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Abstract: Chronic rheumatic diseases such as rheumatoid arthritis (RA) are characterized by a
dysregulated immune response and persistent inflammation. The large number of neutrophilic
granulocytes in the synovial fluid (SF) from RA patients leads to elevated enzyme activities, for
example, from myeloperoxidase (MPO) and elastase. Hypochlorous acid (HOCl), as the most
important MPO-derived product, is a strong reactive oxygen species (ROS) and known to be involved
in the processes of cartilage destruction (particularly regarding the glycosaminoglycans). This
review will discuss open questions about the contribution of HOCl in RA in order to improve the
understanding of oxidative tissue damaging. First, the (chemical) composition of articular cartilage
and SF and the mechanisms of cartilage degradation will be discussed. Afterwards, the products
released by neutrophils during inflammation will be summarized and their effects towards the
individual, most abundant cartilage compounds (collagen, proteoglycans) and selected cellular
components (lipids, DNA) discussed. New developments about neutrophil extracellular traps (NETs)
and the use of antioxidants as drugs will be outlined, too. Finally, we will try to estimate the effects
induced by these different agents and their contributions in RA.
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1. Introduction

Rheumatic diseases such as osteoarthritis (OA) or rheumatoid arthritis (RA) are abun-
dant diseases, especially in industrialized countries with high life expectancy of the cit-
izens [1]. RA represents an autoimmune disease where the immune system attacks the
joints and/or its constituents like proteins and/or carbohydrates, leading to persistent
inflammation and damage. On the other hand, OA is a degenerative joint disease caused
by excessive mechanical wear on joints, resulting in the cartilage destruction. The onset of
RA is relatively rapid, while OA develops slowly over the years and regularly causes symp-
toms at elevated age. RA also affects organs and systems beyond the joints and may cause
systemic symptoms such as fatigue, fever, and loss of appetite, which are typically not seen
in OA. Although both diseases are symptomatically different, we will discuss them here
simultaneously since both have the same unique (chemical) characteristics: the damaging
and modification of the articular cartilage layer of the joint and/or the inflammation of the
synovial membrane (synovitis) (Figure 1) [2].

In the USA alone, more than 40 million citizens (about 12% of the overall US popula-
tion) suffer from arthritis [3]. The socio-economic consequences (including but not limited
to the inability to work and early retirement as personal consequences) and the annual
all-cost ranged from USD 12,509 to USD 20,919 per RA patient in 2019 [4]. Unfortunately,
the incidence of the disease is also increasing. The reasons are unknown to date [3], but
akinesia (meaning absent movement, i.e., the inability to perform a clinically perceivable
movement [5]) as well as extreme sports may also be responsible for the observed increase.
Although medial laymen often assume that the term arthritis represents just a single disease,
it actually comprises more than 100 different types of arthritic diseases, which collectively
affect virtually all parts of the human body—not only the joints [6].
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Figure 1. Survey of the most abundant glycosaminoglycans (GAGs) of healthy hyaline articular car-
tilage. As schematically shown, chrondroitin sulfate (CS, green colored) chains are more abundant 
than keratan sulfate (KS, purple colored) chains. Hyaluronic acid (HA, red colored), also named 
hyaluronan, functions as the backbone in the so-called “bottle-brush” structure. Structural changes 
in GAGs may lead to the degradation of the cartilage and thus to function loss of the cartilage. 
Characteristic patterns of healthy, rheumatoid arthritis (RA) as well as osteoarthritis (OA) cartilage 
are illustrated using stock photos from the illustration platform Colorbox (reproduced with permis-
sion using the campus license from Leipzig University). 

Therefore, it is regrettable that neither a convincing cure of the disease nor reliable 
methods of early disease diagnosis are available—although there is currently intense re-
search being performed [7]. Here, we will discuss changes in (articular) cartilage as well 
as the joint (synovial) fluid since both are affected by OA and RA, respectively. 

2. Composition of Articular Cartilage and Synovial Fluid 
Since both cartilage and synovial fluid (SF) have a rather unique composition (Figure 

1), the architecture of (hyaline, articular) cartilage and the composition of SF will be 
shortly discussed. Further details are available, for instance, in [8,9]. With 70–80% of the 
wet tissue weight, water is the most abundant constituent of the cartilage [10]. This is cru-
cial for maintaining the function of cartilage, i.e., its shock-absorbing properties and the 
frictionless motion of the bones within the joint [11]. So-called chondrocytes in the hyaline 

Figure 1. Survey of the most abundant glycosaminoglycans (GAGs) of healthy hyaline articular
cartilage. As schematically shown, chrondroitin sulfate (CS, green colored) chains are more abundant
than keratan sulfate (KS, purple colored) chains. Hyaluronic acid (HA, red colored), also named
hyaluronan, functions as the backbone in the so-called “bottle-brush” structure. Structural changes
in GAGs may lead to the degradation of the cartilage and thus to function loss of the cartilage.
Characteristic patterns of healthy, rheumatoid arthritis (RA) as well as osteoarthritis (OA) cartilage are
illustrated using stock photos from the illustration platform Colorbox (reproduced with permission
using the campus license from Leipzig University).

Therefore, it is regrettable that neither a convincing cure of the disease nor reliable
methods of early disease diagnosis are available—although there is currently intense
research being performed [7]. Here, we will discuss changes in (articular) cartilage as well
as the joint (synovial) fluid since both are affected by OA and RA, respectively.

2. Composition of Articular Cartilage and Synovial Fluid

Since both cartilage and synovial fluid (SF) have a rather unique composition (Figure 1),
the architecture of (hyaline, articular) cartilage and the composition of SF will be shortly
discussed. Further details are available, for instance, in [8,9]. With 70–80% of the wet tissue
weight, water is the most abundant constituent of the cartilage [10]. This is crucial for
maintaining the function of cartilage, i.e., its shock-absorbing properties and the frictionless
motion of the bones within the joint [11]. So-called chondrocytes in the hyaline articular
cartilage are responsible for both the synthesis and secretion of major components of the
extracellular matrix (ECM) [12,13]. Cartilage ECM contains a particular network of highly
hydrated proteoglycans and collagen fibrils [13].
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2.1. Collagen

