
Citation: Halabitska, I.; Babinets, L.;

Oksenych, V.; Kamyshnyi, O. Diabetes

and Osteoarthritis: Exploring the

Interactions and Therapeutic

Implications of Insulin, Metformin,

and GLP-1-Based Interventions.

Biomedicines 2024, 12, 1630.

https://doi.org/10.3390/

biomedicines12081630

Academic Editor: Tomislav Bulum

Received: 3 July 2024

Revised: 18 July 2024

Accepted: 21 July 2024

Published: 23 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Review

Diabetes and Osteoarthritis: Exploring the Interactions and
Therapeutic Implications of Insulin, Metformin, and
GLP-1-Based Interventions
Iryna Halabitska 1,* , Liliia Babinets 1, Valentyn Oksenych 2,* and Oleksandr Kamyshnyi 3

1 Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University,
Voli Square, 1, 46001 Ternopil, Ukraine

2 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen,
5020 Bergen, Norway

3 Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical
University, 46001 Ternopil, Ukraine; alexkamyshnyi@gmail.com

* Correspondence: halabitska@tdmu.edu.ua (I.H.); valentyn.oksenych@uib.no (V.O.)

Abstract: Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with
shared pathophysiological links, including inflammation and metabolic dysregulation. This study
investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression.
Methods involved a literature review of clinical trials and mechanistic studies exploring the effects
of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic
control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health.
Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise
in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers.
GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in
DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated
joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these
medications, while primarily indicated for diabetes management, hold therapeutic potential in OA
by targeting common underlying mechanisms. Further clinical trials are warranted to validate
these findings and explore optimal therapeutic strategies for managing both DM and OA comorb-
idities effectively.
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1. Introduction

Diabetes mellitus (DM) encompasses a variety of disorders that all involve elevated
blood glucose levels. The current classification of DM is outlined, with a comparison of
the key characteristics of type 1 and type 2 diabetes. Additionally, the criteria for accurate
biochemical diagnosis during fasting and oral glucose tolerance tests, as well as the use
of hemoglobin A1c (HbA1c), are summarized. The rising prevalence of DM necessitates
targeted screening to identify diabetes and prediabetes in at-risk groups. This screening is
essential for the early implementation of measures to prevent the onset of diabetes and to
slow its progression in these groups [1]. The incidence of DM is rising quickly, often leading
to severe metabolic disorders and complications [2]. In recent decades, the prevalence of
DM has increased significantly in almost every country, and it can be regarded as a growing
epidemic. Urbanization and income status are key factors affecting current prevalence
rates, revealing notable differences among various population groups [3].

Type 1 diabetes mellitus (T1DM) is a significant subtype of diabetes, typically diag-
nosed in youth and characterized by insulin deficiency. The life expectancy of individuals
with T1DM has markedly improved over the past three decades due to the availability of ex-
ogenous insulin; however, it remains lower than that of the general healthy population [4].
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Type 2 diabetes mellitus (T2DM), a prevalent metabolic disorder, arises from two primary
factors: impaired insulin secretion by pancreatic β-cells and the reduced responsiveness of
insulin-sensitive tissues to insulin [5].

The prevalence of obesity and DM has been steadily increasing worldwide. Both con-
ditions share significant genetic and environmental factors in their development. Obesity
enhances the impact of genetic predisposition and environmental influences on DM. The
abnormal growth of adipose tissue and the excessive accumulation of certain nutrients
and metabolites disrupt metabolic balance through insulin resistance, impaired autophagy,
and disturbances in the microbiome–gut–brain axis. This disruption leads to low-grade
systemic inflammation, which further destabilizes immunometabolism, accelerates the loss
of functional β-cells, and gradually increases blood glucose levels. Due to these complex
connections, most treatments for obesity and DM affect both conditions [6].

Osteoarthritis (OA) is recognized as a degenerative joint disease marked by inflamma-
tion, chronic pain, and functional impairment [7]. OA is a progressive disease characterized
by cartilage degradation, subchondral bone remodeling, and synovial inflammation. The
disease is linked to factors such as obesity, mechanical load, and aging. Additionally, vari-
ous pro-inflammatory immune mediators influence the expression of metalloproteinases,
which play a role in cartilage breakdown. Genetic factors also contribute to the susceptibil-
ity to OA [8]. The prevailing understanding of osteoarthritis depicts it as a “comprehensive
joint ailment”, emphasizing the engagement of not just the articular cartilage but also the
synovium, subchondral bone, ligaments, and muscles. Obesity and metabolic syndrome are
linked to elevated levels of pro-inflammatory cytokines, heightened secretion of adipokines
possessing both protective and detrimental impacts on articular cartilage, an increase in
proteolytic enzymes like matrix metalloproteinases and aggrecanases, and a rise in free
fatty acids and reactive oxygen species prompted by dyslipidemia [9].

DM and OA are prevalent conditions expected to become even more common [10].
The coexistence of OA and DM is often coincidental, attributed to their high prevalence
and shared risk factors [11]. For instance, there is a well-established link between OA and
obesity, and most individuals with type 2 diabetes mellitus (T2DM) are also affected by
obesity [11,12].

However, there is a lack of information regarding the influence of various forms of
diabetes, along with the medications utilized for diabetes treatment, on the progression of
osteoarthritis. This review aims to address this gap to offer potential new treatment options
and a more comprehensive understanding of the underlying mechanisms. By exploring
these connections, this review could both clarify why these diseases often coexist, and also
aid in developing future treatments for patients.

2. Understanding the Coexistence of Diabetes Mellitus and Osteoarthritis: Pathogenic
Links and Therapeutic Consideration

Hyperglycemia is regarded as the primary instigator of joint deterioration by en-
hancing the production of advanced glycation end products (AGEs), which stimulate
chondrocytes and synoviocytes to generate pro-degradative and pro-inflammatory agents,
inciting a mild systemic inflammation that triggers local joint inflammation, exacerbating
OA progression in different joint components, and leading to neuromuscular impairments
that destabilize the joint and exacerbate OA symptoms [13].

