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Abstract: One key aspect of the human experience is our ongoing stream of thoughts. These thoughts
can be broadly categorized into various dimensions, which are associated with different impacts on
mood, well-being, and productivity. While the past literature has often identified eye movements
associated with a specific thought dimension (task-relatedness) during experimental tasks, few
studies have determined if these various thought dimensions can be classified by oculomotor activity
during naturalistic tasks. Employing thought sampling, eye tracking, and machine learning, we
assessed the classification of nine thought dimensions (task-relatedness, freely moving, stickiness,
goal-directedness, internal–external orientation, self-orientation, others orientation, visual modality,
and auditory modality) across seven multi-day recordings of seven participants during self-selected
computer tasks. Our analyses were based on a total of 1715 thought probes across 63 h of recordings.
Automated binary-class classification of the thought dimensions was based on statistical features
extracted from eye movement measures, including fixation and saccades. These features all served as
input into a random forest (RF) classifier, which was then improved with particle swarm optimization
(PSO)-based selection of the best subset of features for classifier performance. The mean Matthews
correlation coefficient (MCC) values from the PSO-based RF classifier across the thought dimensions
ranged from 0.25 to 0.54, indicating above-chance level performance in all nine thought dimensions
across participants and improved performance compared to the RF classifier without feature selection.
Our findings highlight the potential of machine learning approaches combined with eye movement
measures for the real-time prediction of naturalistic ongoing thoughts, particularly in ecologically
valid contexts.

Keywords: random forest classifier; particle swarm optimization; eye tracking; spontaneous thought;
mind wandering; multi-dimension experience sampling

1. Introduction

William James coined the term “stream of consciousness” [1] to refer to the flow of
thoughts we experience during the waking moments of our lives. At any given moment,
these thoughts can vary notably. For instance, thoughts may be in the form of images,
sounds, or sensations; they may focus on the external world or inner experiences, our-
selves or others, the past or future, and so on. The thoughts we experience can greatly
influence our mood, well-being, and productivity. Certain thought types, such as off-task
thoughts—which occur when attention shifts away from the task at hand—have been
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associated with negative affective consequences [2]. However, other dimensions of thought
have been linked to positive affective consequences [3,4]. Indeed, the content of thoughts
and the context in which they occur are associated with different outcomes [5–9], highlight-
ing the need to distinguish between different dimensions of thought. Despite the functional
significance of our ongoing thoughts, the detection of these various dimensions of thought
remains largely unexplored.

The classification of thoughts requires a method that can capture the heterogene-
ity of thought content and form. To that end, multi-dimensional experience sampling
(MDES) [10] has emerged as a useful approach for assessing ongoing thoughts. This
approach involves using thought probes to sample one’s inner experience by asking a
series of questions that capture multiple dimensions of thoughts. For example, these di-
mensions include task-relatedness, thought dynamics (freely moving or constrained), and
modalities (visual or auditory). These thought probes are typically sent at pseudo-random
intervals throughout a task in an experimental setting [11,12] or throughout the day in
everyday life [13]. Such experience sampling methods have been used in conjunction with
neuroimaging measures such as fMRI or EEG to determine neural markers of thought
dimensions [9,11,14–16]. However, as these neuroimaging techniques can be difficult to
implement in real-world settings, eye tracking has been established as a more scalable
method for thought detection [17].

The well-established relationships between oculomotor behavior and various cognitive
domains [18–20] suggest that eye movements offer unique insights into cognition. Similar to
other cognitive domains, some thought dimensions have also been associated with patterns
of eye movement, such as fixations and saccades. For example, off-task thoughts have been
associated with fewer complex eye movements [21] compared to on-task thoughts. Similar
to off-task thoughts, goal-directed thoughts in the context of idea generation have also
been linked to reduced microsaccades [22]. Furthermore, internally-directed thoughts have
been associated with fewer and longer fixations compared to externally-directed thoughts
during a sentence generation task [23]. These prior studies have investigated correlates
of individual thought dimensions in the context of an experimental task in the laboratory,
which may limit generalizability beyond those highly controlled tasks. Global features
from eye tracking data, which include oculomotor behaviors independent of specific tasks,
show promise in detecting thoughts across diverse task contexts [24–27].

Past research on thought detection has generally assessed a limited number of thought
dimensions during experimental tasks. Much of the literature exploring classification of
thought has primarily focused on detecting the dimension of off-task thoughts during
sustained-attention tasks or reading tasks (see [27] for a review), but such tasks are often
not representative of the more complex and personally relevant tasks that individuals may
encounter in their daily lives. Studies have shown that people are more likely to purpose-
fully engage in certain thought types depending on task demands and context [11,16,25,28],
suggesting that the types of ongoing thoughts elicited during a strictly controlled exper-
imental task may be different from those that arise in our everyday lives. Therefore, it
stands to reason that allowing participants to choose whichever task they wish to perform
(thus mimicking their home office setting) would more likely elicit naturalistic ongoing
thoughts. No studies to our knowledge have attempted to detect multiple dimensions of
ongoing thoughts during naturalistic behavior using eye movements.

The detection of thoughts using eye tracking has primarily been implemented with ma-
chine learning approaches [24,29–33] using classifiers such as logistic regression, Bayesian
network, random forest (RF), and support vector machine. The RF classifier has pre-
viously shown high classification performance in detecting off-task thoughts using eye
movements [30], particularly in comparison to support vector machine and logistic re-
gression when using eye tracking measures alone [34]. Furthermore, an RF algorithm
showed successful detection of internally directed thoughts compared to spontaneous and
deliberate on-task thoughts [35], which suggests that the RF algorithm may be ideal for the
classification of thought dimensions.
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While machine learning algorithms can identify numerous features that can optimally
detect naturalistic thoughts, additional feature selection techniques are necessary to identify
the best subset of features that contribute most to classification performance. Among
them, the particle swarm optimization (PSO) algorithm is considered to have a strong
global search ability and has been widely used for solving feature selection problems.
This algorithm’s effectiveness in identifying the best feature sets has been verified in
various applications [36–38], with an eye tracking-based RF classifier optimized with
PSO resulting in an accuracy of up to 96% for the classification of levels of attention to
external tasks [39]. We therefore implemented the PSO algorithm for feature selection.
Taken together, although past studies have combined machine learning with eye tracking
data to detect a few thought dimensions (i.e., off-task thoughts and internally oriented
thoughts) during experimental tasks, the gaze measures associated with most thought
dimensions and their utility combined with machine learning to detect these thoughts are
largely unknown.

