: less time is spent waiting for sufficient data.

After partitioning the data, ARX models with na = [1:10], nb = [0:10],
and nk = [0:50] were evaluated. The possible orders of lagged inputs nb
include 0, allowing for the input to be ignored if beneficial. For each
input-output pair, the selected model was the one that maximized
the explained variance in the validation data. The coefficients of the
identified ARX models are shown in Table 3. The performances of
the identified ARX models against the testing data were compared to
persistence models (no fitting procedure required) and autoregressive
(AR) models. AR models were fitted in a similar manner as ARX models,
except digester grade was not considered (B(q) = 0). The persistence
model is an ARX model, where A(q) = 1 − q−1 and B(q) = 0.

3.5 Model performance metrics

Model performances were evaluated based on three metrics: coefficient
of determination (R2), mean absolute percentage error (MAPE), and root
mean squared error (RMSE). If over n samples, y is the true value, y is
the predicted value, and y is the average of true values, then R2, MAPE,
and RMSE are calculated as

R2 = 1 −∑n
i=1 yi − yi( )2

∑n
i=1 yi − y( )2 , (10)

MAPE = 1
n
∑
n

i=1

|yi − yi |
|yi|

, (11)

Figure 3: Species changes and as-fired liquor properties (4 h averaged).

Table : ARX model coefficients.

HHV A(q)  − .q− − .q−

B(q) −.q− − .q− − .q− + .q− −
.q− − .q− − .q− + .q− − .q−

Viscositya A(q)  − .q−

B(q) .q− − .q− + .q− − .q− +
.q− − .q− − .q− + .z− −
.z− + .z−

BPR A(q)  − .q− + .q− − .q− − .q−

B(q) −.q− + .q− − .q− +
.q− − .q− + .q− − .q− −
.q− − .q− + .q−

aDoes not outperform AR model: lag likely incorrect.
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and

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

i=1
yi − yi( )2√

, (12)

respectively.

4 Results and discussion

4.1 Two-tank simulation

With the two tank simulation data, the hydraulic residence
times calculated using Equation (2) overestimate the true
lags whereas the lag estimates of the ARXmodels are close to
the true lags (Table 4). This was expected as Equation (2)
assumes a plug flow through vessels while the simulated
tanks are perfectly mixed. These results show that ARX
models can identify lags that differ from hydraulic residence
times.

4.2 Mill data

While a lagged effect between digester grade and as-fired
viscosity is weak and likely insignificant, the estimated lags
of the ARX models relating digester grade to HHV and BPR
seem reasonable (Table 5) and improve predictions (Table 7).
The estimated lags agree with those proposed by Rogerson
(2022) who simulated the same mill with constant tank
volumes. Rogerson estimated that, when transitioning
from softwood to hardwood, the initial presence of hard-
wood organics in the as-fired liquor occurs 15 h after species
change and that the as-fired liquor is composed of 95 %
hard wood organics after 65 h. Similarly, when transitioning
from hardwood to softwood, the initial and 95 % changes are
seen at 12 h and 41 h, respectively. The ARX models were
identified using data that contained both types of transitions,
so it is reasonable that the lag that optimizes model
performance is slightly longer than that estimated for
hardwood to softwood transitions and slightly shorter than
that estimated for softwood to hardwood transitions. The lag

between digester grade change and BPR is expected to be
lower as the BPR is calculated at thefinal storage tank, which
is separated from the as-fired liquor ring header by the
volume of the storage tank. We estimated the hydraulic
residence time of this tank to be 4–5 h based on Equation (2),
and Rogerson (2022) estimates this lag to be roughly 7 h.

Additionally, we combined our estimated hydraulic
residence times of storage tanks with the residence time
estimates of smaller unit operations by Rogerson (2022) to
obtain total hydraulic residence time estimates between a
change in digester grade and properties of as-fired liquor
(Table 5). Except for as-fired viscosity, where the estimated
lagged effect is weak and likely incorrect, the estimated
hydraulic residence times are close to the ARX model lag
estimates.

Unlike the two tank simulation results, with the mill
data, the hydraulic residence times and estimated lags are
close. This suggests that the liquor storage tanks exhibit
imperfect mixing. Again, Equation (2) assumes a plug flow
through the vessel. If there were significant mixing in any of
the storage tanks throughout the process, the ARX mode
lag estimates would be lower than the hydraulic residence
time estimates, like in the two-tank simulation. Instead,
the lag estimates are close to the hydraulic residence time
estimates. Likely, the volume of liquid inside the mill stor-
age tanks are so large relative to the volumetric flowrate
passing through that the liquor inside the tank is minimally
agitated. As a result, liquor fed to the tanks is poorly mixed
and lingers.