In conditions of elevated extracellular glucose levels, the capacity to regulate glucose
uptake through the downregulation of glucose transporters is compromised in chondro-
cytes affected by OA. This leads to the buildup of glucose and increased production of
reactive oxygen species (ROS), fostering degenerative alterations and advancing the devel-
opment of OA [13–15].

2.1. Intersection of Type 1 Diabetes Mellitus and Osteoarthritis: Shared Mechanisms and
Therapeutic Challenges

Type 1 diabetes mellitus (T1DM) impacts 9.5% of the population and is marked by a
severe insulin deficiency, resulting in hyperglycemia and various systemic effects. T1DM
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is considered a potential risk factor for damage and loss of articular cartilage, which
could accelerate the onset of OA. The relationship between T1DM and OA remains largely
unexplored [16,17].

Furthermore, recent research investigating the relationship between T1DM and OA
has yielded conflicting findings, with some studies indicating a positive correlation while
others did not. One study conducted histological assessments of joints in T1DM and control
subjects, revealing that T1DM mice exhibited measurements of cartilage degeneration
consistent with mild OA characteristics. RNA sequencing analyses identified a notable
upregulation of genes associated with matrix-degrading enzymes in T1DM, which are
known to contribute to cartilage matrix degradation, suggesting their involvement in OA
development. Subsequently, the study examined whether preexisting T1DM affects the
development of post-traumatic OA following injury. Results at the 6-week mark post-
injury revealed that T1DM-injured joints exhibited considerably less cartilage damage
and joint degeneration compared to injured non-diabetic joints, indicating a significant
delay in the progression of post-traumatic OA. At a cellular level, an increased number
of cells expressing chondrocyte markers Col2a1, Acan, and Cytl1 were identified in the
T1DM-injured group [17,18].

The significance of glucose metabolism and its derivatives, such as AGEs, sorbitol, and
diacylglycerol (DAG), in the pathogenesis of OA and DM is emphasized, as these deriva-
tives activate inflammatory pathways. The potential link between DM and OA is indicated
by the inflammatory response due to increased pro-inflammatory cytokine expression [19].
Recent research has illuminated immune cell populations’ temporal dynamics and activa-
tion statuses, including macrophages, localized within joints or originating systemically,
contributing to inflammatory responses in osteoarthritis. Their complex interactions may
explain varying pain and symptom manifestations observed during osteoarthritis exac-
erbations. Additionally, investigations into biological and environmental factors such
as exercise, age, and diet have explored their potential roles in mitigating or exacerbat-
ing osteoarthritis-related inflammation. However, despite these advancements, effective
disease-modifying treatments targeting inflammation in osteoarthritis have yet to be de-
veloped [20]. Mitochondrial dysfunction, characterized by impaired mitophagy resulting
in the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA
(mtDNA), plays a critical role in initiating inflammation in T1DM. This process involves
upregulating pro-inflammatory cytokines and engaging receptors akin to those involved
in pathogen-associated responses. Furthermore, mtROS and mtDNA activate pathways
that contribute to the progression of chronic inflammation, which is closely linked to au-
toimmunity in T1DM [21]. Therapeutic agents capable of influencing inflammation show
promise for both T1DM and OA.

2.2. Insulin Resistance, Obesity, and Osteoarthritis: Intersecting Pathways and
Clinical Implications

Obesity is linked to various diseases, particularly insulin resistance and T2DM.
Evidence-based studies indicate that adipose tissue (AT) is highly adaptable in its metabolic
functions, responding to the body’s energy needs and managing the balance between
fasting and feeding throughout the day. It also adjusts to long-term changes in energy
balance through tissue expansion and reduction [22–24]. This adaptability, especially the
ability to expand and contract, is crucial for AT health and overall metabolic balance,
and changes in these responses may contribute to the varying metabolic health seen in
people with obesity [25–27]. A significant discovery in mice revealed that AT produces
pro-inflammatory cytokines, which lead to insulin resistance, and that AT macrophages
accumulate in obese individuals, supporting the hypothesis that adipose inflammation is a
key driver of insulin resistance in obesity [28–30]. Although there is a marked increase in
inflammatory macrophages and pro-inflammatory protein gene expression in the subcuta-
neous abdominal AT of individuals with metabolically unhealthy obesity compared to those
with metabolically healthy obesity, it remains challenging to determine if this inflammation
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is a cause or effect of insulin resistance [31–33]. Metabolically healthy obesity denotes
a state in which individuals possess excessive body fat without manifesting the usual
metabolic dysfunctions linked to obesity, such as insulin resistance, dyslipidemia, or hyper-
tension [34]. Metabolically unhealthy obesity is characterized by the presence of metabolic
dysfunctions such as insulin resistance, dyslipidemia, or hypertension in individuals with
excess body fat, indicating heightened health risks associated with obesity [35].

The concentration of free fatty acids associated with obesity and T2DM can negatively
impact pancreatic beta cells. Basal levels of plasma free fatty acids contributed to hyperin-
sulinemia in normoglycemic obese patients [36–38]. There is a strong link between obesity
and increased rates of free fatty acids in the bloodstream, which are then delivered to body
tissues [39–41]. Although numerous studies show that elevated plasma free fatty acid levels
are a significant cause of liver and muscle insulin resistance, conflicting data from real-
world scenarios challenge these findings. Several studies indicate that the breakdown of AT
triglycerides is highly sensitive to insulin [42,43]. Postprandial suppression of lipolysis and
plasma free fatty acid concentrations is generally similar in both lean and obese individuals,
as the greater postprandial increase in plasma insulin in obese individuals may compensate
for their increased fat mass [44–46]. The relationship between insulin resistance and obesity
remains complex and requires a clear understanding of the pathways linking T2DM to the
increase in inflammatory macrophages in subcutaneous adipose tissue.