Different collagen types are expressed in articular cartilage (60–70% of the dry weight),
which are essential for the elasticity and shear strength of the tissue caused by the presence
of water between the collagen fibrils [14]. Collagen has a remarkable amino acid composi-
tion with high amounts of the amino acids glycine (Gly), proline (Pro) and hydroxyproline
(Hyp) [15]. In particular, Hyp occurs exclusively in collagen, where it is essential for the
noteworthy (thermal) stability of collagen [16]. Gly, Pro and Hyp mediate the triple-helical
structure of collagen, leading to the formation of collagen fibers [8]. This makes (native)
collagen insoluble in virtually all solvents. Only the denaturation of collagen into gelatin
makes it soluble in hot water, which is widely used in the food industry [17]. Under physio-
logical conditions, the insolubility of collagen is essential to prevent swelling (water-uptake)
of the cartilage. Collagen degradation by proteolytic enzymes is therefore (in addition to
further aspects) closely linked to cartilage degradation [18]. The in vitro degradation of
cartilage by collagenase results in a strongly increased water content [19] under otherwise
identical conditions. This has two different reasons: On the one hand, the water binding
of the polysaccharides of cartilage is overestimated since the collagen moiety is partially
lost. On the other hand, the swelling limitation of the collagen network is reduced. Thus,
proteolytic enzymes were believed to represent the main effectors of cartilage degradation
in the past [20]. Intact, triple-helical collagen cannot be digested by common proteolytic
enzymes (such as trypsin), while denatured collagen (called gelatin; without collagen fibers)
is highly sensitive to the majority of all proteases [19].

2.2. Proteoglycans

The main proteoglycan (aggrecan) in the hyaline cartilage consists of a core protein
connected with both chondroitin and keratan sulfate chains [21], as shown in Figure 1.
Chondroitin sulfate (CS) and keratan sulfate (KS), as well as hyaluronic acid (HA, as the
backbone of the aggrecan aggregate), are known as glycosaminoglycans (GAGs) and are
susceptible to degradation under oxidative conditions. Thus, oxidatively modified GAG
species will be the focus of this review and their reaction behavior will be discussed in
more detail compared to other cartilage constituents.

Accordingly, calcification processes of cartilage may lead to pathological conditions
due to the reduction in the water content by shielding the negative charges of the native
cartilage [22].

HA is the simplest GAG, just a polysaccharide made of glucuronic acid and N-
acetylglucosamine disaccharide units, which are 1→3 glycosidically linked and lead to
high-molecular-weight HA by 1→4 glycosidic linkages. HA is the only GAG without
any sulfate residues and is only a minor constituent in the proteoglycan aggregates [23].
Nevertheless, HA is present in the cartilage as well as (in significant concentrations) in
the SF. Its sulfated analogues such as KS and CS are much more abundant in the cartilage
tissue. The sulfation of GAGs does not occur randomly but seems to be species-dependent.
For instance, bovine cartilage has a higher content of the 4-sulfate compared to human
cartilage [24]. There are also many indications that the ratio between sulfated and non-
sulfated GAGs is altered in the aged cartilage [25]. Although this topic is outside the scope
of this paper, there are also indications that the “sulfation code” plays a major role in signal
transduction [26]. This indicates that the sulfation of cartilage polysaccharides does not
occur randomly.

Intact SF is a highly viscous fluid and acts as joint lubricant and shock absorber,
as well as an important source of nutrition for the articular cartilage, which borders
on the synovial joint [27]. SF may be considered an “ultrafiltrate” of blood [28], i.e.,
the concentrations of salts and small molecules are nearly identical in both body fluids.
Providing detailed compositional information about physiological SF is difficult since it can
hardly be obtained from healthy volunteers due to ethical reasons. Thus, control samples
are often missing in related studies. Furthermore, SF is a very viscous body fluid. This high
viscosity is caused by the significant concentration of high-molecular-weight HA (about
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2–3 mg/mL). Many attempts were performed to use the mechanical (viscoelastic) properties
as a diagnostic criterion of degenerative joint diseases in the past [29]. This was motivated
by the finding that the viscosity of SF can be reduced in the presence of reactive oxygen
species (ROS) [30] released by stimulated neutrophilic granulocytes. Additionally, SF from
patients with inflammatory joint diseases are characterized by significant myeloperoxidase
(MPO) activities in the U/mL range (one unit (U) is defined as the amount of MPO that will
reduce 1.0 µmol H2O2 per minute at 25 ◦C, pH 6.0) [31]. However, it has to be emphasized
that the availability of SF to monitor pathological changes has nowadays significantly
decreased: puncturing was still a very common medical tool a few decades ago since the
majority of rheumatic patients suffered from swollen knees. This was reduced due to the
development of more efficient drugs and treatments—particularly by “biologicals” [32].

3. Mechanisms of Cartilage Degradation

It is commonly accepted that inflammatory joint diseases affect both cartilage composi-
tion and layer thickness by the release of enzymes and/or ROS generation. However, there
is still no consensus on the details about the mechanisms of cartilage degeneration [33].
Only two models are established:

1. Chondrocytes (in the cartilage) or synoviocytes (at the interior of the articular capsule)
are negatively affected by products of typical inflammatory cells such as neutrophilic
granulocytes (vide infra). This leads to a reduced overall ECM synthesis and the
increased degradation of the ECM [34]. Additionally, the “quality” of the de novo
generated ECM may be poor (fibrocartilage instead of hyaline cartilage).

2. Inflammatory cells such as neutrophilic granulocytes, macrophages or T cells release
harmful enzymes that can degrade the ECM. Matrixmetalloproteinases (collagenase,
for instance) are often assumed to be particularly responsible for that degradation
processes [35], especially in combination with ROS. This opinion is emphasized by
the observation that the number of granulocytes is augmented in the blood from RA
patients [36] and that polymorphonuclear granulocytes (abbreviated as both PMNs or
neutrophils) can be found in large numbers in the pannus tissue, a replacement tissue
as a consequence of ECM degradation, of cartilage [37,38].

Although macrophages [39] and T-cells [40] may also contribute to cartilage degra-
dation, this review will focus on products derived from neutrophils (most potent inflam-
matory cells), which are characterized by much higher concentrations of MPO than other
cells [41,42]. The main reason why the contribution of neutrophils was underestimated
to date is—at least partially—the fact that neutrophils cannot be kept in cell culture or
only with considerable limitations (for example, as “neutrophil-like” cells [43]). Thus, they
must be freshly prepared from the blood from volunteers [44] that confers many difficul-
ties, particularly the poor reproducibility of the investigations. Recently, the “neutrophil
extracellular traps” (NETs) were introduced as important constituents in RA [45] which
will be discussed in Section 9 of this review (vide infra).