In this study, we developed and tested a PSO-based RF model to determine if eye
movement data can be used as a robust and generalizable measure to classify thoughts
across nine dimensions (task-relatedness, freely moving, goal-directedness, stickiness,
internal–external orientation, self-orientation, others-orientation, visual modality, and audi-
tory modality) during naturalistic tasks. Seven participants underwent seven experimental
sessions during which they were occasionally prompted to report their ongoing thoughts
during self-selected computer tasks while their eye tracking data were being recorded.
Given the large number of thought dimensions assessed in this study, we prioritized ac-
quiring more data per participant to obtain reliable estimates of eye tracking measures
corresponding to thought dimensions, versus obtaining a small amount of data across a
larger number of participants. As no experimental control was placed on the occurrence
of a given thought dimension, it is possible that some dimensions of thoughts would not
occur in a given experimental session. Therefore, our study acquired multiple sessions of
data (approximately nine hours) from each participant to ensure that sufficient data exist
for all thought dimensions, resulting in a total of 49 datasets. Classification of thoughts
was based on statistical features extracted from eye movement measures (e.g., fixations
and saccades), and model performance for the nine thought dimensions was assessed with
the Matthews correlation coefficient (MCC). Several of the thought dimensions explored
in this study have not been previously examined with eye tracking features or classified
with gaze-based machine learning approaches. To our knowledge, this is the first study to
implement gaze-based classification of a comprehensive set of thought dimensions using
PSO in a naturalistic context.

2. Materials and Methods

The overall block diagram is shown in Figure 1. Five modules such as data collection,
pre-processing, feature extraction, feature selection, and classification were used in this
process. They are briefly described in the following sections.

2.1. Participants

Seven participants (3 males and 4 females; age: mean = 24.57 years, STD = 3.66; years of
education: M = 16.4, S.D. = 1.51) completed this study. They had no history of neurological
disorders and had normal or corrected-to-normal vision. All participants provided written
informed consent and were paid for their participation. This study was approved by the
Conjoint Faculties Review Ethics Board (CFREB) at the University of Calgary.
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2.2. Experimental Protocol

All participants completed seven recording sessions across several days, resulting in a
total of 49 datasets. Before the start of this study, participants underwent a training session
where they were familiarized with the terminology used in the thought probes as part of
the experience sampling protocol (see Section 2.3). In particular, they were provided with
definitions and examples of each thought dimension measured in the experiment and were
given the opportunity to ask the experimenters clarifying questions about them during
this training. Although several data streams were collected, only eye tracking data were
reported in this study as the other data streams listed were reported elsewhere and are
beyond the scope of this paper. Participants were seated at a desktop computer and were
60 cm away from an eye tracker attached to the bottom edge of the monitor screen. The
height of the monitor was adjusted based on participant height. Eye tracking calibration
was performed using the Tobii Pro Eye Tracker Manager (version 1.12.2). Participants were
told to keep as still as possible during data recording. After calibration was completed,
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participants were instructed to complete whichever task they wished to perform on the
computer for a period of approximately 80 min. During this time, we recorded their
eye tracking data and occasionally prompted them to report their ongoing thoughts (as
described in Section 2.3). There was a total of approximately nine hours of acquired data
per participant. An experimenter checked the calibration of the eye tracker approximately
2–3 times per experimental session, and re-calibration was performed if the eye tracker was
not correctly synced with eye movements.

2.3. Thought Probes and Self-Assigned Task

Each participant was instructed to complete self-selected tasks on the computer during
each of the experimental sessions. That is, participants were free to choose whichever task
they wished to perform, in order to increase the ecological validity of our study to elicit
ongoing thoughts that were more representative of daily life. With the increased prevalence
of remote, computer-based work, we considered the self-selected “task” as a representation
of everyday activity for participants.

While participants were completing their self-selected tasks, multi-dimensional thought
sampling (MDES) thought probes consisting of a list of questions were presented on the
computer monitor. These occurred approximately every 120 s (with a range of 90–150 s to
minimize expectation effects), with 35 thought probes presented during each experimental
session. This amounted to a total of 245 thought probes across the seven sessions for each
participant, resulting in a total of 1715 thought probes. The MDES thought probes were
presented alongside a brief tone (1000 Hz, 200 msec) to alert participants of its occurrence.
Each probe asked participants to answer several questions about their self-selected activity
and ongoing thoughts during the time immediately preceding the tone. First, participants
were asked to briefly report their task, defined as the self-selected activity they were sup-
posed to be engaging in, as an open-ended question. They were then asked to describe
the content and form of their thoughts across nine dimensions by responding to a 7-point
Likert scale for the following questions: (1) To what extent were your thoughts on-task
versus off-task?, (2) To what extent were your thoughts focused on your inner thoughts
versus external stimuli?, (3) To what extent were your thoughts freely moving?, (4) To
what extent were your thoughts goal-directed on a topic?, (5) To what extent did you have
difficulty disengaging from your thoughts? (referred to as sticky thoughts hereafter), (6) To
what extent were your thoughts about yourself?, (7) To what extent were your thoughts
about another person/other people?, (8) To what extent were your thoughts in the visual
modality (whether it be external or internal)?, and (9) To what extent were your thoughts
in the auditory modality (whether it be external or internal)? Presentation of the thought
probes was implemented through MATLAB 2021a [40].