Obesity is the most significant risk factor for the onset and progression of osteoarthritis,
with recent research highlighting additional contributing factors such as adipose tissue
accumulation, insulin resistance, and the misalignment of innate and adaptive immune
responses, wherein various inflammatory cells, particularly polarized macrophages and
their mediators, play a crucial role in the pathological changes of the synovial joint [37].
Obesity, a major and modifiable risk factor for osteoarthritis, not only increases mechanical
stress on tibiofemoral cartilage but also correlates with higher OA prevalence in non-
weight-bearing areas due to its role in systemic inflammation, driven by adipose tissue-
derived cytokines and adipokines like adiponectin and leptin, which regulate inflammatory
immune responses and contribute to elevated levels of pro-inflammatory cytokines such
as TNF-α, IL-1β, and IL-6, produced by adipose tissue macrophages [47]. In individuals
suffering from knee osteoarthritis and exhibiting overweight or obesity, dietary adjustments
and exercise, when compared to an attention control group, resulted in a statistically
significant albeit modest reduction in knee pain over an 18-month period [48]. Nutritional
interventions can potentially impact adipose tissue mass and the secretion of inflammatory
mediators, which may, in turn, exert effects on other tissues in the body, including bone
and articular cartilage [49]. Emphasizing BMI in osteoarthritis research could potentially
perpetuate weight bias in clinical settings and exacerbate disparities in accessing effective
treatments for osteoarthritis [50].

2.3. Type 2 Diabetes Mellitus and Osteoarthritis: Synergistic Impact on Musculoskeletal Health
and Treatment Strategies

Numerous studies have documented the increased occurrence of OA in patients with
diabetes. Meta-analyses have confirmed an epidemiological link between T2DM and OA,
indicating that individuals with diabetes have a higher risk of developing OA [51–53].
However, the strength of this association can differ based on factors such as age, ethnicity,
duration of T2DM, body weight, and the specific joints affected by OA [54].

Various studies have shown a link between long-term T2DM and faster progression of
OA, with increased rates of synovial inflammation and joint pain [55,56]. This connection
is even stronger in younger diabetic individuals with hand OA, who are more likely to
develop the erosive form of the disease [57,58]. Interestingly, the relationship between
T2DM and OA appears to be bidirectional. A cohort study found that joint pain and reduced
mobility in the knee and hip, leading to a sedentary lifestyle, significantly increased the
risk of developing T2DM in individuals over 55 years of age [59,60].
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Traditionally, age-related joint degeneration and biomechanical stress from being
overweight were seen as the primary risk factors for OA in diabetic individuals. However,
recent advancements in understanding OA and T2DM have highlighted the influence of
systemic factors such as dyslipidemia, hyperglycemia, and inflammation—collectively
known as metabolic syndrome—that may directly contribute to OA. This has led to the
recognition of a new clinical phenotype called metabolic OA [61–63]. This form of OA
affects both load-bearing joints (like the hip and knee) and non-load-bearing joints (such as
the hand), indicating that factors beyond just biomechanical stress are at play [64,65]. T2DM
and OA are interconnected through the chronic systemic inflammation associated with
metabolic syndrome. Under hyperglycemic conditions, OA patients’ chondrocytes fail to
downregulate glucose transport [66–68]. High glucose levels trigger the production of ROS
in OA cartilage [69]. The catabolic activity of ROS generates inflammatory mediators like
IL-1β and NF-κB, which lead to chondrocyte degradation and apoptosis, thus damaging
the chondrocytes [70,71]. Additionally, OA chondrocytes in a hyperglycemic environment
express higher levels of matrix metalloproteinases than normal chondrocytes [72–74]. An
in vivo cohort study found that elevated fasting serum glucose levels are linked to increased
cartilage damage, indicated by bone marrow lesions and loss of tibial cartilage volume,
particularly in post-menopausal women compared to men [75]. This gender disparity
may stem from estrogen levels, which are known to have a protective effect on cartilage.
These findings highlight the detrimental effects of hyperglycemia on articular cartilage
and suggest that disrupted glucose metabolism may directly link OA and T2DM [76].
Another harmful effect of hyperglycemia is the induction of AGEs [77,78]. The age-related
accumulation of AGEs in articular cartilage creates a pathogenic environment, leading
to symptoms of OA, such as stiffness and cartilage degradation. High glucose levels
in diabetics result in increased AGEs formation. AGEs and their receptor initiate the
inflammatory cascade, primarily through the production of pro-inflammatory TNF-α and
the activation of the transcription factor NF-κB [79,80].

Human chondrocytes have functional insulin receptors that respond to physiological
insulin levels, but the expression and activity of these receptors are lower in OA chondro-
cytes compared to normal chondrocytes [81–83]. Insulin treatment increases the expression
of metalloproteinases-13 and IL-1β, and reduces autophagy, a crucial homeostatic process,
in chondrocytes by decreasing LC3 II expression and increasing phosphorylation of Akt and
rpS6. This suggests that the excess insulin seen in T2DM patients may harm cartilage and
contribute to OA [11]. Insulin is an essential negative regulator of synovial inflammation
and catabolism, so the development of insulin resistance in obese individuals would impair
insulin’s ability to suppress the production of inflammatory and catabolic mediators that
promote OA [84,85].

3. The Potential Impact of Diabetes Therapies on Osteoarthritis

The management of diabetes mellitus, particularly T2DM, often necessitates a mul-
tifaceted pharmacological approach to achieve optimal glycemic control and mitigate
complications. Insulin therapy, fundamental for both T1DM and advanced T2DM, com-
pensates for insufficient endogenous insulin production, helping to regulate blood glucose
levels with various formulations tailored to address basal and prandial needs. Metformin,
a first-line oral anti-hyperglycemic agent, enhances peripheral glucose uptake, decreases
hepatic glucose production through AMPK activation, and improves insulin sensitivity
while also reducing cardiovascular events and mortality. GLP-1 agonists mimic the incretin
hormone GLP-1 to enhance glucose-dependent insulin secretion, suppress glucagon release,
slow gastric emptying, and promote satiety, contributing to both glycemic control and
weight loss [86].