Normally, there is an equilibrium between the generation of ROS/reactive nitrogen
species (RNS) and their consumption by antioxidants [46]. However, excessive ROS gen-
eration leads to oxidative induced post-translational modifications of proteins and may
give rise to neoepitopes that are recognized by the immune system as non-self-substance.
The resulting formation of autoantibodies is detectable by specific antigens, which might
improve both early diagnosis and monitoring of disease activity. Particularly promising
diagnostic autoantibodies include, for instance, anti-carbamylated proteins (generated
by the reaction with a degradation product of urea) and anti-oxidized type II collagen
antibodies [47].

4. Reactive Oxygen/Nitrogen/Chlorine Species

Such reactive species are generated in or (after the release of the required enzymes)
from many cells [48]. For instance, fibroblasts, chondrocytes, macrophages, and, particu-
larly, neutrophils are known as sources of ROS [49]. Neutrophils accumulate in inflamed
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joints in huge amounts [50,51] with an average percentage in the whole SF as high as
85.7% [52]. The physiological contribution of neutrophils (compared to the total cell num-
ber) is, however, much smaller.

Although pathogenic microorganisms are involved in some kinds of arthritis, antibod-
ies, cytokines and chemotactic agents are assumed to represent one of the prime reasons
for the accumulation and activation of neutrophils in the inflamed joint [36]. The increased
oxygen consumption by neutrophilic granulocytes upon stimulation is called respiratory
burst [53] and the generated ROS, RNS and reactive chlorine species (RCS) are summarized
in Figure 2. These reactive species contain either oxygen, nitrogen, chlorine [54]—or even
two of these (electronegative) elements. In some cases, the nomination is thus ambiguous:
for instance, NO2 is commonly considered an RNS. However, it also contains oxygen.
Therefore, ROS would be an appropriate term, too. We will use ROS throughout this review
because it includes most of the relevant species—particularly HOCl.
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Figure 2. Pathways leading to and from different relevant reactive species (marked in blue). The HOCl
generation is catalyzed by the enzyme myeloperoxidase (MPO) via the chlorination cycle (shown in
detail, blue colored box). MPO does not exclusively metabolize Cl−, but Br− and SCN− as well.

ROS were comprehensively discussed already in the past [8]. Thus, we will only
discuss those species, which are particularly relevant in the context of MPO and start
with atmospheric oxygen (O2), which constitutes about 21% of the air. In a first reaction
(Equation (1)), the enzyme NADPH oxidase catalyzes the reduction of O2 into superoxide
anion radicals (O2

•−), at which point the required electrons are generated by the oxidation
of NADPH by the enzyme NADPH oxidase [55]:

NADPH + 2O2
NADPH oxidase−−−−−−−−−→NADP+ + H+ + 2O•−2 (1)
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Afterwards, O2
•− dismutates either spontaneously or particularly in the presence of the

enzyme superoxide dismutase (SOD) into hydrogen peroxide (H2O2) and O2 (Equation (2)):

2O •−2 + 2H+ Superoxide dismutase−−−−−−−−−−−→ H2O2 + O2 (2)

H2O2 is the substrate of the enzyme MPO, which is particularly abundant in neu-
trophils, monocytes [56] and macrophages [57]. H2O2 is the educt of more efficient oxi-
dants [58]. MPO reduces H2O2 to water under the formation of the so-called compound
I (Figure 2). This activated form of the enzyme is reduced to the native enzyme either
by abstracting two electrons from (pseudo)halides or by two one-electron steps via the
formation of compound II [59]. In the first case, (pseudo)halides such as SCN− are oxidized
to (pseudo)hypohalous acids. The generation of hypochlorous acid (HOCl) and hypothio-
cyanate (OSCN−) is particularly important under physiological conditions [60]. The most
important reaction can be summarized as follows:

H2O2 + 2Cl−
Myeloperoxidase−−−−−−−−−→ HOCl + HCl (3)

MPO is stored in the azurophilic (primary) granules within the neutrophils. The
release of MPO may occur either into phagosomes containing engulfed pathogens or into
the extracellular space, depending on the respective stimulus [61]. The most common
degranulation involves the release of primary granules mainly into the phagosome, which
presumably helps to prevent excessive tissue damage. However, in particular inflammatory
conditions or in response to specific pathogens, larger moieties of MPO may be released
extracellularly. This involves the fusion of granule membranes with the phagosome or
the plasma membrane, enabling the release of granule contents into the extracellular
space or phagosome [62], which is surprisingly accompanied by a significant change in
the pH: immediately after phagosome formation, the pH rises to alkaline values due to
NADPH oxidase activation. This pH change may facilitate MPO release and enhance MPO
activity [63].

More recently, MPO degranulation was reported to be mediated via the extrusion of
NETs [64], which are also discussed in this review (vide infra). It should be noted that
controlled MPO release at the site of infection is of paramount importance for optimum
activities. Any uncontrolled degranulation exaggerates the inflammation and may lead to
unwanted tissue damage even in the absence of inflammation.

Furthermore, the determination of the MPO activity is one of the best diagnostic tools
of oxidative stress biomarkers in arthritic diseases. Important activators and inhibitors of
MPO are discussed in [61]: since high amounts of MPO (in the blood) are a decisive factor
for early death [65], the development of suitable MPO inhibitors is of paramount relevance
regarding the cure of arthritis.

Other halogenides such as Br− are even more efficiently converted by MPO. However,
hypobromous acid (HOBr) does regularly only play a minor role because it is by far
less abundant than Cl− [66] at physiological conditions. Since HOCl is continuously
generated by the MPO/H2O2/Cl− system, but immediately consumed by its reaction
with (abundant) biomolecules, the assessment of the HOCl concentration under in vivo
conditions is difficult. Accordingly, the in vivo HOCl concentration is presumably very
low. However, some authors provided (significantly varying) HOCl concentrations. For
instance, 50–100 mM were reported under inflammatory conditions [67], while 0.34 mM
was reported as the HOCl concentration in the extracellular space [68]. The determination
of the HOCl concentration in physiological systems is nowadays a hot topic [69] and there
are many reports describing new methods of HOCl quantitation in physiological systems.

MPO is an abundant enzyme in neutrophils and constitutes about 5% of the entire
protein mass within neutrophils [70]. Therefore, both MPO and HOCl as its prime product
have been assumed to be massively involved in the degradation of the polymeric compo-
nents (particularly GAGs of the proteoglycans) of cartilage for many years [68]. This aspect
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was confirmed by the fact that characteristic degradation products of cartilage (acetate and
oligosaccharides) could be detected in the inflamed joint fluids from patients suffering
from RA [31]. The contribution of neutrophils and products derived thereof in cartilage
degradation has been recently reviewed [36]. Physicians recommend slight physical activity
to their patients suffering from rheumatic diseases. In fact, physical activity may trigger
the generation of MPO and, thus, the extent of HOCl generation [71].

