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Abstract: Arrhythmogenic cardiomyopathy is an inherited entity characterized by irregular cell–cell
adhesion, cardiomyocyte death and fibro-fatty replacement of ventricular myocytes, leading to malig-
nant ventricular arrythmias, contractile dysfunction and sudden cardiac death. Pathogenic variants
in genes that encode desmosome are the predominant cause of arrhythmogenic cardiomyopathy.
Moreover, signalling pathways such as Wnt/ß-catenin and transforming growth factor-β have been
involved in the disease progression. However, still little is known about the molecular pathophysio-
logical mechanisms that underlie arrhythmogenic cardiomyopathy pathogenesis. We used mRNA
and small RNA sequencing to analyse the transcriptome of health and arrhythmogenic cardiomy-
opathy of autopsied human hearts. Our results showed 697 differentially expressed genes and eight
differentially expressed miRNAs. Functional enrichment revealed mitochondrial respiratory-related
pathways, impaired response to oxidative stress, apoptotic signalling pathways and inflammatory
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response-related and extracellular matrix response pathways. Furthermore, analysis of the miRNA–
mRNA interactome identified eleven negatively correlated miRNA-target pairs for arrhythmogenic
cardiomyopathy. Our finding revealed novel arrhythmogenic cardiomyopathy-related miRNAs with
important regulatory function in disease pathogenesis, highlighting their value as potential key
targets for therapeutic approaches.

Keywords: arrhythmogenic cardiomyopathy; sudden cardiac death; RNA sequencing; microRNA;
miRNA–mRNA

1. Introduction

Arrhythmogenic cardiomyopathy (ACM) is a heterogeneous genetic entity character-
ized by ventricular arrhythmias, contractile dysfunctions and progressive fibro-adipose
replacement of myocardium [1]. ACM encompasses arrhythmogenic right ventricular
cardiomyopathy (ARVC), arrhythmogenic biventricular cardiomyopathy (ABVC) and ar-
rhythmogenic left ventricular cardiomyopathy (ALVC), all predisposing the patient to
ventricular electrical instability and sudden cardiac death (SCD) [2]. ACM is a rare con-
dition with a prevalence of 1/5000–6.5/5000 (OMIM #107970; ORPHA247) that affects
mainly young individuals and athletes. In 2020, the “Padua criteria” were proposed for
the diagnosis of ACM but it has been recently improved [3]. Several features such as male
sex, previous non-sustained ventricular tachyarrhythmias, extent of T-wave inversion,
recurrent premature ectopic beats and lower biventricular ejection fraction are risk factors
for subsequent malignant arrhythmogenic events [4].

Pathogenic variants in genes encoding desmosomal proteins, such as PKP2, DSG2,
DSC2 and DSP, constitute the main cause of ACM, although non-desmosomal forms
of ACM also exist [5]. The inheritance of the disease is generally autosomic dominant;
however, recessive forms with similar phenotypes have also been reported (JUP and
DSP leading to Naxos and Carvajal diseases, respectively) [3]. All forms of ACM are
characterized by low penetrance and variable expressivity, even in carriers of the same
rare causative variant [6]. Genetic screening is crucial in ACM as it is one of the criteria on
which the diagnosis of ACM is currently based [3].

The early identification of patients and adoption of personalized therapeutic measures
remain the main current challenges. Hence, unravelling the pathophysiological mech-
anisms involved in the onset, progression and outcome of ACM will help with clinical
diagnosis as well as risk stratification. From a pathophysiological perspective, hearts
affected by ACM show a progressive loss of cardiomyocytes and fibro-fatty tissue replace-
ment [7]. Although the pathological hallmark of the disease is usually present in the
epicardial surface, septal and left ventricle areas can also show fibro-fatty infiltrations [8].
The desmosomes’ impairment affects the cell–cell junction, signalling at the intercalated
discs and gaps union that functionally leads to intraventricular delay and re-entry circuits
that provoke ventricular arrythmias. Furthermore, cardiomyocytes cannot cope with the
mechanical strain, thus contributing to cardiomyocyte apoptosis.