Responses to each question were dichotomized for ease of quantifying responses
and comparing the eye tracking measures (as described below). As an example, for the
task-related question, a score of 1–3 would be considered on-task, while a score of 5–7
would be considered off-task, and a score of 4 was discarded and removed from subsequent
analyses. We used their responses to each question to label the 12 s of data preceding
the probe. That is, we extracted eye features (as described below) within the 12 s period
prior to each thought probe and categorized them based on the thought probe response
(e.g., on-task or off-task). We chose this 12 s window for several reasons. First, this aligned
with previous studies using experience sampling to capture thoughts (e.g., [25,41]). Second,
neuroimaging evidence has shown that markers of certain thought dimensions, such as
off-task thoughts, were observed for 10–20 s prior to the thought probe response [42]. Third,
this time window reflects a tradeoff between maximizing the amount of data included to
obtain a reliable estimate of eye features while maintaining a reasonable validity of the
participants’ report.

The number of trials (corresponding to the number of thought probe responses) for
each of the nine thought dimensions varied across participants. Some participants did not
have any data points for a thought dimension, either due to a lack of reports in a given class
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of a thought dimension or a lack of usable data. For example, in some instances, participants
did not look at the screen for a significant portion of time during the session; since features
extracted in such a scenario would be incorrect, these data points were excluded. To ensure
sufficient data in subsequent classification analyses, a threshold limit was set to include
only those participants that had a minimum of 10 trials in each class for each thought
dimension. The number of participants considered for classification analyses of each of the
nine thought dimensions are reported in Table 1. The number of data points for each class
of a given thought dimension for each participant is reported in Supplementary Table S1.

Table 1. Number of participants considered for classification of each thought dimension.

Thought Dimensions Number of Participants Considered
for Classification

On-Task vs. Off-Task 5
Internal vs. External 5

Freely Moving vs. Not Freely Moving 5
Goal-Directed vs. Not Goal-Directed 6

Sticky vs. Not Sticky 4
Self-Oriented vs. Not Self-Oriented 4

Others-Oriented vs. Not Others-Oriented 6
Visual vs. Not Visual 6

Auditory vs. Not Auditory 6

2.4. Eye Tracking Data Acquisition and Preprocessing

Eye tracking data were collected continuously using a Tobii Pro Fusion screen-based
eye tracker (Tobii, Stockholm, Sweden) sampling at 250 Hz. The Tobii software outputted
X and Y coordinates of participants’ gaze for each sample. These coordinates were rep-
resented in the form of proportions on the screen and were converted to pixel values for
feature extraction. The screen size, pixel density, and participants’ distance from the screen
remained consistent across all sessions, ensuring correct conversion to pixels.

We used the I-VT filter [43] to classify these data points into fixations (i.e., points in
which gaze was maintained on the same location) and saccades (i.e., movement of the
eyes between fixations). To classify eye movements, the I-VT filter associates a velocity
value with each point by taking into account movement 10 ms before and after that point.
Points were classified as fixations if the velocity of the eyes fell below the threshold of
30 degrees/second; if the velocity value was above 30 ms, that point was labelled as a
saccade. In some instances, coordinate values were not available because participants
blinked or looked away from the screen. Such instances were labelled as “unclassified”.
Across all participants and sessions, 64% of points were classified as fixations, 26% as
saccades, and 10% were unclassified. Successive fixation annotations that were at least
60 ms combined were marked as a single fixation. Successive saccade annotations that
lasted at least 30 ms were combined into one [44]. These minimum values were set to match
the default values used in the I-VT algorithm. Combining these points together allowed us
to extract features from the gaze data.

Finally, blinks were not included in our analysis for several reasons. First, there are no
conventionally accepted minimum blink thresholds for blink extraction during continuous
eye tracking [45]. Given that task type has an impact on blink durations [45], a fixed-
threshold approach implemented across tasks may lead to incorrect blink extraction as
participants performed a wide range of self-selected tasks in this study. Second, blink
durations have not been robustly associated with task-unrelated thought [45] or other
thought dimensions in the literature. Third, blinks are determined by missing eye tracking
samples in our system; however, the loss of eye tracking samples may also be caused
by participant head movements, or because of off-screen fixations. Considering that
participants may have looked away from the screen for reasons not directly related to their
self-assigned task (e.g., looking at the keyboard before typing), this measure of blinking
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may not reliably and selectively capture blinks. Taken together, blinks were considered
less robust than fixations or saccades for the present study and thus were not included in
subsequent analysis.

2.5. Eye Tracking Features

Given that participants were allowed to complete any tasks they wished, the external
stimuli varied within and across sessions for each participant, rendering local features
difficult to interpret. Therefore, we focused on global eye tracking features [24,31,46] that
fell within the 12 s time window preceding each thought probe (as described above), with a
specific focus on fixations and saccades. There were a total of 29 global eye tracking
measures, including fixation duration, saccade duration, and saccade amplitude and
velocity, from which the statistical measures of mean, median, minimum, maximum, range,
and standard deviation were computed (Table 2). Other measures included fixation count,
fixation root mean square deviation (RMSD), fixation–saccade ratio (which represents
how often a participant engaged in fixations compared to saccades), saccade count, and
horizontal saccades (Table 2).

Table 2. Global eye tracking and statistical features used in the machine learning model.

Eye Tracking and Statistical Features

fixation duration count, mean, median, minimum, maximum, range, standard deviation, root mean
squared deviation (RMSD)

saccade duration count, mean, median, minimum, maximum, range, standard deviation

saccade amplitude mean, median, minimum, maximum, range, standard deviation

saccade velocity mean, median, minimum, maximum, range, standard deviation

fixation–saccade ratio count

horizontal saccade count

2.6. Machine Learning Model

To classify the different dimensions of thoughts using eye tracking measures, we used
the random forest (RF) classifier [47,48] with a set of decision trees (DTs) and an ensemble
learning approach. In an RF classifier, multiple DTs are used and the majority outcome of all
the DTs serves as the outcome of the RF classifier. The process of combining various DTs to
obtain the outcome in the RF classifier is based on bootstrap aggregation (or bagging) and
random split selection. The RF method has been applied to eye tracking data [30,34] due to
its ability to identify the main correlation features (i.e., features that highly correlate with
each other) that provide higher classification performance with fast computation speed.