5. Release of Enzymes into the Synovial Fluid—A Short Survey

The presence of MPO in SF was—to the best of our knowledge—first described in
1979 [72]. Hadler and coworkers determined the concentrations of several neutrophil-
derived lysosomal proteins by immunochemical and enzymatic assays in 28 inflammatory
and 9 non-inflammatory SF samples. The quantities of lactoferrin, MPO and enzymatically
determined lysozyme correlated with the number of neutrophils. In contrast, enzymatic
activities measured with synthetic substrates developed for the assay of chymotryptic-like
cationic protein (cathepsin G) and elastase, along with immunochemically determined
lysozyme, were independent of the number of neutrophils. The elastase activity (which
was determined with elastin as substrate) was close to zero. A negative correlation between
the concentration of common proteases and the degree of radiographic destruction of the
joint could be observed. Cathepsin G and elastase are stored in an active form in neutrophil
azurophilic granules [73]. There are two possible explanations why these proteins could not
be detected: On the one hand, both enzymes may be missing and/or they are potentially
not released by the primary granules of the neutrophils. On the other hand, inhibitors
such as Thrombospondin 1 may considerably reduce the activities of these enzymes [74]. It
seems likely that the elastase-alpha 1 proteinase inhibitor complex (EIC) plays a major role:
for instance, the EIC levels increased according to the stage of articular cartilage destruction
and the activity of neutrophil elastase was elevated in destructive joints of RA patients [75].
With the progression of articular cartilage destruction, the EIC levels in plasma of RA
patients increased as well.

In a nutshell, the role of proteases is overstated in many studies in comparison to ROS.
This can be understood by the used methods: proteases give defined reaction products,
which can be rather easily determined, for instance, by mass spectrometry. Compared to
that, the determination of ROS is much more difficult since the obtained products represent
often transient products (e.g., chloramines).

6. Function and Modifications Induced by MPO

MPO plays a major role in the killing of invaded microorganisms by generating a
particular ROS: compound I of MPO oxidizes chloride anions to HOCl, a strong oxidizing
and chlorinating species (Figure 2) [76]. HOCl is a very weak acid with a pKa value of
7.53 [77]. At physiological conditions (pH = 7.4) there is, thus, a nearly 1:1 molar ratio
between HOCl and the hypochlorite ion (ClO−). Although contributions of ClO− cannot
be ruled out at physiological conditions, there is nowadays an agreement that HOCl is the
mainly relevant oxidizing species. Considering these aspects, one observation made in
daily practice is somewhat strange: the product yield increases if the pH is lowered. Since
HOCl should be reformed (according to Le Chatelier’s principle) from ClO−, a marked
dependence on the pH could not be expected.

Dichlorine monoxide (Cl2O) may also be regarded as the anhydride of HOCl (Equa-
tion (4)) [78], which is increasingly assumed (in the same manner as chlorine gas [79]) to be
involved in the deleterious actions of HOCl [78]. However, potential effects of Cl2O in the
field of arthritis or cartilage degradation have not been investigated to date.

2 HOCl → Cl2O + H2O (4)
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HOCl is an important source of other, more reactive ROS, such as hydroxyl radicals
(HO•, Equation (5)) or singlet oxygen (1O2 , Equation (6)):

HOCl + Fe2+ → Fe3+ + HO• + Cl− (5)

HOCl + H2O2 → 1O2 + HCl + H2O (6)

Converting nitrogen dioxide (NO2) into nitryl chloride (NO2Cl) by HOCl [80] may lead
to serious modifications of the sidechains of proteins [81]. However, a detailed discussion
of these aspects is beyond the scope of this review.

HOCl reacts with virtually all biomolecules, i.e., with amino acids, nucleic acids,
sugars and lipids (Figure 3) [82] but with strongly different velocities. Comparative data of
the corresponding reaction kinetics are available in different publications [83]. Thiols (as in
cysteine) and thioethers (as in methionine) are the preferred targets of HOCl (indicated by
the thick arrow in Figure 3).
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After all thiol and thioether groups are consumed, other functional groups, such as
amino functions in sugars, are affected by HOCl [84], i.e., HOCl undergoes well-defined,
gradual reactions. The second order rate constants of the reactions between HOCl and thiols
account for about 107 M−1 s−1 [85] and with amino groups about 7 × 104 M−1 s−1 [86],
while the second order rate constants with olefinic residues are much slower and comprise
only about 9 M−1 s−1 [87]. More detailed data were also compiled by Panasenko and
coworkers [88] and by Davies et al. [89], and a survey of the data is available in Figure 4.

We will now discuss the reactions between HOCl as the main product of the enzyme
MPO and the most important constituents of cartilage and SF, i.e., collagen, GAGs, DNA
and lipids.
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7. Reactions between HOCl and Cartilage Components
7.1. Collagen

The reaction between ROS and collagen was by far less comprehensively studied
compared to the enzymatic degradation of collagen (see Section 2). Nevertheless, it is well
known that the in vitro reactivity between selected amino acids and O2

•− or H2O2 (as the
substrates of MPO) is poor [90]. Slight reactivity is exclusively observed at low pH values,
at which particularly sulfur containing amino acids and (to a minor extent) aromatic amino
acids are oxidized [90]. However, both are not very abundant in collagen.

Despite this poor reactivity, evidence has been provided that O2
•− producing systems

contribute to tissue and cartilage degradation. At these conditions, solubilized colla-
gen (isolated from skin or cartilage) can be assessed by an increased concentration of
4-hydroxyproline in the supernatant of the otherwise insoluble material. Similar results
were also obtained upon incubation of cartilage specimens [91]. In addition to collagen
degradation, GAG degradation (vide infra) was also monitored by an increase in the uronic
acid concentration. Selective scavengers of O2

•− (SOD or catalase) decreased the extent
of cartilage fragmentation. Despite these results, it can be assumed that O2

•− plays only
a minor role in cartilage destruction due to its poor reactivity. It is much more likely
that O2

•− is converted into a more deleterious species (particularly HO•) at pathological
conditions. It is also reasonable to assume that iron ions are massively involved in these
processes [92]. Nevertheless, there is a complex interplay between relevant enzymes such
as SOD and ROS [93,94].