The primary objectives in managing OA include mitigating pain, improving joint
mobility, and maintaining overall joint function. Recent strides in comprehending OA’s
underlying pathophysiology have spurred investigations into a wide array of therapeutic
strategies, including advancements in tissue engineering, manipulation of the immune
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system, refinement of surgical techniques, and the development of pharmacological and
non-pharmacological treatments. However, despite these advancements, a definitive cure
for OA remains elusive, underscoring the need for personalized treatment approaches
tailored to the specific stage and manifestations of the disease [87]. Focusing on BMI in
osteoarthritis research has the potential to perpetuate weight bias within clinical practice
settings, influencing treatment decisions and patient outcomes based on weight alone. This
approach may exacerbate disparities in accessing effective treatments for osteoarthritis, par-
ticularly for individuals with higher BMIs who may face barriers to receiving optimal care.
Addressing these biases is crucial to ensure equitable healthcare delivery and improved
outcomes for all patients with osteoarthritis [50].

3.1. Insulin Use and Osteoarthritis: Evaluating Effects and Therapeutic Implications

It has been observed that insulin, either independently or in conjunction with inflam-
matory factors, can promote synovial inflammation during the advancement of osteoarthri-
tis. Insulin demonstrates significant capability in enhancing the inflammatory characteris-
tics of fibroblast-like synoviocytes (FLSs), increasing cell viability, and boosting the produc-
tion of inflammatory cytokines. Additionally, insulin fosters chemokine production and
augments macrophage chemotaxis. Moreover, insulin activates the PI3K/mTOR/Akt/NF-
κB signaling pathway while concurrently inhibiting autophagy in FLSs. Data suggest that
preblocking three specific signaling pathways with pathway inhibitors in FLSs significantly
diminishes insulin-induced inflammatory responses. Furthermore, insulin is shown to
elevate levels of inflammatory cytokine receptors in FLSs, with PI3K/mTOR/Akt/NF-κB
signaling inhibitors capable of reversing this effect. Notably, insulin sensitizes synovial
inflammation mediated by inflammatory factors (including metalloproteinases production
and activation of intracellular signaling pathways). Collectively, these findings suggest that
insulin may exacerbate synovial inflammatory conditions, thereby contributing to the pro-
gression of OA [88,89]. Insulin might stimulate the generation of several pro-inflammatory
substances (such as interleukins, tumor necrosis factor-alpha, and metalloproteinase-13)
linked with OA [11]. In vitro studies have shown that insulin has the potential to hin-
der chondrocyte maturation and enhance cartilage degradation, thereby exacerbating the
pathological progression of OA [90]. It was indicated that the PI3K/AKT and mTOR
signaling pathways play a role in the pathophysiological impacts of insulin in OA [81,90].
NF-κB is responsible for regulating the expression of inflammatory factors and metallopro-
teinases within the joints, and it is widely recognized to have a crucial involvement in the
development of OA (Figure 1) [88,91,92].

The research has demonstrated that insulin can induce the loss of proteoglycan compo-
nents, and elevate levels of inflammatory cytokines and metalloproteinases in chondrocytes,
and these effects may be attributed to the inhibition of chondrocyte autophagy. Further-
more, clinical observations from this study revealed decreased autophagy in the knee
cartilage of diabetic patients compared to non-diabetic counterparts, evidenced by a sig-
nificant reduction in the expression of the autophagy-related protein LC3II. Notably, the
study unveiled that rapamycin, acting as an autophagy activator and an inhibitor of the
mTOR signaling pathway, can mitigate insulin-induced suppression of autophagy and
subsequent cartilage degradation [90]. The research has indicated that the biological effects
of insulin vary depending on the dose and the specific type of cell involved [93]. In addition
to the effects on FLSs observed in this study, insulin was also found to impact chondro-
cytes [90,93]. However, insulin’s role in chondrocyte differentiation has been reported to be
either promotive or inhibitory [93,94], thereby either improving or worsening cartilage de-
generation depending on its concentration [90]. Moreover, at the molecular level, insulin’s
influence varies significantly when its concentration is extremely high or low [95–97]. It
was discovered that low and supraphysiological insulin levels have varying impacts on ag-
grecan and proteoglycan synthesis in chondrocytes, likely due to different insulin receptors.
Additionally, it was found that high insulin levels (1 µM) decreased FoxO transcriptional
activity, while low insulin levels (0.1 µM) also reduced FoxO transcriptional activity in
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SZ95 sebocytes in vitro [97]. It was demonstrated that insulin selectively influences specific
downstream responses of the Akt pathway in a dose-dependent manner. Therefore, it
was concluded that varying insulin concentrations are linked to different mechanisms
of insulin action, which can modulate cellular responses [95,98]. Previous studies have
indicated that specific cellular responses can be triggered only by high concentrations of
insulin [99–101]. Collectively, these studies highlight that different effector cells involved in
the complex pathophysiological processes of various diseases exhibit distinct sensitivities
to insulin [99–101].
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Figure 1. Illustration depicting the multifaceted effects of insulin on immune cells (T cells and
macrophages), chondrocytes, and osteoclasts, emphasizing its regulatory role in immune response
modulation, cartilage maintenance, and bone metabolism. Th17—T helper 17 cells, Glut1—Glucose
transporter 1, mTOR—mammalian target of rapamycin, MMP-13—Matrix metalloproteinase-13,
IL-1β—Interleukin-1 beta, IL-8—Interleukin-8, PGE2—Prostaglandin E2, M1—M1 macrophages
(classically activated macrophages), M2—M2 macrophages (alternatively activated macrophages),
RANK—Receptor activator of nuclear factor kappa-B, RANKL—RANK ligand. Figure 1 has been
created in BioRender.com (accessed on 2 July 2024).