Accordingly, this study used an RF classifier to classify thoughts across nine dimen-
sions using eye tracking data. The number of learners was set as 100. The RF classifier
was evaluated using the stratified k-fold within-subject (k-fold WIS) strategy with a 5-fold
scheme, which ensured each fold has an equal proportion of data points for each class as
the original dataset. During this process, each participant’s data points were randomly
split into k (k = 5) smaller sets called folds [49]. In each round, one of the k folds acted as
a test set and the remaining folds (k-1) acted as a training set. Given we set the k-value
to 5, this reduces the number of data points included in each fold (compared to a smaller
k-value). We therefore implemented several control analyses to address this issue, all of
which are reported in the Supplementary Tables S2 and S3. We first computed the classifica-
tion performance for each fold and then the mean performance across the 5 folds for each
participant. Finally, we report the classification performance for each thought dimension as
the mean classification performance averaged across all participants.

As the number of data points between the two classes in each thought dimension was
imbalanced, we implemented the synthetic minority over-sampling technique (SMOTE) to
create a balanced dataset by oversampling the minority class in the training set. Balancing
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the training set mitigates the risk of overfitting the data and improves the generalizability
of the classification model. The RF classifier was trained using the balanced training
set to predict the binary class labels on the original (unbalanced) test set. To evaluate
the performance of the RF classifier, we computed four performance metrics: Matthews
correlation coefficient (MCC; range = −1 to 1, chance = 0), area under the curve (AUC;
range = 0 to 1, chance = 0.5), balanced accuracy (BA; range = 0 to 1, chance = 0.5), and
Cohen’s kappa coefficient (κ; range ≤ 0 (no agreement) to 1 (perfect)). Although we report
four metrics to facilitate comparison with the existing literature, our main focus is on the
MCC as this metric is not influenced by an imbalanced dataset [50] and has previously
been used in the context of thought detection [51]. To obtain a more reliable estimate
of the classification performance, we implemented 50 iterations and reported the mean,
maximum, and minimum classification performance across all 50 iterations.

2.7. Particle Swarm Optimization

In addition to assessing the classification performance across all features, we used
particle swarm optimization (PSO) to identify the subset of features that contributed the
most to the detection of each thought dimension. As described above, PSO has a strong
global search ability and is effective in finding the best feature sets and has been verified
in various applications [36–38]. Compared to other feature selection approaches (such
as sequential-based feature selection which adds or removes features sequentially and
produces locally rather than globally optimal solutions), the PSO technique is a global
search method that evaluates subsets of features by using randomization search tactics to
explore an entire section of the solution space in order to find the optimal subset of features.
Given its benefits, we implemented the PSO approach for feature selection.

PSO consists of a swarm of particles, where each particle (i) is considered as a solution
for an optimization problem and a set of possible solutions is considered as a search
area [52]. A position is allotted to each particle in an N-dimensional search area, and each
particle moves in the search area in order to find the best solution (fitness value) under the
guidance of two vectors, namely position vector yi = [yi1, yi2, . . . , yiN ] and velocity vector
vi = [vi1, vi2, . . . , viN ]. As each particle moves in a search area to identify the best solution,
it self-updates its position (yi) and velocity (vi) based on its own experience and exchanges
information with its neighbours. During this process, each particle records its best solution
as Pbest,i and the best solution among all the particles (swarm) is recorded as Gbest. While
recording the Gbest and Pbest value, each particle keeps track of the positions and velocity
associated with the best values. This recorded information along with the current position
and velocity of each particle is used to update the coordinates of each particle in a search
area to find the best solution. Mathematically, they are represented as follows:

vt+1
in = {w ∗ vt

in
}
+ {c1 ∗ r1 ∗

(
Pt

best,in − yt
in

)}
+ {c2 ∗ r2 ∗

(
Gt

best,n − yt
in

)}
(1)

yt+1
in = yt

in + vt+1
in (2)

where n represents the nth dimension in the search area, t represents the tth iteration, w
represents the inertia weight, c1 and c2 represent the social learning factors called cognitive
parameters and social parameters, and r1 and r2 represent the random values in the range
of [0, 1].

The first part of Equation (1) is called momentum, which acts as the memory of
the previous move and helps prevent the particle from drastically changing direction.
The second and third parts of Equation (1) are, respectively, referred to as self-cognitive,
which quantifies the particle’s performance relative to its own past performance, and social
learning, which quantifies the particle’s performance relative to its neighbor’s performance.
They both ensure each particle is kept close to the Pbest and Gbest positions. The number
of iterations, number of particles, and social learning factors (c1, and c2), were selected as
100, 20, and 1.4962 based on past work [53]. PSO was iterated until a stopping criterion
was reached. Three stopping criteria were used in this study: (i) maximum iteration was
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reached, (ii) the best fitness value of MCC equal to 1 was reached, or (iii) the fitness value
has not changed for a minimum of 10 iterations.

We applied the PSO algorithm to select the best subset of 10 features across all partic-
ipants for each thought dimension to improve the discriminating power of the classifier.
Among the four reported performance metrics, we chose MCC as the fitness function
because it most optimally captures the classification performance as it is insensitive to
imbalances in the dataset [51]. The mean MCC values across all participants considered for
each thought dimension are used as a final fitness value. The fitness function used to select
the most informative subset of features is as follows:

f itness = ∑S
s=1 MCCs (3)

where, MCCs =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where TP, TN, FP, and FN, refer to the number of true positives, true negatives, false
positives, and false negatives. All analyses were implemented in MATLAB 2021b [54].