Previous research focused on the comprehension of molecular mechanisms driving
the ACM phenotype has demonstrated alterations of the Wnt/β-catenin pathway, which
activates adipogenesis, fibrosis and apoptosis [9–11]. Another dysregulated pathway in
ACM is the Hippo pathway, which responds to mechanical stimuli or cell–cell interactions
regulating cell proliferation, apoptosis and cell fate. Moreover, activation of the Hippo
pathway might inhibit the canonical Wnt signalling, thus promoting adipogenesis [12,13].
MicroRNAs (miRNAs) are small non-coding RNAs with a crucial role in the physiological
development of the heart and cardiovascular diseases [14]. More recently, miRNA have
also been shown to play an important role in ACM [11,15]. In the present work, we used
mRNA and miRNA sequencing to analyse the transcriptome in ACM and healthy hearts.
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2. Materials and Methods
2.1. Study Population

We recruited four frozen right ventricle (RV) myocardial biopsies from ACM patients
(A1.R, A2.R, A4.R and A6.R) and four RV myocardial samples from unrelated ACM subjects
(B1.R, B2.R, B3.R and B5.R) who died from conditions other than cardiac diseases as control
group (Table 1). In ACM samples, pathogenic variant in each case is showed in Table 1. In
postmortem analysis, all samples showed less than 60% of residual myocytes, with fibrosis
substitution in right ventricular myocardium free wall, some of them even with fat-ty
replacement. In addition, family history (first-degree relative) of ACM was confirmed in all
cases. The criteria to collect samples was a definite clinical diagnosis of ACM. The second
step was to include samples carrying genetic variants with conclusive deleterious role, all
in genes currently associated with ACM.

Table 1. Genetic data of samples with disease confirmed and pathogenic variant identified. ACM:
Arrhythmogenic Cardiomyopathy; LP: Likely Pathogenic; NA: Not Available; P: Pathogenic; RV:
Right Ventricle; VUS: Variant of Unknown Significance.

Sample Phenotype Gene Protein Nucleotide dbSNP gnomAD ClinVar ACMG

A1.R ACM FLNC p.Arg1370Ter c.4108C > T rs1342121466 4/1450766
(0.0002%) P P

A2.R ACM PKP2
DSG2

p.Lys678ArgfsTer12
-

c.1881del
c.523 + 2dup

rs764817683
rs2073126642

NA
2/1451740
(0.0001%)

P
VUS

P
LP

A4.R ACM PKP2 p.Arg79Ter c.235C > T rs121434420 22/1577370
(0.001%) LP LP

A6.R ACM TMEM43 p.Ser358Leu c.1073C > T rs63750743 2/1461886
(0.0001%) P P

B1.R Control - - - - - - -
B2.R Control - - - - - - -
B3.R Control - - - - - - -
B5.R Control - - - - - - -

2.2. Ethics

This study was approved by the appropriate ethics committees. The ethical research
principles were fulfilled following the Helsinki Declaration, and further amendments, and
the Belmont report. This study also adhered to two legal provisions governing human
research and the Spanish Organic Law 15/1999 for the Regulation of Automated Processing
of Personal Data. All procedures performed were in accordance with the ethical standards
of the institutional research committee and was approved by the local Ethics Committee
(CEIM: 2021.185, CEIC 1315-N-21, 2018/0417 and 2014/0306).

2.3. Myocardial Tissue Collection

This is a multicentre study that involved Research Biomedicine Institute Josep Trueta
(IDIBGI), Girona; Health Research Institute La Fe, Hospital La Fe of Valencia, Valencia; and
Research Institute of Biomedicine and Innovation (INIBICA), Cádiz. Heart samples from
human autopsies were stored at −80 ◦C until they were analysed.

2.4. RNA Extraction

The TRI Reagent (Sigma-Aldrich, St Louis, MO, USA) was used to isolate and purify
total RNA according to the manufacturer’s instructions. Then, DNase treatment was
performed using RNA clean and concentrator-5 kit (Zymo Research, Irvine, CA, USA).
RNA was quantified using a Qubit RNA High-Sensitivity Assay kit in the Qubit® 2.0
Fluorometer (Life Technologies, Carlsbad, CA, USA). The quality and integrity of total
RNA were controlled on the Agilent Technologies 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA).
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2.5. RNA-Sequencing Analysis and Bioinformatics

Standard specific mRNA-sequencing (mRNA-seq) libraries were generated using the
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina using the NEBNext Poly(A)
mRNA Magnetic Isolation Module (New England Biolabs, Ipswich, MA), and single-end
libraries were sequenced on an Illumina SE100 Platform with an output of ~680M reads per
sample. Standard miRNA libraries were generated using the NEXTFLEX small RNA-seq
kit v3 (Perkin Elmer, Waltham, MA, USA), and single-end libraries were sequenced on an
Illumina SE60 Platform with an output of ~2 M reads per sample.