Immune cells require glucose for energy production [102]. Like adipose, muscle, and
liver cells, they have insulin receptors (IRs) on their surfaces [103,104]. Insulin, functioning
as a glucose-regulating hormone through IRs, also acts as a growth factor and cytokine
regulator, thereby influencing immune modulation [105–107]. Insulin influences the im-
mune response both indirectly by lowering glucose levels and directly by affecting immune
cells, impacting their proliferation and signal transduction [108,109]. High blood sugar
negatively impacts the immune system by causing cell stress and producing AGEs and
ROS, which trigger the release of pro-inflammatory mediators. Thus, insulin’s role in low-
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ering glucose can reduce “glucose toxicity” and cell stress, providing an anti-inflammatory
effect [110,111].

Insulin, beyond its metabolic role, exerts anti-inflammatory effects via PI3K/Akt
pathway activation, suppressing TLR4 signaling and NF-κB activity in leukocytes, thus
modulating immune responses and inflammation [112–114].

The precise regulation of insulin secretion by pancreatic β-cells is crucial for main-
taining metabolic balance. β-cell mass must dynamically adjust to metabolic demands
and can undergo significant changes in response to various conditions. The mTOR com-
plexes, specifically mTORC1 and mTORC2, play pivotal roles in modulating β-cell mass.
In states of systemic insulin resistance, mTORC1/mTORC2 signaling in β-cells is essen-
tial for increasing β-cell mass and enhancing insulin secretion. However, the failure of
these compensatory mechanisms contributes to the development of type 2 diabetes, high-
lighting the complex and still incompletely understood role of mTOR complexes in β-cell
dysfunction [115,116].

Some studies indicate insulin’s potential pro-inflammatory role, affecting PMN leuko-
cyte functions without increasing ROS production [117,118]. Insulin reduces ROS produc-
tion in monocytes and dose-dependently inhibits tissue factor procoagulant activity via
regulatory mechanisms [119,120].

While IRs are found on the surface of B cells, monocytes, and resting neutrophils,
they are not present on resting T cells [121,122]. However, IR expression is significantly
increased on activated T cells [123,124], which is crucial for meeting the high glucose
demand necessary for T cells to achieve full effector functions. Insulin signaling in T cells
enhances their activation by promoting protein synthesis, glucose uptake, and amino acid
transport [123]. It was demonstrated in vitro that insulin shifts the response toward Th2,
reducing the Th1 to Th2 ratio. This shift results in a change in cytokine secretion, with
a decreased interferon-gamma to IL-4 ratio and increased phosphorylation of extracellu-
lar signal-regulated kinase (ERK), one of the four MAPK signaling pathways [125,126].
Experiments on mice lacking IRs demonstrated impaired polyclonal activation of CD4+
T cells, as well as deficiencies in cytokine production, migration, and proliferation [127].
Similar impairments were observed in CD8+ T cells, which showed reduced cytotoxicity in
response to alloantigens. Studies on obese patients have shown that insulin resistance and
related disorders are characterized by a cytokine imbalance, with elevated levels of TNF-α,
IL-6, IL-1β, CRP, and NF-κB [128]. Th17 and Treg cells are two subsets of CD4+ T cells that
share some developmental pathways but have different phenotypes and opposite functions.
Th17 cells are pro-inflammatory, while Treg cells are anti-inflammatory [129]. An altered
balance between Treg and Th17 cells is implicated in arthritis and other immune-mediated
conditions [130]. Activation of quiescent T cells occurs through the stimulation of the T
cell receptor (TCR) complex and the binding of the co-receptor CD28 to co-stimulatory
molecules (Acuto). TCR engagement triggers intracellular signaling via the ERK/MAPK
pathways, while CD28 signaling activates the PI3K-Akt-mTOR pathway [131,132].

PI3K-Akt signaling promotes glycolysis and increases the expression of glucose trans-
porter 1 (Glut1), thereby enhancing glucose uptake. Overexpression of Glut1 facilitates the
differentiation of T follicular helper (Tfh) cells, a T cell subset involved in B cell regulation,
which may contribute to autoimmunity in both type 1 diabetes and arthritis [133,134]. Ad-
ditionally, PI3K-Akt activation leads to mTOR activation, which supports the differentiation
of Th1, Th17, and Tfh cells [135]. Moreover, mTOR can inhibit the formation of long-lived
Tregs while favoring effector Tregs [136]. Tregs lacking mTOR exhibit reduced frequency,
resulting in spontaneous activation of effector T cells and inflammation [137]. AMPK can in-
hibit cellular growth by suppressing the mTORC1 pathway [138]. Activation of AMPK and
disruption of mTOR signaling have been shown to reduce inflammation in experimental
arthritis. AMPK’s control over fatty acid metabolism can also influence cell fate decisions
in CD4+ T cells, particularly affecting the balance between Th17 and Treg lineages [139,140].
Additionally, growth factors like insulin, IGF-1, and IL-2 can stimulate PI3K-Akt-mTOR sig-
naling. Insulin and insulin-like growth factors (IGFs) utilize common PI3K-AKT-mTOR and
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RAS-RAF-MEK-ERK pathways. Activation of IGF-1 receptor (IGF1R) promotes Akt-mTOR
signaling, enhances glycolysis, and favors Th17 differentiation, impacting inflammatory
processes such as arthritis through IL-6 modulation [141].

In insulin resistance, Akt signaling becomes impaired, leading to the hyperactivation
of mTORC1 and increased glycolysis. This heightened glycolysis in macrophages impacts
their responses to pathogens and danger signals [142]. Insulin significantly boosts the LPS-
dependent expression of IL-1β and IL-8, as well as the induction of enzymes involved in
prostaglandin E2 (PGE2) synthesis by macrophages [143]. Both in vivo and in vitro studies
suggest that insulin restores phagocytosis and promotes phagocytosis-induced apoptosis
in neutrophils. Additionally, insulin treatment prompts macrophages to transition from an
M1 to an M2 polarization state [142].