4.3 Comparing predictions of ARX and AR
models

While a lag may be identified during the fitting of an ARX
model (nk ≠ 0), a final check using simpler models and
unseen test data is important to detect spurious estimates.
In this study, the ARX models are bivariate: they consider
both past output measurements and an exogenous input

Table : Lag estimates for two tank simulation.

Input – output Actual
lag (min)

Median hydraulic
residence time
estimate (min)

ARX model lag
estimate (min)

Feed – tank  outlet   

Feed – tank  outlet   

Tank  outlet – tank
 outlet

  

Table : Lag estimates for mill data.

Input – output Median hydraulic
residence time estimate (h)

ARX model lag
estimate (h)

Digester grade – black
liquor HHV

 

Digester grade – black
liquor viscosity

 
a

Digester grade – black
liquor BPR

 

aLikely insignificant.
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(species). If, on unseen test data, the ARX model predictions
are more accurate than a model that does not consider
species, i.e., an AR model, then there is evidence that the
estimated effect of species, including its lag, is significant.
Similarly, if an AR model fails to outperform a simple
persistence model, that suggests the autocorrelation
identified by the AR model is insignificant. In this section,
we compare the accuracies of the persistence model, the
fitted AR models, and the fitted ARX models in both the
two-tank simulation and the mill data.

For the two tank simulation, ARXmodels provide a small
improvement in all metrics over ARmodels, which are more
accurate than a persistence model (Table 6). Similarly, for
the mill HHV data, both AR and ARXmodels predict test data
more accurately and explain larger amounts of variability in
the test data than a persistence model (Table 7). While AR
and ARX models for BPR similarly explain more variability
in the test data and achieve lower RMSEs, they produce
larger MAPEs. For both HHV and BPR, the improvements
relative to the baseline persistence models are small.
Further, compared to the AR models, the performances of
ARX models that consider digester grade are marginally
better for as-fired HHV and BPR and slightly worse for
as-fired viscosity. That the bivariate forecasts (ARX models)
for HHV and BPR are more accurate than univariate fore-
casts (AR models) suggests that digester grade significantly
influences HHV and BPR in this dataset (Tsay 2013).

For viscosity, the type of wood pulped likely impacts the
viscosity of as-fired liquor, but a significant effect could not
be seen in this dataset with our methodology. One reason
may be due to viscosity having more “inertia” compared to
HHV and BPR. As will be shown later, inertial units such as
liquor storage tanks can introduce dynamics that diminish

the observable effect of upstream disturbances on down-
stream measurements. The dynamics of the effect of species
on each as-fired liquor property probably differs. For
example, below 50 % solids content, removing lignin from
black liquor affects viscosity but not BPR (Moosavifar et al.
2006). As a result, the observable effect of species change on
viscosity may be more diminished than those of HHV or
BPR due to different process dynamics. This could also be
exacerbated by the mill’s control system, whose goal is to
suppress observable variations. Open-loop testing may
provide the necessary data to observe the effect of species
change on viscosity. However, it is likely impractical to
perform open-loop testing on such a large area of the mill,
which includes large, important units such as the digester
and evaporators.

Finally, many factors, in addition to species, have been
shown to affect black liquor viscosity such as kappa number
and ash content (Zaman and Fricke 1996). It is possible that
the impacts of other process operations on viscosity such
as digester operation and ash recycling compete to be seen
against the impact of species. Perhaps, with additional
exogenous inputs, an ARX model would be able to identify
the impact of species change on viscosity while accounting
for the impacts of other potential exogenous inputs.

4.4 Similarity between ARX and AR model
performances

Despite marginal improvements in prediction, the ARX
models provide process insight: the lag between a change in
species of wood pulped and the resulting change in as-fired
liquor properties can be estimated. This demonstrates

Table : Prediction test data metrics on two tank simulation data (min predictions).

Feed – tank  outlet Feed – tank  outlet Tank  outlet – tank  outlet

R MAPE (%) RMSE R MAPE (%) RMSE R MAPE (%) RMSE

Persistence >: . . × 
− >: . . × 

− >: . . × 
−

AR >: . . × 
− >: . . × 

− >: . . × 
−

ARX >: . . × 
− >: . . × 

− >: . . × 
−

Table : Prediction test data metrics on mill data ( h predictions).

HHV Viscosity BPR

R MAPE (%) RMSE R MAPE (%) RMSE R MAPE (%) RMSE

Persistence . . . . . . . . .
AR . . . . . . . . .
ARX . . . . . . . . .
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how process prediction and process insight are distinct
goals. If a model is only needed for prediction, the trade-off
of increased model complexity for marginal improvements
in prediction accuracy by the ARX model may be unneces-
sary. However, if the goal is to understand the relationship
between an input and an output, then the ARX model is
preferred: the AR model does not describe the relationship
between an input and output.