For trimming and aligning raw data, fastq sequence reads were uploaded to the
European version of the Galaxy platform [16]. Reads were trimmed with the Trim Ga-
lore software (Galaxy Version 0.6.7 + galaxy0) and aligned to the built-in human reference
genome December 2013 (GRCh38/hg38) with the RNA STAR Gapped-read mapper (Galaxy
Version 2.7.10b + galaxy3). For gene expression analyses, bam files were downloaded
from the Galaxy server and further analysed with the different RStudio packages down-
loaded from the Bioconductor website (http://bioconductor.org, accessed on 8 July 2023).
Reads were assigned to genes by means of the “featureCounts” function of the “Rsub-
read” package, version 2.10.5 [17], and annotation files human release 43 (GRCh38.p13)
(https://www.gencodegenes.org/human/release_43.html, accessed on 18 April 2024) and
Chromosomal coordinates of Homo sapiens microRNAs (https://www.mirbase.org, ac-
cessed on 18 April 2024) were used for mRNA and miRNA analysis, respectively. Only
the mapped reads were used to calculate gene expressions. The library size of each ex-
perimental point ranged from 37,342,862 to 51,420,486 sequences and from 318,097 to
1,898,024 sequences for mRNA and miRNA analysis, respectively.

The difference in the library size ranges between mRNA and miRNA is attributed to
the inherent characteristics of the RNA types and their respective sequencing techniques.
mRNA, being longer and more varied compared to miRNA, requires a greater number
of reads to ensure adequate coverage and precise quantification of gene expression. In
contrast, miRNA, which is significantly shorter, needs fewer reads to achieve comprehen-
sive representation. These differing sequencing requirements account for the observed
variations in library sizes between mRNA and miRNA.

The differential gene expression analyses were performed with package ‘DESeq2’
version 1.36.0 [17]. All the gene comparisons with a p-value <0.05 and a fold-change >2
were considered differentially expressed under the experimental conditions. Functional
Over Representation Analysis (ORA) based on Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) were conducted with the package ‘clusterProfiler’ version
4.4.4. [18]. The gene sets with a p-value <0.05 were considered overrepresented under the
experimental conditions. Finally, to identify miRNA–mRNA interaction, we constructed a
pipeline using the DEMs and DEGs between ACM and control cohorts. We used Diana-
microT, ElMMo, Microcosm, Miranda, Mirdb, Pictar, PITA and Targetscan prediction tools
to select mRNA targets.

2.6. Statistical Analysis

Data are expressed as mean ± SEM, and n denotes the number of replicates for
each experiment. Outliers were identified through the Rout method, using Q = 1%. The
normal distribution of each variable was verified with the Shapiro–Wilk test. Statistical
differences (p < 0.05) between the experimental groups were assessed using a two-tailed,
unpaired Student’s t test for Gaussian distributions. For non-Gaussian distributions, a
Mann–Whitney non-parametric test was used. All the statistical analyses were performed
using GraphPad Prism 9.0 software (San Diego, CA, USA).

3. Results
3.1. ACM and Controls mRNA and miRNA Expression Profiles

We performed RNA-seq to investigate whether differences exist in the mRNA expres-
sion profiles of the myocardium of ACM and control patients. The genetic data of the

http://bioconductor.org
https://www.gencodegenes.org/human/release_43.html
https://www.mirbase.org
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8 patients included in this study are shown in Table 1. The filtered RNA-seq read-set identi-
fied ≈ 29,568 genes. We used principal component analysis (PCA) to visualize the sample
clustering for the most variably expressed genes (Figure 1). No outliers were observed in
the PCA (Figure 2A).
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Figure 1. A flowchart of the study design.