Previous research has highlighted the significance of insulin signaling in the biology
and pathology of the joint, particularly in its ability to regulate bone architecture by
affecting osteoblasts and osteoclasts [144–146]. In vitro experiments have shown that
insulin increases IR expression and stimulates cell proliferation and differentiation in MG-
63 cells through the MAPK and PI3K pathways, leading to enhanced alkaline phosphatase
activity, secretion of type I collagen, and expression of osteocalcin [147,148]. Activation of
mTORC1 by insulin-like growth factor 1 (IGF-1), released during bone resorption, promotes
osteoblast differentiation of mouse bone marrow stromal cells (BMSCs), playing a critical
role in the transition from pre-osteoblasts to mature osteoblasts [149,150].

However, insulin also affects osteoclasts. Through the ERK1/2 pathway, insulin
upregulates receptor activator of nuclear factor-kB (RANK), contributing to enhanced
osteoclast differentiation by RANK ligand (RANKL) [151]. The precise effects of mTORC1
on osteoclasts are not fully understood. Deletion of raptor, leading to mTORC1 inactiva-
tion in osteoclast precursors, or activation of mTORC1 by deletion of tuberous sclerosis
complex 1 (Tsc1), can, respectively, increase or decrease osteoclastogenesis. Mechanisti-
cally, this is attributed to mTORC1’s inhibition of NF-kB and nuclear factor of activated
T cells 1 (NFATc1), both critical transcription factors for osteoclastogenesis [152]. Further-
more, RANKL-dependent osteoclastogenesis is impaired in Tsc1-deficient bone marrow
macrophages, where TSC1 negatively regulates mTORC1 [153]. It was suggested that
mTORC1 inhibition by rapamycin treatment or genetic deletion suppressed in vitro osteo-
clast differentiation, which was rescued by upregulation of the mTOR downstream target
S6K1 [154].

Insulin resistance and hyperinsulinemia have been implicated in the development of
OA and metabolic syndrome [155,156]. In human chondrocytes, insulin dose-dependently
activates the mTOR signaling pathway and phosphorylates Akt, resulting in impaired
cellular autophagy, a crucial mechanism for removing and degrading damaged intracel-
lular components [90]. Additionally, insulin decreased the content of proteoglycans and
increased the expression of metalloproteinase-13 and IL-1β, both of which play significant
roles in chondrocytes and in the degradation of cartilage [90,91].

3.2. Metformin’s Influence on Osteoarthritis: Mechanisms and Therapeutic Implications

Since diabetic patients face a higher risk of bone degradation, anti-diabetic medications
may offer protective effects against bone disorders [157,158]. Metformin, an oral anti-
hyperglycemic drug and the first-line treatment for T2DM, primarily works by inhibiting
hepatic gluconeogenesis. Metformin, through the activation of AMPK, inhibits mTOR,
which plays a crucial role in regulating lymphocyte immunometabolism and the balance
of pro-inflammatory and anti-inflammatory cell populations within joints. When mTOR
is inhibited, the production of pro-inflammatory Th1, Th17 cells, and M1 macrophages
decreases, leading to a predominance of anti-inflammatory Treg cells and M2 macrophages
(Figure 2). Therefore, the inhibition of mTOR via AMPK activation by metformin may have
potential therapeutic effects in the treatment of inflammatory diseases, reducing the activity
of pro-inflammatory cells while promoting the predominance of anti-inflammatory cell
populations [159].
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Figure 2. Metformin’s activation of AMP-activated protein kinase (AMPK) leads to the inhibition
of mTOR (mammalian target of rapamycin), a pivotal regulator of lymphocyte immunometabolism
and the equilibrium between pro-inflammatory and anti-inflammatory cell populations within
joint tissues. This inhibition results in decreased production of pro-inflammatory Th1 and Th17
cells, along with M1 macrophages, thereby promoting a predominance of anti-inflammatory Treg
cells and M2 macrophages. ATP—Adenosine triphosphate, AMP—Adenosine monophosphate,
AMPK—AMP-activated protein kinase, mTORC1—Mechanistic target of rapamycin complex 1,
mTORC2—Mechanistic target of rapamycin complex 2, MLST8 (MLST8 protein)—mammalian lethal
with SEC13 protein 8, PRAS40—Proline-rich AKT substrate 40 kDa, Ras—Rat sarcoma protein,
Raf—Rapidly accelerated fibrosarcoma protein, MEK—mitogen-activated protein kinase kinase,
ERK—extracellular signal-regulated kinase, RSK—Ribosomal S6 kinase, PI3K—phosphoinositide
3-kinase, Akt—protein kinase B (Akt), TSC1/2—tuberous sclerosis complex 1/2, Rheb—Ras ho-
molog enriched in brain, GDP—Guanosine diphosphate, MSIN1—MAPK (mitogen-activated protein
kinase)-interacting protein 1, MLSTS (MLSTS protein)—mammalian lethal with SEC13 protein, Reg
A/B (regulatory proteins A/B), GTP—Guanosine triphosphate, Reg C/D (regulatory proteins C/D),
Treg—regulatory T cells, M1—M1 macrophages (classically activated macrophages), M2—M2
macrophages (alternatively activated macrophages), Th1—T helper 1 cells, Th17—T helper 17 cells.
Figure 2 has been created in BioRender.com (accessed on 2 July 2024).

The ability of metformin to regulate immune responses and improve gut microbiota
diversity presents an encouraging opportunity for therapeutic interventions in individ-
uals with type 2 diabetes who are at a higher risk of experiencing severe outcomes from
COVID-19 [160,161]. The influence of type 2 diabetes, metformin, and insulin on COVID-19
was individually assessed. Among patients who received metformin, the CRP level was
notably reduced compared to those who did not receive metformin [162–164]. Metformin’s
ability to influence immune responses and improve gut microbiota diversity indicates a
promising path for therapeutic strategies in individuals with type 2 diabetes [163,165]. The
administration of the type 2 diabetes medication metformin holds promise for treating this
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comorbidity, as it not only lowers blood sugar levels but also boosts the population of gut
bacteria that stimulate regulatory T cell responses [166,167].