The similar performance between ARX and AR models
is likely due to the heavy autocorrelation of process data.
As mentioned earlier, ARX models can be thought of as a
combination of a filtered input and filtered white noise.
However, if the output Yt is heavily autocorrelated
(i.e., the coefficients ai in Equation (9) are large), Xt will do
little to boost prediction accuracy. Both the simulation data
and the mill data in this work, like most process data, are
highly autocorrelated.

To demonstrate the affect of autocorrelation, consider
the two-tank simulation (Figure 1). If C0 is the concentration
of NaCl in the feed stream; C1 is the NaCl concentration in the
outlet of tank 1; C2 is the concentration of NaCl in the outlet of
tank 2; Q is the volumetric flowrate; V1 is the volume of fluid
tank 1; V2 is the volume of fluid in tank 2; and perfect mixing
is assumed, then the dynamics of Tanks 1 and 2 are described
by the equations

V1
dC1

dt
= QC0(t) − QC1(t)

and

V2
dC2

dt
= QC1(t) − QC2(t).

Now, discretize both equations and substitute τi = Vi
Q :

τ1
Δt

C1, t − C1, t−Δt( ) = C0, t − C1, t,

τ2
Δt

C2, t − C2, t−Δt( ) = C1, t − C2, t,

which can be rearranged to obtain

C1, t = 1 − 1
1 + Δt

τ1

⎛⎝ ⎞⎠C0, t + 1
1 + Δt

τ1

C1, t−Δt

and

C2, t = 1 − 1
1 + Δt

τ2

⎛⎝ ⎞⎠C1, t + 1
1 + Δt

τ2

C2, t−Δt,

respectively. Finally, substitute ρi = 1
1+Δtτi

:

C1, t = 1 − ρ1( )C0, t + ρ1C1, t−Δt
C2, t = 1 − ρ2( )C1, t + ρ2C2, t−Δt

(13)

The autocorrelations of C1,t and C2,t are ρ1 and ρ2,
respectively. Each autocorrelation depends on the hydraulic
residence time τi and the sampling interval Δt. Large resi-
dence times relative to short sampling intervals (τ≫ Δt) are
typical in process data. As a result, mill measurements tend
to be highly autocorrelated (ρi ≈ 1). In the two tank system
(Equation (13)), this causes the correlations between C2,t and
upstream measurements, C0,t and C1,t, to be small.

This suggests that, in practice, predictive models will
benefit little from measurements upstream of units char-
acterized by large residence times relative to the sampling
interval. This does not imply that upstream properties are
irrelevant: in the two-tank system, C0 determines C1 and C2.
Rather, the observed correlation between downstream
measurements and upstream disturbances depends on the
magnitude of residence times as compared to the sampling
interval.

As a result, the sampling interval is an important con-
sideration when fitting models and identifying lags. If the
interval is too large, the effects of autocorrelation would
diminish, but relevant signal may go unseen. In contrast, if
the interval is too small, the relevant signal may be buried in
high-frequency noise. In this study, we used a sampling
interval of 1 h, which aligns with suggestions by Box et al.
(2015) and Ljung (1998) that sampling intervals for chemical
processes should be on the order of hours. When a shorter
sampling interval (30 min) or a longer one (4 h) was used,
the identified ARX models for HHV and BPR produced
unrealistic lags and failed to outperform the AR models.
For viscosity, as with the 1 h sampling interval, ARX models
underperformed the AR model. This highlights the impor-
tance of comparing the bivariate models and the univariate
models on unseen test data as a final check. Additionally, a
shorter sampling interval should be favoured. Since lags
are estimated as a number of timesteps, a shorter sampling
interval provides a more precise lag estimate.

5 Conclusions

Simple ARXmodels seem to capture process lags in the kraft
recovery process. Here, we validated the use of ARX models
to identify lags in a simulation of two tanks in series. Then,
we fit ARX models to data from a North American mill,
estimating the lagged effect of a change in species pulped on
three as-fired liquor properties: HHV, viscosity, and BPR.
The estimated lags for BPR (41 h) and as-fired HHV (49 h)
agree with a detailed simulation of the mill and are close to
the estimated hydraulic residence times through the same
system. The effect of a change in digester grade on as-fired
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viscosity could not be identified and is suspected to be
masked by noise. While the ARX models provide process
insight, they provide marginal improvements over AR
models and the persistence model for process prediction.
This is likely due to the autocorrelation of mill measure-
ments. We derive this result for the case of species concen-
tration throughout two tanks in series. This suggests that, in
practice, measurements upstream of units characterized by
large residence times provide little benefit to predictive
models.
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