In addition to PSO, we also implemented another feature selection approach post-hoc
as an exploratory analysis to determine whether it leads to similar classification perfor-
mance. Specifically, we performed the out-of-bag predictor importance estimates to extract
the 10 most important features for each thought dimension to feed into the RF classification
model. The PSO approach resulted in superior classification performance compared to the
out-of-bag predictor importance approach. We report these results in the Supplementary
Table S4.

3. Results
3.1. Participant Self-Selected Tasks

All participants reported performing similar self-selected activities on the computer,
which included reading (32%), writing or editing (14%), watching videos (19%), browsing or
surfing the internet (11%), other cognitively demanding tasks (e.g., coding, playing games
such as Sudoku, or preparing PowerPoint presentations, 23%) and others (e.g., doing
nothing; 1%).

3.2. Classification Performance Based on All Features

The 29 eye tracking features served as input to the RF classifier for the classification
of thoughts in nine dimensions using the k-fold WIS strategy. The mean, maximum, and
minimum values of the classification performance across 50 iterations are reported in
Table 3. We consider these results as the baseline to which we compare the performance
using the PSO-based feature selection approach. All nine thought dimensions attained an
above-chance level classification performance, with the mean MCC values ranging from
0.13 to 0.42. The other-oriented thought dimension showed the highest performance with
a mean MCC value of 0.42, followed by the internal–external thought dimension with a
mean MCC value of 0.34.

Table 3. Classification performance of the RF classifier using all 29 features.

Thought Dimensions
MCC AUC BA kappa

Mean Max Min Mean Max Min Mean Max Min Mean Max Min

On-Task vs. Off-Task 0.17 0.25 0.13 0.65 0.68 0.63 0.58 0.61 0.57 0.17 0.24 0.13
Internal vs. External

Orientation 0.34 0.39 0.29 0.73 0.75 0.70 0.67 0.70 0.64 0.33 0.39 0.28

Freely vs. Not Freely
Moving 0.13 0.18 0.06 0.60 0.63 0.56 0.56 0.59 0.53 0.12 0.18 0.06
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Table 3. Cont.

Thought Dimensions
MCC AUC BA kappa

Mean Max Min Mean Max Min Mean Max Min Mean Max Min

Goal- vs. Not
Goal-Directed 0.27 0.33 0.22 0.70 0.73 0.67 0.63 0.65 0.60 0.26 0.32 0.20

Sticky vs. Not Sticky 0.22 0.27 0.16 0.65 0.68 0.61 0.60 0.62 0.58 0.21 0.26 0.16
Self- vs. Not Self-Oriented 0.33 0.37 0.28 0.73 0.76 0.69 0.66 0.68 0.63 0.32 0.36 0.27

Others- vs. Not
Others-Oriented 0.42 0.45 0.35 0.79 0.81 0.76 0.70 0.72 0.67 0.41 0.44 0.34

Visual vs. Not Visual 0.29 0.34 0.24 0.71 0.74 0.68 0.64 0.67 0.61 0.28 0.34 0.23
Auditory vs. Not Auditory 0.21 0.27 0.14 0.70 0.74 0.63 0.60 0.63 0.58 0.21 0.27 0.14

Note: MCC = Matthews Correlation Coefficient; AUC = Area Under the Curve; BA = Balanced Accuracy.

3.3. Classification Performance Based on Optimal Subset of Features

Next, we aimed to identify an optimal subset of 10 features using the PSO algorithm
to further improve the prediction accuracy of the RF classifier. The 10 best features selected
by the PSO algorithm for each thought dimension are reported in Table 4 and the mean
classification performance averaged across participants based on this optimal feature set
evaluated for 50 iterations is reported in Table 5. Similar to the above analyses, all nine
thought dimensions attained an above-chance level classification performance, with the
mean MCC values ranging from 0.17 to 0.47. The others-oriented thought dimension again
achieved the highest mean MCC value of 0.47 and a maximum MCC value of 0.54. The
internal–external thought dimension as well as the self-oriented thought dimension also
performed well with both dimensions obtaining a mean MCC value of 0.36. In addition
to group level classification performance, we also present individual level classification
performance for each participant for each thought dimension in Figure 2. To compare
the performance of the RF classifier to other common classification algorithms, we im-
plemented the support vector machine and the k-nearest neighbor algorithms using the
PSO-selected optimal feature set. These results are reported in Tables S5 and S6, respec-
tively. The RF classifier outperformed both the support vector machine and the k-nearest
neighbor classifiers.

Table 4. The optimal subset of 10 features for each thought dimension using PSO.

Thought Dimensions Optimal Features

On-Task vs. Off-Task fixation (count, mean, median, min, RMSD); saccade (min, std), velocity (max, range);
fixation–saccade ratio

Internal vs. External Orientation fixation (median, max, range, std); saccade (median, min); amplitude (std); velocity
(median, max); horizontal saccades

Freely vs. Not Freely Moving fixation (count, mean, min, max, std); saccade (min, std); amplitude (min, std);
velocity (min)

Goal- vs. Not Goal-Directed fixation (min, max, RMSD); saccade (count, min, range); velocity (median, min, std);
horizontal saccades

Sticky vs. Not Sticky fixation (count, min, std); saccade (median); amplitude (median, min, range); velocity
(min, max, std)

Self- vs. Not Self-Oriented fixation (min, range); saccade (min, max, range, std); amplitude (median); velocity
(mean, range); fixation–saccade ratio

Others- vs. Not Others-Oriented fixation (min, range); saccade (count, median, min); amplitude (mean, std); velocity
(mean, min); fixation–saccade ratio

Visual vs. Not Visual fixation (min, max, std); saccade (min, max, std); amplitude (min, std); velocity (mean);
horizontal saccades
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Table 4. Cont.