Metformin targets mitochondria, which produce ATP through oxidative phosphoryla-
tion [168]. This process generates ROS, which can cause oxidative stress and mitochondrial
dysfunction, both associated with insulin resistance in skeletal muscle, liver, fat, and
pancreas [158,169].

Metformin’s metabolic effects are mainly due to its inhibition of the mitochondrial
respiratory chain (complex 1), leading to ATP depletion and increased cytosolic AMP
production [170]. This indirectly activates AMPK by phosphorylating Thr-172 in its alpha
subunit, reducing gluconeogenesis in the liver. Elevated AMP levels also inhibit adenylate
cyclase, decreasing cAMP production. Consequently, protein kinase A activity and its
target, cyclic AMP response element binding protein, are inhibited, lowering fasting glucose
levels [171,172].

Beyond reducing hepatic glucose production, metformin enhances insulin sensitiv-
ity by inhibiting lipogenesis, increases peripheral glucose uptake through GLUT4 en-
hancer factor phosphorylation, and reduces insulin-induced suppression of fatty acid
oxidation [173–175]. Additionally, metformin mitigates chronic inflammation through its
anti-inflammatory properties and promotes autophagy by inhibiting mTOR phosphory-
lation via AMPK activation [176]. Individuals with T2DM are at a higher likelihood of
experiencing hand or knee OA compared to those without diabetes. Conversely, individu-
als with OA have an increased risk of developing T2DM compared to age- and sex-matched
counterparts without OA.

Metformin, along with weight loss, shows promise as a disease-modifying treatment
for knee osteoarthritis in obese patients, potentially reducing cartilage loss and the need for
knee replacement surgery [177].

Metformin administration, initiated before or after destabilization of the medial menis-
cus (DMM) surgery, significantly attenuated cartilage degradation as evidenced by de-
creased Osteoarthritis Research Society International scores and preserved cartilage areas,
associated with upregulated AMPK expression in articular cartilage tissue [178].

Various animal models suggest metformin’s potential therapeutic impact on OA, re-
ducing cartilage degradation and modulating pain via AMPK activation [179]. Metformin’s
chondroprotective effect involves upregulating AMPKα1 expression, demonstrated in
genetically modified and DMM-induced OA mice, suggesting therapeutic potential via
AMPK/mTOR pathway modulation [180]. Metformin is shown to activate AMPK and
SIRT1 pathways, protecting chondrocyte mitochondrial function and potentially preventing
OA development clinically [181]. Metformin attenuated IL-1β and TNF-α induced NO and
MMP release [182]. Diabetes mellitus, especially type 2, increases skeletal complications
and osteoarthritis risk due to hyperglycemia and advanced glycosylation end products,
addressed by metformin’s bone-protective effects through AMPK [183].

Mesenchymal stem cells (MSCs) possess multilineage differentiation potential and mit-
igate cartilage degradation through immunomodulatory functions. Metformin-enhanced
adipose tissue-derived human MSCs show promising chondroprotective and analgesic
effects in osteoarthritis, highlighting their therapeutic potential [182,184]. The study inves-
tigated metformin’s impact on osteoporotic and normal fracture healing, demonstrating its
ability to accelerate healing and promote angiogenesis through HIF-1α upregulation and
YAP1/TAZ inhibition, crucial for type H vessel formation [185]. Metformin attenuates IL-
1β-induced OA inflammation via SIRT3/PINK1/Parkin signaling, enhancing mitophagy
for mitochondrial function [186,187]. The study suggests AMPK and GDF-15 as potential
OA therapies, warranting randomized controlled trials for metformin’s efficacy [188]. Met-
formin’s pharmacological activity relies on organic cation transporters (OCTs) for tissue
penetration and therapeutic efficacy [189–191]. Metformin use showed genetic protection
against HER-positive breast cancer, involving testosterone levels [192]. Metformin’s effi-
cacy and oral bioavailability depend on transporters [193,194]. Various methods have been
explored for improving metformin delivery for musculoskeletal therapies [195–197].
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3.3. The Role of GLP-1-Based Therapies in Osteoarthritis: Mechanisms and Potential Benefits

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide
trigger insulin release from pancreatic β cells in response to glucose levels. However, the
rapid degradation of native GLP-1 by dipeptidyl peptidase 4 (DPP-4) limits its clinical
effectiveness. Consequently, GLP-1 analogues such as liraglutide, exenatide, semaglutide,
and lixisenatide, engineered to resist DPP-4 cleavage, are now utilized for managing
T2DM [198,199]. GLP-1 agonists are crucial for treating type 2 diabetes and obesity, delaying
gastric emptying significantly for glycemic control and weight loss [200]. GLP-1 exerts
insulinotropic effects and exhibits anti-inflammatory properties beneficial to the brain,
heart, and lungs. GLP-1 receptors are abundant in various tissues, including the pancreas,
intestine, and central nervous system [201–203]. Patients on long-acting GLP-1 receptor
agonists like semaglutide face aspiration risks during anesthesia [204]. GLP-1 analogues
show promise for OA due to their anti-inflammatory effects and presence of GLP-1 receptors
in joint tissues [205,206]. GLP-1 receptor agonist therapies, through their potential to induce
weight loss, may exert disease-modifying effects on knee OA in individuals with comorbid
T2DM [207]. GLP-1’s consistent efficacy in reducing food intake and body weight spans
across obese individuals, including adolescents and adults. Its mechanism via a single G
protein-coupled receptor, coupled with extensive safety data in T2DM patients, supports
long-term use for obesity and associated conditions like cardiovascular disease and NASH.
Advances suggest GLP-1 therapies may rival bariatric surgery in managing obesity and its
complications [208,209].

Drugs that reduce low-grade systemic inflammation might also act locally in the
joints [210]. Therefore, incretinomimetics that activate the GLP-1R pathway could be a
promising approach for treating OA.

The role of the GLP-1R signaling pathway in chondrocytes has begun to be explored
and requires further investigation. Immunohistochemistry detected GLP-1R in normal and
OA articular chondrocytes in rat knee sections. GLP-1R signaling is linked to preventing
apoptosis, anti-inflammatory activity, and matrix protection [211,212].