In total, 689 genes were differentially expressed between ACM and controls, with
a Log2 fold-change (FC) > 0.5 using a 5% false discovery rate (FDR). From those genes,
383 were upregulated and 306 were downregulated in the ACM samples (Figure 2B,C). We
also analysed the miRNA expression profile by way of small RNA-seq to investigate the
differential expression between ACM and the control groups. According to the PCA, the
miRNA expression profile of the ACM cohort differed significantly from that of the control
sample’s autopsies and no outliers were observed (Figure 2D). After RNA-seq analysis,
290 miRNAs were detected in all heart samples. The most highly expressed miRNA in all
myocardial samples was miR-1-3p (Table S1). We identified eight DEMs between the ACM
and control heart samples (Log2 FC > 0.5; FDR ≤ 0.05). Three of them (miR-135a-5p, miR-
140-3p and miR-145-5p) were upregulated, and five (miR-486-5p, miR-486-3p, miR-125a-5p,
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let-7e-5p and let-7d-3p) were downregulated in ACM hearts as compared to the controls
(Figure 2E,F).
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Figure 2. Exploratory analysis of paired miRNA and mRNA expression in heart samples. (A) 3D-
Principal Components Analysis plot, based on correlation matrix, for mRNA expression in ACM
(n = 4) and control (n = 3) tissue samples. (B) Heatmap of the top 50 most DEMs sorted by absolute
FC (all of them having FDR < 0.05). (C) Volcano plot of the mRNAs, highlighting in grey those not
statistically significant with FDR > 0.05 and absolute FC < 2 (abslog2FC < 1); in blue, those with
FDR < 0.05 but absolute FC < 2 (abslog2FC < 1); in green, those with absolute FC > 2 (abslog2FC > 1)
but FDR > 0.05; and in red, those with FDR < 0.05 and absolute FC > 2 (abslog2FC > 1). (D) 3D-
Principal Components Analysis plot, based on correlation matrix, for miRNA expression in ACM
(n = 4) and control (n = 3) tissue samples. (E) Heatmap of the top 8 most DEMs sorted by absolute
FC (all of them having FDR < 0.05). (F) Volcano plot of the miRNAs, highlighting in grey those not
statistically significant with FDR > 0.05 and absolute FC < 2 (abslog2FC < 1); in green, those with
absolute FC > 2 (abslog2FC > 1) but FDR > 0.05; and in red, those with FDR <0.05 and absolute FC > 2
(abslog2FC > 1).

To identify the biological mechanisms related to ACM disease, we performed pathway
enrichment on the DEGs in our study. According to the number of counts and categorized
by the biological process (BP), we found mitochondrial respiratory-related pathways, re-
sponse to oxidative stress, apoptotic signalling pathways, inflammatory response-related
pathways and retinoic acid metabolic processes to be among the most enriched GO terms
(Figure 3A,B). In the cellular component (CC), mitochondrial respiratory- and extracellular
matrix-related pathways were among the most enriched pathways in ACM (Figure 3C,D).
Similarly, in terms of molecular function (MF), mitochondrial respiratory- and ER stress-
related pathways were among the most enriched pathways in ACM (Figure 3E,F). Finally,
KEGG pathway analysis showed that these DEGs were mainly involved in diabetic car-
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diomyopathy, lipid and atherosclerosis, inflammation response-related pathways and
cardiac muscle contraction (Figure 4A–C).
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3.2. Integrative Analysis Identified miRNA–mRNA Interaction for ACM

Considering that mRNAs are typically targeted by many miRNAs and each miRNA
targets multiple mRNAs, we established an effective pipeline to identify the miRNA–
mRNA interaction for ACM using the DEMs and DEGs between ACM and controls. We
used Diana-microT, ElMMo, Microcosm, Miranda, Mirdb, Pictar, PITA and Targetscan
prediction tools to select the mRNA targets. We only selected negatively correlated miRNA–
mRNA pairs. This prediction and filtering approach resulted in 304 pairs comprising
eight miRNAs and their 135 likely target mRNAs (Figure 5A and Tables S1–S3). The list
of miRNA–gene pairs includes already validated pairs using the Mirtarbase and Tarbase
databases (Figure 5A and Tables S1–S3).