Thought Dimensions Optimal Features

Auditory vs. Not Auditory fixation (count, mean, median, min); saccade (count, min); amplitude (median, max);
velocity (mean); horizontal saccades

Note: min = minimum, max = maximum, std = standard deviation, RMSD = root mean square deviation;
fixation and saccade refer to fixation and saccade duration. Amplitude and velocity refer to saccade amplitude
and velocity.

Table 5. Classification performance of the RF classifier using the optimal feature set.

Thought Dimensions
MCC AUC BA kappa

Mean Max Min Mean Max Min Mean Max Min Mean Max Min

On-Task vs. Off-Task 0.23 0.29 0.17 0.68 0.71 0.64 0.61 0.64 0.58 0.23 0.28 0.17
Internal vs. External

Orientation 0.36 0.41 0.31 0.72 0.75 0.70 0.68 0.71 0.65 0.35 0.40 0.31

Freely vs. Not Freely
Moving 0.17 0.25 0.11 0.62 0.66 0.59 0.58 0.62 0.56 0.17 0.24 0.11

Goal- vs. Not
Goal-Directed 0.31 0.36 0.26 0.71 0.74 0.68 0.65 0.68 0.62 0.30 0.36 0.25

Sticky vs. Not Sticky 0.25 0.33 0.18 0.65 0.68 0.61 0.62 0.66 0.58 0.24 0.32 0.17
Self- vs. Not Self-Oriented 0.36 0.42 0.31 0.73 0.77 0.69 0.68 0.71 0.65 0.36 0.41 0.30

Others- vs. Not
Others-Oriented 0.47 0.54 0.41 0.80 0.82 0.77 0.73 0.77 0.70 0.46 0.54 0.41

Visual vs. Not Visual 0.30 0.37 0.24 0.73 0.75 0.69 0.65 0.69 0.62 0.29 0.36 0.24
Auditory vs. Not Auditory 0.33 0.44 0.23 0.75 0.79 0.72 0.66 0.72 0.61 0.32 0.43 0.23

Note: MCC = Matthews Correlation Coefficient; AUC = Area Under the Curve; BA = Balanced Accuracy.
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Figure 2. Mean MCC values for the nine thought dimensions for each participant. Only participants
with sufficient data for classification for a given thought dimension were included in the analysis and
shown here.

The mean values for each of the 10 PSO-selected features for each class of the thought
dimensions are reported in Supplementary Table S7 offering insight into the specific eye
movement correlates of each class of a given thought dimension. As these values were aver-
aged across participants and sessions, they did not account for within and across individual
differences and thus only serve to provide a crude estimate for interpretation purposes.
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They nonetheless shed light on the unique eye movement patterns associated with each
thought dimension. For example, off-task thoughts were associated with increased fixation
count and median fixation duration compared to on-task thoughts. Internally oriented
thoughts were linked to decreased median saccade velocity and fewer horizontal saccades
relative to externally oriented thoughts. Similarly, maximum fixation duration was reduced
during freely moving thoughts, along with minimum saccade amplitude. Saccade count
and median saccade velocity were reduced during goal-directed thoughts, whereas sticky
thoughts were linked to a reduced fixation count and minimum saccade amplitude. Self-
oriented thoughts were associated with a greater fixation range and mean saccade velocity;
in contrast, fixation range and mean saccade velocity were reduced during others-oriented
thoughts. Visual thoughts were linked to reduced minimum saccade amplitude and mean
saccade velocity, while auditory thoughts correlated with higher median saccade amplitude
and mean saccade velocity.

3.4. Comparison of Classification Performance

For all thought dimensions, the RF classifier attained better classification performance
using the optimal feature sets. Specifically, the maximum MCC values attained by the
optimal feature set were higher than the maximum MCC values attained by the RF classifier
using all 29 features. The same pattern was observed for mean MCC values. A comparison
of MCC values based on the two approaches based on the mean and maximum MCC values
is illustrated in Figure 3. Similar figures illustrating the other performance metrics are
reported in the Supplementary Material (Figures S1–S3). The mean MCC values attained by
the optimal feature set for all the thought dimensions were 0.01 to 0.12 higher than the mean
MCC values attained by the RF classifier without any feature selection. As an example,
for the other-oriented thought dimension, the mean and maximum MCC values using the
optimal feature set were 0.05 and 0.10 higher than the mean and maximum values attained
using all the features. Using the optimal feature set, the largest improvement of 0.12 in the
mean MCC value was observed in the auditory thought dimension. Together, these results
indicate that the PSO-based feature selection algorithm showed a significant improvement
in classification performance compared to classification without any feature selection.
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4. Discussion

In the current study, we tested the performance of a PSO-based RF classifier in de-
tecting nine different thought dimensions (task-relatedness, internal–external orientation,
freely moving, goal-directed, stickiness, self-orientation, others-orientation, visual modality,
and auditory modality) using eye tracking measures acquired in a naturalistic task context
across seven recording sessions. Our results showed above-chance level classification in all
nine thought dimensions, with PSO-based feature selection further improving performance.
Thus, our model demonstrates the utility of eye tracking approaches for classification of
thoughts during naturalistic tasks by establishing a unique set of markers associated with
each dimension.

Our study contributes to the literature in several ways. First, to enhance the ecological
validity of our findings, participants in our study were free to choose whichever tasks
they wished to perform, which enabled us to detect thought dimensions in a more nat-
uralistic context. This also led to our focus on global eye tracking features that may be
more generalizable across tasks, which contrasts with many previous studies focusing
on task-dependent measures. Second, to our knowledge, we were the first to implement
PSO to identify an optimal subset of interpretable features that led to enhanced detection
performance in thought dimensions. This is consistent with previous research demonstrat-
ing superior classification performance based on a PSO approach compared to using all
available features as input to the RF classifier [55]. Finally, we acquired data from seven
participants across seven recording sessions, enabling us to gather a large amount of data
for each thought dimension to obtain reliable estimates. This unique dataset contrasts
with past studies with similar goals which primarily acquired single-session data [27].
Taken together, our PSO-based RF model achieved decent classification performance for
all nine thought dimensions based on global eye tracking features in combination with
statistical features, demonstrating the utility of eye tracking data for thought detection in
more naturalistic contexts. We discuss specific findings, implications, and limitations of
our findings below.