Although the reaction of HOCl and molecules like amino acids or carbohydrates is
much faster compared to O2

•− or H2O2, there is no consensus about the HOCl-mediated
effects on the collagen moiety of cartilage to date. On the one hand, it was shown that the
collagen moiety in the cartilage is affected by HOCl to a lesser extent than the polysaccha-
rides of articular cartilage [95]. Similar results were obtained when other types of cartilage,
e.g., bovine nasal cartilage with an enhanced GAG content but a reduced collagen content,
were treated with HOCl [96]. This is a clear indication that elevated concentrations of HOCl
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are required to affect the collagen moiety of cartilage. On the other hand, it became evident
that HOCl activates collagenase, which may subsequently lead to damages of collagen [97].
This is presumably mediated by the modification of collagenase inhibitors, not the enzyme
itself. In contrast, taurine chloramine (one of the very few stable chloramines) had the
opposite effect and led to an inhibition of the collagenase activity [98]. Stamp and cowork-
ers [99] found elevated protein carbonyl and 3-chlorotyrosine concentrations along with
an increased MPO activity in the SF of RA patients. Since only MPO is able to generate
3-chlorotyrosine, the detection of this molecule is a strong hint on the production of HOCl.
Of course, 3-chlorotyrosine is not necessarily derived from collagen but might also stem
from the link or the core protein of the proteoglycans.

Odobasic and coworkers [100] explored the role of endogenous MPO in experimental
(collagen-induced arthritis) RA in normal and MPO knockout mice. They found that MPO
contributes to the development of arthritis: MPO enhanced the proliferation and decreased
the apoptosis of synovial fibroblasts in vitro.

Westman and coworkers found that the chlorination of collagen type II (the most abun-
dant collagen of cartilage [101]) might represent a mechanism by which immunoreactivity
is induced and by which chronic joint inflammation is supported. However, the detailed
characterization of the chlorinated collagen was not performed which is a significant weak-
ness of this study [102]. Interestingly, physiologically relevant concentrations of HOCl
(between about 5 and 50 µM) lead to the degradation of collagen [103] and reduce the gel-
forming tendency of collagen. Similar effects are induced by chloramines (e.g., from amino
acids), if they are used instead of the reagent HOCl. It was also suggested that hypochlorite,
N-chloramines, and chlorine are involved in the oxidation of the pyridinoline cross-linkages
within the collagen type II in articular cartilage during acute inflammation [104]. Somewhat
later, the collagen type II modification by hypochlorite was investigated in more detail [105].
The authors found that chlorination decreases the radius of collagen II aggregates from 30
to 6.8 nm. Since this alteration already occurs at low concentrations of HOCl, changes in the
aggregate size were suggested as the optimum markers of HOCl-induced collagen oxida-
tion. In another study it was elucidated that the in vitro oxidation of collagen promotes the
formation of advanced protein oxidation products and is involved in the activation process
of human neutrophils [106]. Although cartilage-related collagen was less comprehensively
studied, there is increasing evidence [66] that thyroid peroxidase and peroxidasin are key
enzymes for thyroid hormone synthesis. This is also important regarding the establishment
of functional cross-links in collagen IV during basement membrane development. Although
less abundant in cartilage than collagen type II, the collagen IV network plays a crucial
role regarding the mechanical integrity of the basement membrane. A key event represents
unequivocally the formation of intra- and inter-collagen fibril crosslinks. An inter-residue
sulfilimine bond, which does otherwise rarely occur, was reported to be unique by collagen
IV. These crosslinks are particularly formed between lysine/hydroxylysine or methionine
residues and might occur inter- and intrafibrillarly.

Due to its significance as the major crosslink in the collagen IV network, the sulfilimine
bond plays a critical role in tissue development and various human diseases [107]. In
that way, HOCl and particularly HOBr are very important [108]. The basic reactions are
illustrated in Figure 5:
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Figure 5. Proposed mechanism of sulfilimine bond formation in collagen IV referring to [107]. The
oxidation is based on the reaction with hypohalous acid (HOX; X = Cl, Br) and the sulfur or nitrogen
in methionine (purple) or lysine/hydroxylysine (red) residues, respectively. Both mechanisms lead to
the generation of the sulfilmine bond.

At sites of inflammation, such as the SF of RA patients, increased RNS-mediated
protein damage has been detected in the form of a biomarker, 3-nitrotyrosine, by immuno-
histochemistry, Western blotting, ELISAs and MS. Further details are available in [109].

7.2. GAGs

There is a consensus that GAGs are more efficiently degraded by HOCl in the diseased
joint than the collagen moiety [110]. This is caused by the poor solubility of collagen and
its triple-helical structure, which aggravates the attack by ROS.

It has been established that the reagent HOCl (as well as the entire MPO/H2O2/Cl−

system) reduces the viscosity of solutions of high-molecular-weight hyaluronan. The
term hyaluronan is a mixture of HA and hyaluronate which indicates that all species are
included—independent of the charge state [111]. Baker and colleagues used size exclusion
chromatography to evaluate the effects of either exogeneously added HOCl or the entire
MPO/H2O2/Cl− system on aqueous hyaluronan solutions. It could be shown that already
µM concentrations of HOCl (HA was in the mg/mL range which corresponds—related
to the molecular weight of the polymer repeat unit—to a mM concentration) reduced the
viscosity of HA. In contrast, elevated concentrations of HOCl were necessary to reduce the
molecular weight of the HA polysaccharide [111], i.e., to induce scissions of the glycosidic
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linkages between the individual monosaccharide units. This was explained by structural
modifications of the HA polysaccharide occurring (in contrast to the cleavage of chemical
linkages) already in the presence of moderate HOCl concentrations and is accompanied
by the reduction in the viscosity of HA. A few years later an interesting phenomenon was
reported [30]: HOCl/MPO depolymerizes only purified umbilical cord HA (in a HO•-
dependent way) but does not depolymerize the HA polysaccharide in SF. The authors
concluded that HOCl/MPO has a scavenging action on SF HA by the consumption of
H2O2. In this way, the formation of HO• radicals is suppressed. Therefore, aqueous HA
solutions are not necessarily comparable with native SF since the aqueous solutions do not
contain proteins [112].

The determination of the viscosity of (pathologically changed) SF was (and still is)
an established method of the severity of inflammatory joint diseases after puncture of the
affected joint [113,114]. Later studies emphasized the role of the proteins in biological
materials—even if HA is still considered as a powerful mean to attenuate the oxidative
stress in the inflamed joint: the injection of native HA into the joint is known to have several
beneficial effects [114,115]. These studies were performed by monitoring potential effects
of the inflammatory state by the measurement of some indicative effects such as the HA
concentration and the protein composition on the SF viscosity [116].