Liraglutide protects rat chondrocytes by activating the PI3K/Akt pathway, reducing
ER stress-induced apoptosis, increasing Bcl-2, and decreasing cleaved caspase 3 levels. This
effect was validated in an ACL rat model [211].

Currently, GLP-1 receptor agonists (GLP-1 RAs) are available in various formulations,
including daily injections and a recently approved daily oral preparation of semaglutide,
showing efficacy comparable to weekly injections. They share mechanisms such as enhanc-
ing insulin secretion, suppressing glucagon release, slowing gastric emptying, reducing
post-meal glucose spikes, and promoting weight loss. GLP-1 RAs are recommended as
initial injectable therapy for T2DM due to their efficacy in glucose control, weight reduction,
and cardiovascular benefits, particularly in high-risk patients with cardiovascular disease.
Ongoing research explores their potential in other conditions like type 1 diabetes and neu-
rodegenerative diseases, suggesting a broadening role beyond diabetes management [213].

Activation of GLP-1R inhibits NF-κB, crucial in inflammation and cell regulation [214].
Co-agonist therapies like tirzepatide and amylin combinations show strong clinical promise,
enhancing the weight loss potential of GLP-1R agonists like semaglutide [215]. In TNF-
activated human chondrocytes and thapsigargin-induced rat chondrocytes, suppressing
the NF-κB pathway resulted in decreased release of inflammatory mediators like IL-6,
CCL2, and TNF [211]. All GLP-1 RAs improved HbA1c in a 12-week study among Japanese
individuals with type 2 diabetes, highlighting varied mechanisms in glucose control and
weight loss [216]. In primary mouse chondrocytes, administration of liraglutide decreased
the mRNA expression of iNOS, MMP-13, and ADAMTS5, resulting in reduced secretion
of inflammatory substances such as nitric oxide, prostaglandin E2, and IL-6 [210]. In the
rat model of inflammatory osteoarthritis induced by monoiodoacetate (MIA), activation
of GLP-1 receptors initiated the PKA/CREB signaling pathway, leading to a reduction in
inflammation within cartilage [217]. Basic scientific studies revealed that GLP-1 analogs
exert immunomodulatory effects independent of weight, inhibiting the NF-κB pathway
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through specific molecular mechanisms in arthritis [218]. GLP-1 analogues demonstrate
anti-catabolic effects by decreasing the expression of key enzymes involved in cartilage
degradation in response to TNF stimulation. This preservation of extracellular matrix
components like aggrecan and type II collagen suggests potential benefits for ОA therapy.
Additionally, alterations in the phospholipid layer covering the cartilage surface can disrupt
joint function and contribute to ОA pathogenesis [211,219].

Semaglutide use during total knee arthroplasty reduced sepsis and joint infections
but increased myocardial infarction, acute kidney injury, pneumonia, and hypoglycemia
risks [220].

GLP-1R expression has been identified in human monocyte-derived macrophages and
the murine cell line RAW264.7, but research on GLP-1/GLP-1R signaling in macrophages
is limited [221,222]. GLP-1 RAs are approved for diabetes and obesity treatment; they also
exhibit anti-inflammatory properties across various tissues and pathways [223].

GLP-1R activation modulates macrophage polarization through PKA/CREB signal-
ing, reducing JNK phosphorylation and enhancing STAT3 phosphorylation, influencing
immune responses [221,224,225]. This pathway is critical in murine models for promoting
M2 macrophage differentiation, enhancing immune modulation and tissue repair pro-
cesses [226–228]. Preclinical and clinical studies demonstrate GLP-1 RAs’ cardioprotective
effects, efficacy in hypertension and dyslipidemia, substantial weight loss in diabetes and
obesity, and neuroprotective roles in stroke and neurodegenerative diseases. However,
manageable adverse effects include gastrointestinal symptoms, increased heart rate, and
potential renal issues [229]. In inflamed synovium, GLP-1R activation in macrophages shifts
them from the M1 to the M2 phenotype, decreasing IL-6, TNF-α, and iNOS mRNA expres-
sion. This suggests GLP-1 therapies could mitigate inflammation by reducing macrophage
infiltration and adhesion molecule expression [62,230]. The study investigates lixisenatide’s
GLP-1 receptor agonism effects on arthritis pathology in human fibroblast-like synovio-
cytes, marking the first exploration of this treatment’s impact in this context [231]. Studies
illustrate liraglutide’s role in inhibiting lipid accumulation and oxidative stress triggered
by oxidized low-density lipoprotein in macrophages, mediated through GLP-1R pathway
activation [232,233].

GLP-1based therapy has emerged as a promising treatment for osteoarthritis, targeting
both metabolic and inflammatory pathways involved in the disease’s progression. Studies
have demonstrated that GLP-1 agonists can reduce inflammation in the synovial membrane
and improve cartilage integrity. Additionally, GLP-1 therapy may aid in weight manage-
ment, thereby alleviating joint stress and further mitigating osteoarthritis symptoms.

4. Conclusions

DM and OA are prevalent chronic conditions associated with significant morbidity and
healthcare burden worldwide. Treatment agents for DM have the potential to influence the
progression of OA. Insulin, as a key regulator of glucose metabolism, exhibits potential dual
roles in OA by influencing cartilage homeostasis and inflammatory responses within joint
tissues. Metformin, renowned for its glucose-lowering effects via AMPK activation, also
shows promise in mitigating OA progression through its anti-inflammatory properties and
potential preservation of cartilage integrity. Additionally, GLP-1-based therapies, which
enhance insulin secretion and improve glycemic control in DM, may exert protective effects
in osteoarthritis by modulating inflammation, promoting cartilage repair mechanisms, and
potentially slowing joint degeneration. Further clinical studies are warranted to elucidate
the precise mechanisms and therapeutic efficacy of these agents in OA management, paving
the way for integrated treatment strategies targeting both DM and OA comorbidities.
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