4.1. Task-Relatedness and Internal–External Orientation

The optimal subset of features as chosen via PSO for the task-relatedness thought
dimension included a combination of features linked to fixation duration (count, mean,
median, minimum, and RMSD), saccade duration (minimum and standard deviation), and
saccade velocity (maximum and range). In particular, we found that off-task thoughts were
associated with a larger fixation count and longer median fixation duration compared to
on-task thoughts. Of the thought dimensions explored in this study, the task-relatedness
thought dimension has been the most commonly examined in the context of thought
detection. The overall classification performance in our study is comparable to the per-
formance reported in recent studies predicting on- vs. off-task thoughts using global and
local eye tracking features during reading tasks (kappa = 0.15–0.45) [27]. Importantly,
the PSO-selected features in this study were broadly consistent with the existing liter-
ature. For example, a previous study detected off-task thoughts during online lecture
viewing using machine learning models based on global features from eye tracking, in-
cluding statistical features calculated from fixation duration, saccade duration, saccade
length, and velocity [31]. Similarly, another study found that fixation duration and saccade-
based measures (specifically mean and maximum peak velocity, as well as maximum and
mean amplitude) could be used to differentiate off-task from on-task states during video
lectures [56]. The optimal set of features for detecting off-task thought in our study is
consistent with these past studies. Other studies have noted more task-dependent rela-
tionships between off-task thoughts and associated eye tracking measures. For example,
larger saccades were linked to off-task thoughts during auditory and sustained attention
tasks whereas smaller saccade amplitudes and fewer fixations have been correlated with
off-task thoughts during reading tasks [26]. The variable findings underscore the possibility
of different global and local eye tracking features associated with off-task thoughts in a
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naturalistic context. In summary, our results corroborate past detection studies focusing
on global eye tracking features. In light of the variety of tasks participants performed in
this study, our results highlight the value of global eye tracking features as they are more
generalizable across tasks.

The internal–external orientation thought dimension was best classified by a combi-
nation of features including fixation duration (median, maximum, range, and standard
deviation), saccade duration (median and minimum), saccade amplitude (standard devi-
ation), saccade velocity (median and maximum), and horizontal saccades. In particular,
internally oriented thoughts were associated with reduced median saccade velocity and
horizontal saccade count compared to externally oriented thoughts. These slower and
fewer eye movements in internal orientation could reflect perceptual decoupling from
external stimuli, as engagement in internal tasks has previously been linked with delayed
saccades in a target–distractor task [57]. Thus far, no studies have attempted to detect
this dimension of thought using eye tracking; however, a few experimental studies have
examined the eye tracking correlates of internal–external orientation. For example, inter-
nally directed cognition has been connected to fewer and longer fixations [23], and fewer
saccades [58], suggesting that this dimension is also associated with a unique eye tracking
signature. Though the results of the present study are only partially in line with these prior
findings, the global features found in this study may be more generalizable across task
contexts. Importantly, the task-relatedness dimension is often thought to be associated
with the internal–external orientation of thoughts, especially in a laboratory context in
which on-task thoughts tend to be focused on an external laboratory task (e.g., reading,
scene-viewing, sustained attention to response tasks). Though we found some common
optimal features between these dimensions (median fixations, saccade duration minimum,
and maximum saccade velocity), most features did not overlap. This highlights the impor-
tance of distinguishing between these two dimensions [59]. This is particularly important
in ecologically valid contexts where a task may be internally oriented (e.g., doing mental
math), whereas most experimental tasks tend to be externally oriented.

4.2. Freely Moving, Goal-Directedness, and Sticky Thoughts

According to the dynamic framework [60], freely moving thoughts move from one
topic to another without an overarching goal or direction, and can be conceptualized as
the opposite of goal-directed thoughts or sticky thoughts. This is because goal-directed
thoughts are considered deliberately constrained via cognitive control and sticky thoughts
are automatically constrained due to sensory or personally affective salience, whereas freely
moving thoughts are associated with lower constraints.

Interestingly, there was some overlap in PSO-chosen features between all three dimen-
sions (minimum fixation duration and standard deviation of saccade velocity), between
freely moving thoughts and goal-directed thoughts (maximum fixation duration and min-
imum saccade duration), between freely moving thoughts and sticky thoughts (fixation
count, standard deviation of fixation duration, and minimum saccade amplitude), and
between goal-directedness and the sticky dimension (minimum saccade velocity). Despite
these overlapping features between thought dimensions, they seem to be associated with
different patterns for each dimension. For example, freely moving thought was associated
with shorter fixation duration compared to non-freely moving thoughts, whereas this
pattern was not observed in the goal-directedness dimension; this may suggest that the
mind moving quickly between topics manifests in the frequency of eye movements. There
were also features that were distinctively correlated with one dimension only, such as
median saccade velocity and saccade count, which were linked with the goal-directedness
dimension. In contrast, the sticky dimension was related to median saccade duration and
median saccade amplitude. In summary, some features overlapped but not all features
were shared across these dimensions, suggesting that, whereas different patterns on the
same features can reflect all three dimensions, some features were uniquely associated with
each of the three dynamic thought dimensions.
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4.3. Self- and Others-Oriented Thoughts

As with other dimensions explored in this study, the self and others orientation
thought dimensions have not been previously explored with eye tracking in a naturalistic
task context. Half of the features were similar between these two dimensions (minimum
and range of fixation duration, fixation–saccade ratio, minimum saccade duration, and
mean saccade velocity). Among these features, self-oriented and non-others-oriented
thoughts both showed increased range of fixation duration and mean saccade velocity.
However, they also have distinct features. For example, saccade range and saccade ve-
locity range were associated only with the self-orientation dimension, whereas mean
saccade amplitude and saccade count were only related to the others-orientation dimen-
sion. Since some thoughts may contain both self- and others-oriented thoughts, it is not
surprising that some of these features overlap. Nonetheless, the features uniquely asso-
ciated with each thought dimension also suggest self- and others-oriented thoughts are
independent dimensions.