The mechanism of HA degradation was studied by 1H nuclear magnetic resonance
(NMR) spectroscopy in 1994. Both N-acetylglucosamine (GlcNAc) and chondroitinsulfate
(CS) were separately treated with the reagent HOCl and the kinetics of the reaction moni-
tored [117]. Since amino groups are particularly reactive, HOCl reacts first with the GlcNAc
or the amino sugar within the GAG polysaccharide (Figure 6).
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Figure 6. Pathway of the reaction between the reagent HOCl and N-acetylglucosamine as one
important monosaccharide within the hyaluronan chain.

Two consecutive effects were observed: (a) the depolymerization of the GAG polysac-
charide chain under scission of the glycosidic linkages; and (b) the cleavage of the N-acetyl
groups via a transient, presumably chlorinated product. This product and the involved
N-centered radicals could be later monitored by electron spin resonance and other meth-
ods [118]. Similar observations were made if isolated hyaluronan or HA from SF was
subjected to γ-irradiation [119]: this leads to the scission of the water molecule under
generation of HO• radicals, which are capable of depolymerizing the HA molecule. Similar
data may also be obtained if the radicals are generated via Fenton chemistry, which may
also occur under in vivo conditions [120].

The potential contribution of N- and O-centered free radicals during the HOCl-induced
degradation of HA is illustrated in Figure 7:
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The relative reactivities of selected functional groups within the carbohydrates can also
be determined by measuring the HOCl consumption: the required time-dependent data
can be easily obtained by UV spectroscopy since the hypochlorite anion is characterized
by an intense UV absorption (ε290 = 350 M−1cm−1). While different amino sugars possess
significant reactivities, glucose or glucuronic acid do not react at all with HOCl [122].

Although there were no attempts to detect carbon dioxide (CO2) as a final oxidation
product of HA and other carbohydrates to date, intermediate oxidation products such as
formate are exclusively detected if a massive excess of HOCl is used. Since formate is
an established product of HO•-induced carbohydrate degradation [120], this implies the
conversion of HOCl into more reactive ROS (Equation (7)) [123].

Fe2+ + HOCl → Fe3+ + HO• + Cl− (7)

Akeel et al. [124] studied the in vitro reaction of HOCl with either HA or heparin
(an agent against the consequences of arthritis [125]) using spectrophotometrically and
enzymatically based methods. These authors found differences in dependence on the
extent of sulfation of the involved carbohydrates. Although not yet completely clarified, the
electron-withdrawing (-I) effect of the sulfate groups may play a significant role because it
has an impact on the electron density at specific positions within the carbohydrate molecule.

It is very surprising that mass spectrometry (MS) has only been scarcely used to
investigate the reaction between ROS and carbohydrates to date. Since oxidation is accom-
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panied by changes in the molecular weight, MS represents a reliable method to monitor the
ongoing changes. One of the available reports to date used electrospray ionization (ESI)
MS to monitor the ROS-induced degradation of HA [126]. Unfortunately, this study gave
only rather limited information but a clear indication that the investigation of oxidized
carbohydrates by MS is even nowadays a challenging topic [127]. This is partially caused
by the fact that sugars are rather refractive to the ionization process and give limited ion
yields. This problem increases if the polarity of the carbohydrates increases, for instance by
the introduction of sulfate groups [128].

In a more recent study, the chloramide of native, high-molecular-weight hyaluronan
could be successfully synthesized. However, chlorinated isocyanuric acid had to be used as
the chlorinating agent [129] because HOCl resulted in poor yields. In a very recent study,
the degradation of HA and selected oligo- and monosaccharides by HOCl was studied by
ESI MS in combination with thin-layer chromatography (TLC) [122]. It was demonstrated
that the MS-based detection of N-chlorinated GAG amides is challenging while cleavages
of the glycosidic linkages and the generation of chloramines in oligosaccharides are readily
detectable. This study also provided evidence that the 1→4- and 1→3-glycosidic linkages
exhibit different reactivities with HOCl [122].

In a previous study, pig articular cartilage was treated with different amounts of HOCl
(at pH 7.4) and the composition of the supernatants assessed by 1H NMR [95]. Since collagen
is very rich in glycine, the denaturation of collagen can be estimated by using the resonance
at 3.55 ppm. However, this resonance was very weak and there were also no chlorinated
products of glycine detectable [130]. In contrast, the intensities of GAG oligosaccharides
(2.04 ppm) as well as acetate (1.90 ppm) were elevated subsequent to HOCl treatment of
cartilage. This is a clear indication that the GAGs of cartilage are depolymerized by HOCl.
Nevertheless, chlorinated peptides were also reported to be indicative of MPO activity [131].
These peptides are presumably not derived from the collagen but are stemming from other
proteins, e.g., the core or the link protein of proteoglycans.

NMR is also a convenient method to discriminate SF from patients suffering either
from OA or RA [132]. The particular advantage of NMR is that no prior knowledge about
the sample composition is necessary.

Hawkins and Davies [133] made an interesting suggestion: MPO is a strongly cationic
protein (positively charged, isoelectric point (pI) ≈ 10). In contrast, all GAGs within the
cartilage are negatively charged, particularly the sulfated ones because sulfate represents
a strong electrolyte. Due to the attraction of the differently charged molecules, it is likely
that HOCl is generated in the vicinity of the GAGs. The short distance between MPO
and/or the released HOCl may be one important reason why GAGs (similarly as negatively
charged phospholipids [134]) represent one of the first targets of HOCl. This might explain
the recent focus on NETs (vide infra).

7.3. DNA

Although it is well known that DNA reacts with HOCl [135,136], very little is known
about this reaction in the context of RA and OA. Karaman and coworkers [137] reported
DNA damage in RA lymphocytes in parallel with an increase in malondialdehyde (MDA)
levels and decreased activities of SOD and glutathionperoxidase (GPx), which are both
enzymes with antioxidative properties. These data emphasize again the increased oxidative
stress in RA. A few years later, it was shown that polymorphisms of DNA damage repair
genes play a role in RA pathogenesis. Accordingly, these DNA polymorphisms might be
useful as RA disease markers [138]. Although a more detailed discussion of these aspects
is beyond the scope of this review, it was very recently suggested that one hallmark of
RA is impaired DNA repair observed in patient-derived peripheral blood mononuclear
cells [139].

There are indications that products derived from NETs (vide infra) such as citrul-
linated histone H3 (H3Cit), cell-free DNA and MPO play a major role in arthritis and
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diagnosis [140]. These aspects are a promising research topic and were recently discussed
in more detail [51,135].

7.4. Cellular Lipids

Since the cartilage tissue contains only comparably small amounts of lipids [141], the
main source of lipids comes from the cells. Even if the cell density is rather poor (cartilage
is known as a bradytrophic tissue) all cells contain many lipids (particularly phospholipids)
in their cellular membranes and organelles [142]. In order to warrant a sufficient extent of
membrane fluidity, the majority of membrane lipids contain double bonds [143]. Second
order rate constant of HOCl against double bonds is rather poor. Nevertheless, lipids are
affected due to their comparably high concentration in membranes [142].

As already indicated, amino-phospholipids such as phosphatidylethanolamine (PE)
or -serine (PS) exhibit the most pronounced reactivity with HOCl [144]. However, there are
no reports on chlorinated PE within the cartilage to date, although there is a very recent
study on lipid markers between infrapatellar fat pad biopsies of OA and cartilage defect
patients using MALDI MS Imaging. The main products between unsaturated lipids of
the phosphatidylcholine (PC) type and HOCl are chlorohydrins, i.e., addition products of
HOCl onto the double bond(s) [145]. Although this reaction has been well established for
more than 30 years [146], it has to be emphasized that there are also free fatty acids due to
the natural turnover of phospholipids in all biological systems. These free fatty acids react
with HOCl under the formation of chlorohydrins as the main products as well [147]. There
are indications that these products are converted into dimeric and trimeric products [148]
with particular properties. Non-chlorinated (or in general non-halogenated) fatty acid
esters of hydroxy fatty acids (FAHFA) are assumed to possess significant physiological
relevance but are commonly generated by different pathways under the involvement of
different enzymes [149]. Although it is well known that lipid chlorohydrins decrease the
stability of membranes of erythrocytes [150], there is nothing known about the toxic effects
of lipid chlorohydrins or chloramines on cartilage cells to date. However, in 2002, it was
shown that 1,3-dichloro-2-propanol (1,3-DCP), an abundant impurity in many compounds
like hard resins or celluloid, represents a major health concern [151].

Nitrite is known to be present in concentrations of up to 4 mM in SF from patients
suffering from RA [152]. Therefore, it is likely that nitrite reacts with HOCl under generation
of nitrate (Equation (8)).

NO−2 + HOCl → NO−3 + HCl (8)

Thus, the concentration of HOCl (vide supra) is reduced. This was first shown using
the reaction of isolated lipids with HOCl [153]. Afterwards, it was also confirmed by sys-
tems mimicking the real conditions within the inflamed joint [154]: it could be convincingly
shown that the presence of nitrite (but not nitrate) decreased HOCl-dependent cellular toxi-
city even if very small amounts of nitrite (in the µM range) were used. In contrast, nitrite
(even in higher concentrations) did not inhibit superoxide-, hydroxyl radical-, hydrogen
peroxide-, or peroxynitrite-mediated cytotoxicity. This is a clear indication of the different
reactivities of the individual species. Additionally, the oxidation of plasmalogens by HOCl
may also play a major role. These lipids are not characterized by two ester linkages (as it is
the case in common lipids) but possess one ester and one alkenyl-ether linkage [155]. These
lipids are relatively scarce in the SF [156] but give very characteristic oxidation products
upon the reaction with HOCl since the resulting 2-chlorfatty aldehyde [157] has a high
reactivity with many other functional groups, particularly amino residues.

A comprehensive review on the available “lipidomics” data on SF to date was recently
published [158]. It was shown that PC and PE (the normally most abundant lipids) undergo
major changes during the development of RA. A short summary of the most pronounced
changes is shown in Figure 8:
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8. Antioxidants to Suppress HOCl-Induced Effects

HOCl is a molecular (non-radical agent) with defined gradual reactivity: first, sulfhydryl
groups are oxidized, and, afterwards, amino groups are converted into mono- or dichloroamines
depending on the stoichiometry. The double bonds of lipids have the lowest reactivity and
chlorohydrines are, thus, generated with the lowest velocity [133]. However, the reaction be-
tween HOCl and common antioxidants such as trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid, an analogue of vitamin E) or
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-carotene is faster compared to the majority
of other biomolecules [89]. Compounds with reactive -SH or -S-S- groups such as lipoic
acid [159,160] can be considered as effective antioxidants against HOCl although it is not yet
completely clear whether the generated products are chemically inert and do not induce further
reactions. Furthermore, different antioxidants were recently shown to be effective agents in the
treatment of arthritis [161].

Taurine (2-aminoethanesulfonic acid) is often discussed [162] as the most important an-
tioxidant against HOCl: the reaction between taurine and HOCl is slower compared to thiol
groups but the products are characterized by significant stability [163]. This is important
because there are also papers where the pharmacological aspects of the chloroamines are
discussed. First, it was shown that the local administration of N-chlorotaurine represents
an inhibitor of septic arthritis [164]. Additionally, N-chlorotaurine is discussed as a suitable
topical (applied onto the skin) anti-infective. There is currently some research in order to
develop novel mono- and dichloro- derivatives of dimethyltaurine, which are assumed
to possess improved stability [165]. Although the pharmacological effects of well-known
antirheumatic drugs such as methotrexate [166] and paracetamol [167] are surely different
from the exclusive scavenging of HOCl, both are also known to react with HOCl. Therefore,
one potential aspect might be the scavenging of HOCl.

The selective inhibition of MPO in the joint or the cartilage is unequivocally an effective
way to suppress its effects and/or the generation of its most important product, HOCl.
Compounds such as thioxanthines [168] or the KYC peptides (e.g., N-acetyl-lysyl-tyrosyl-
cysteine amide) [169] seem to fulfill the corresponding needs. However, the long-term
inhibitor use might be dangerous for the immune system. Many physicians are concerned
about this problem and more research is needed in this field. The thioxanthines, for instance,
have been shown to reduce, but not to prevent, the efficient killing of Staphylococcus aureus
by neutrophils [170] and are, thus, potentially suitable for in vivo use. This aspect has been
recently reviewed [171].
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The fact that a knockdown of MPO is not lethal (the majority is clinically asymptomatic
except if they are also diabetic [172]) may have two different reasons. Either residual MPO
activity is sufficient for bactericidal activity or other enzymes can compensate for the
inhibition of MPO: thioxanthines inhibit thyroid peroxidase and lactoperoxidase to a
much lesser extent than MPO as assessed by in vitro assays [170]. In contrast, detailed
studies with the KYC peptides are still lacking in the field of arthritis. Since chloride ions
are substrates of MPO, reducing the intake of salt may have positive effects for arthritis
patients: it was suggested that increased bone erosion under high-salt conditions can be
attributed to an enhanced oxidative milieu maintained by infiltrating neutrophils [173].