4.4. Visual and Auditory Modalities

There has been little research into the modality of thoughts as classified with eye
tracking; however, prior works have noted that eye tracking may have potential in the
context of studying mental imagery [61]. In our study, minimum fixation duration, mini-
mum saccade duration, mean saccade velocity, and horizontal saccade count were common
PSO-optimized features between visual and auditory thoughts, but the majority of features
for each dimension did not overlap. For example, visual thoughts were linked to a reduced
mean saccade velocity and minimum saccade amplitude, whereas auditory thoughts were
associated with a higher median saccade amplitude and mean saccade velocity. Notably, a
recent paper found eye movements to be the most common form of participant-reported
detectable body movement associated with both visual and auditory mental imagery [62],
which supports the notion that both thought modalities can be classified by unique
eye movements.

4.5. Limitations, Future Directions and Implications

Several limitations need to be considered when interpreting these results. First, given
that we aimed to collect a sufficient amount of data from each participant in the various
thought dimensions by having multiple recording sessions, the sample size was limited
to seven participants limiting the generalizability of our findings. This trade-off has
been employed in other thought dimension studies to increase the signal-to-noise ratio
in the data [63]. Future studies would need to recruit a larger number of participants
to assess the generalizability of our findings as well as to examine potential individual
differences in eye movement patterns associated with different thought dimensions across
tasks. Second, as very few of the thought dimensions discussed have been previously
explored with eye tracking measures, the interpretation of the individual features and
any associated underlying cognitive processes remains speculative. Although examining
the mean values of these eye tracking measures for each thought dimension suggests
unique patterns associated with each thought dimension, these values were derived from
obtaining the overall means across participants and sessions and did not consider within
and across individual differences that were more precisely captured in the machine learning
algorithms. A third point of consideration concerns potential systematic influences of tasks
on the observed gaze patterns associated with a given thought dimension. Although we
aimed to identify the optimal set of global eye tracking features of thought dimensions
across tasks using PSO, studies have shown that these features are nonetheless influenced
by task stimulus [26]. Future work should therefore consider systematically examining
the features associated with each thought dimension that occurs during each type of
task in more experimentally constrained settings. Fourth, unlike neuroimaging-based
models such as those that employ EEG or fMRI, eye tracking-based thought classification
does not inform the potential neural underpinnings of the various thought dimensions.
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Nonetheless, our study provides insight into how eye movements correspond with each
thought dimension and demonstrates that classification performance with gaze-based
measures are comparable to that with EEG and fMRI [49,53]. The portability, relative
ease of implementation, and wide commercial availability of eye trackers and webcams
also makes gaze-based classification a more feasible option for real-world implementation
across task contexts. Finally, although above-chance classification was achieved with
our model, it may be possible to improve performance by examining a different set of
global eye tracking features or using different machine learning algorithms than the ones
employed here.

Despite these considerations, the present study is a proof-of-concept demonstrating the
utility of eye tracking for thought detection across a comprehensive set of nine dimensions
of ongoing thought. There are several important practical and clinical implications that
inform future directions. To our knowledge, our results are the first to demonstrate that
PSO can enhance performance of gaze-based thought detection, suggesting that PSO can
be used to optimize features without reliance on the past literature to inform on relevant
features. This is particularly important in the context of exploring thought dimensions
that have not previously been detected with eye tracking, which is the case for several
of the dimensions explored in this study. Future research may use these findings to
develop algorithms that automatically detect thoughts in real-time. Given the challenge
of employing neuroimaging markers of thoughts such as fMRI or EEG in daily life, our
findings based on eye tracking measures may expedite the implementation of real-time
thought detection, which has been successfully accomplished in off-task thought detection
in an educational setting [33,64]. Moreover, such real-time algorithms could be used for
detection of specific thought dimensions; specifically, thought identification could be used
in conjunction with mindfulness or other cognitive control techniques to reduce negative
thoughts or increase positive thoughts to improve well-being and productivity. Future
investigations can also develop eye tracking-based biomarkers of disorders characterized
by altered thoughts, such as attention-deficit hyperactivity disorder or depression [65].

5. Conclusions

In summary, this study demonstrated that gaze features can be used with a PSO-based
random forest classifier to detect naturalistic thoughts with above chance performance in
nine dimensions—task-relatedness, freely moving, stickiness, goal-directedness, internal–
external orientation, self-orientation, others orientation, visual modality, and auditory
modality. Each dimension was associated with a distinct set of optimized eye tracking
features, which highlight the value of considering the heterogeneity of ongoing thoughts.
This has implications for the implementation of thought tracking in real-time in daily life
contexts and clinical settings.
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points in each class; Table S3: Classification performance of the random forest classifier using the
optimal feature set with k = 2 to 5; Table S4. Features selected based on out-of-bag predictor impor-
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with optimal features derived from the PSO approach; Table S6. Classification performance using the
k-nearest neighbor algorithm with optimal features derived from the PSO approach; Table S7. Values
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(BA) values of random forest classifier with the optimal feature set and without any feature selection;

https://www.mdpi.com/article/10.3390/bioengineering11080760/s1
https://www.mdpi.com/article/10.3390/bioengineering11080760/s1


Bioengineering 2024, 11, 760 17 of 19

Figure S3. Comparison of Kappa values of random forest classifier with the optimal feature set and
without any feature selection.
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