Due to the incidence rate of RA and the limitations of reliable therapies, the search
for new treatment strategies for RA became a transnational research focus. Specifically,
ferroptosis is a novel type of programmed cell death characterized by iron-dependent lipid
peroxidation. Ferroptosis is characterized by distinct differences from apoptosis, autophagy,
and necrosis—and it may be triggered by ROS [174,175].

9. Neutrophil Extracellular Traps (NETs)

The fusion of both antimicrobial granules and the phagosome is an important event
of neutrophils to kill invasive bacteria. A closely related new mechanism of neutrophils—
called neutrophil extracellular traps (NETs)—was first described in 2004 [176]. The authors
observed the release of different granule proteins and chromatin (simplified a mixture of
DNA and basic proteins) by neutrophils upon in vivo activation by, e.g., lipopolysaccha-
rides in order to attack pathological microorganism. Both compounds form extracellular
fibers that are essential for the binding of bacteria and their subsequent killing.

Since this initial observation, the term and the discussion of NETs have been hot topics.
NETs are defined as extracellular structures containing DNA, histones, and neutrophil-
characteristic proteins such as MPO or elastase, which are secreted from the neutrophils in
response to inflammatory stimuli. Additionally, neutrophils undergo chromatin remodeling
with the subsequent release of the decondensed chromatin from the cells under generation
of a network, illustrated in Figure 9.
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Although many details of this mechanism are unknown to date [178], it is commonly
accepted that NETs are produced in inflammatory areas and possess only a short half-life
due to their fast enzymatic degradation [179]. Since a detailed discussion of all these events
is clearly beyond the scope of this review, interested readers are advised to consult one of
the more recent reviews [177]. Nevertheless, it is of interest to note that NADPH oxidase
interactions with MPO are presumably involved which eventually lead to stimulation
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of neutrophil elastase. This is accompanied by the degradation of histones, chromatin
decondensation and NET release.

This “suicidal NETosis” represents a new type of cell death in addition to apoptosis and
necrosis [180] and with some peculiarities [181]. NETosis is nowadays assumed to represent
a defense mechanism that is activated in response to the presence of inflammatory stimuli.
In a nutshell, such processes are currently of huge interest regarding the development
of antirheumatic drugs and the treatment of the disease in general [182]. Since our main
interest is on the chemical aspects of cartilage degeneration, we will not delve into further
details. However, a very crude survey of these processes is illustrated in Figure 10.
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Figure 10. Neutrophil multifaceted death pathways in inflammatory conditions. Neutrophils are
generated in the bone marrow through granulopoiesis and subsequently enter the circulatory system.
Depending on the specific microenvironment, neutrophils undergo various mechanisms of cell
death. These mechanisms encompass both non-lytic apoptosis and lytic death modalities, including
necroptosis, pyroptosis, ferroptosis, and NETosis. These lytic processes are accompanied by the
release of cytotoxic cellular proteases, cell-free DNA, and chromatin into the microenvironment.
Each death pathway operates through distinct molecular mechanisms and regulatory networks,
ultimately resulting in either immunosuppressive or pro-inflammatory outcomes. Defects in the
clearance of apoptotic neutrophils and the accumulation of cellular remnants contribute to the onset
of inflammatory diseases and autoimmune disorders (Reprinted from [181] under the terms and
conditions of the Creative Commons Attribution (CC BY) license). Abbreviations: DAMP, Damage-
Associated Molecular Patterns; IL1-
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OOH, Phosphatidylethanolamine Hydroperoxide (The detection of anti-phosphatidylethanolamine
autoantibodies will not be discussed here) [183].

The role of NET detection in monitoring the severity of disease as well as the effect of
different anti-rheumatic therapies is an important research topic. It seems that NETs play a
major role in the pathogenesis of the disease and are not just a secondary finding associated
with the inflammatory process. Further mechanistic processes (including immunological
details) are available in [51,184]. It was also shown that neutrophils from RA SF drive
inflammation through the production of chemokines, ROS, and NETs [51]. Inhibiting
the formation of excessive NETosis, reducing the release of pro-inflammatory biological
mediators, and converting the death form of neutrophils into a safer form of cell death
represents presumably a key event. Finally, it is important to note that NETs are not only
relevant in joint diseases but are also involved in important diseases such as atherosclerosis,
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sepsis and COVID-19 [185]. The available research literature in this field (between 1985
and 2023) has been recently reviewed [37].

10. Conclusions

Although clinically very different, RA and OA represent the most common muscu-
loskeletal diseases, at which the synovia or the bone/cartilage is damaged at OA or RA
conditions, respectively. One characteristic of OA is the degeneration of the articular carti-
lage, which is initiated by malfunctions of cartilage cells after joint injury. The degradation
is additionally accelerated by inflammation, i.e., the generation of ROS and the release
of tissue-degrading enzymes. The degeneration triggered by these biomechanical and
biochemical mechanisms is irreversible. Although a lot of work was performed in the past,
the complex mechanisms of cartilage degradation are insufficiently understood to date.
One particular problem regarding the interpretation of the obtained data is the limitation of
many studies on a particular compound class and/or a single degeneration-causing agent.

In particular, cartilage degeneration mechanisms on the cellular level have only been
scarcely discussed to date, although there are indications that early post-traumatic biome-
chanical and inflammatory effects on cartilage cells impact the composition of cartilage [186].
Stimulated macrophages or neutrophils have only been scarcely used to mimic the “real”
events of cartilage degradation to date. Since the events of cartilage degradation are
very complex, there is an increasing number of in vitro models. For instance, it was sug-
gested that the mitigation of post-injury inflammation leads presumably to the recovery of
cartilage composition.

MPO is assumed to be massively involved in inflammatory joint diseases [99] for the
following reasons:

1. The number of neutrophils is massively enhanced in the SF from patients suffering
from RA [187].

2. Since MPO is a very abundant protein within the neutrophils (it constitutes about 5%
of all proteins), the contribution of this enzyme and its product, HOCl, to cartilage
degradation during RA is obvious.

3. Characteristic chlorinated products (such as 3-chlorotyrosine [188] or HA oligosaccha-
rides [31]) were found in the cartilage and/or the SF.

Thus, MPO seems to be an effective mediator in the development of rheumatic diseases,
presumably accompanied by necrosis of the cartilage cells. Necrosis is also suggested to re-
sult in the release of damage-associated molecular patterns (DAMPs) and pro-inflammatory
cytokines [189], leading to ECM degeneration caused by proteolytic enzymes [190]. Apop-
tosis, controlled cell death, has also been associated with excessive production of ROS [191].
Excessive ROS production has been suggested to promote ECM degeneration via decreased
matrix biosynthesis [192]. However, further studies to improve the treatment of RA and
OA are needed.
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