Among all miRNA–mRNA pairs, we selected those genes meeting the following
criteria: (1) genes predicted as the target of a DEM by at least three miRNA target prediction
tools, (2) target genes that were experimentally validated and stored in a database such as
the Mirtarbase and/or Tarbase databases and (3) target genes shared by at least two DEMs
(Table 2). Pearson correlation tests were performed to identify the miRNA-target pairs. Our
miRNA–mRNA analysis identified 11 negatively correlated miRNA-target pairs for ACM:
miR-486-5p/ITGA5, miR-125a-5p/NIPAL4, miR-125a-5p/ALDH1A3, let-7e-5p/EDN1,
let-7e-5p/HCN2, let-7e-5p/SMAD7, miR-135a-5p/ZNF385B, miR-135a-5p/BMPER, miR-
140-3p/FKBP3, miR-140-3p/SKP1 and miR-140-3p/NDUFA4 (R < −0.7, p-value < 0.05)
(Figure 5B).

Table 2. Main miRNA–gene interactions predicted.

Counts

Sample A1R Sample A2R Sample A4R Sample A6R Sample B1R Sample B2R Sample B5R Gene Symbol

268,147 333,296 319,027 39,769 149,975 223,451 826,406 hsa-miR-1-3p

110,587 91,623 77,600 49,265 38,476 47,353 180,699 hsa-miR-143-3p

26,647 70,761 71,180 51,234 63,687 81,431 160,503 hsa-let-7a-5p

27,074 45,652 39,339 18,103 25,298 41,027 111,000 hsa-let-7f-5p

25,882 52,083 43,790 25,771 21,360 25,545 85,002 hsa-miR-26a-5p

28,171 45,954 34,588 8582 17,237 12,243 56,518 hsa-miR-30d-5p

13,406 53,514 23,570 6424 8590 6284 34,382 hsa-miR-133a-3p

17,567 26,356 25,662 9669 11,579 12,041 39,905 hsa-miR-24-3p

17,871 16,799 14,542 4624 5552 4409 25,811 hsa-miR-30a-5p
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Table 2. Cont.

Counts

Sample A1R Sample A2R Sample A4R Sample A6R Sample B1R Sample B2R Sample B5R Gene Symbol

10,120 14,886 12,774 4398 5066 5808 20,783 hsa-miR-126-3p

8811 13,206 12,865 4841 5804 6031 20,016 hsa-miR-3074-5p

4907 18,329 10,663 3449 6000 6092 18,876 hsa-miR-30c-5p

4371 12,644 10,991 5905 5633 5314 18,177 hsa-miR-125b-5p

4524 11,010 10,114 5501 6172 6933 18,603 hsa-let-7g-5p

6351 9710 7213 3066 3287 5284 15,622 hsa-miR-27b-3p

2106 7043 6079 2008 5542 7547 16,297 hsa-miR-125a-5p

3642 10,930 6973 2556 3627 4263 12,207 hsa-miR-23b-3p

4042 10,743 6644 1492 2689 2598 10,319 hsa-miR-378a-3p

2029 6048 4382 2687 4514 3126 9480 hsa-miR-92a-3p

2838 7362 5436 3769 2454 2178 6331 hsa-miR-23a-3p

3568 4394 3894 2565 3678 2126 9118 hsa-miR-16-5p

5040 4232 4240 1244 2229 2111 8984 hsa-miR-22-3p

2482 5222 4175 2261 1938 3021 8180 hsa-miR-26b-5p

2953 4191 2876 2977 4368 1119 7761 hsa-miR-451a

1496 3889 2983 1273 2556 2826 10,222 hsa-miR-486-5p

1496 3889 2983 1273 2556 2826 10,222 hsa-miR-486-3p

1872 3873 2903 2441 2029 2386 8070 hsa-let-7i-5p

1796 4135 3928 3380 1426 1829 7013 hsa-miR-199a-3p

817 2593 2470 3058 2414 3316 6456 hsa-let-7c-5p

3914 3111 3522 2173 1043 1457 5324 hsa-miR-21-5p

1840 3173 2807 1327 1658 1086 4991 hsa-miR-103a-3p

1840 3173 2807 1327 1658 1086 4991 hsa-miR-103b

2528 2397 2317 272 1096 1841 6253 hsa-miR-499b-3p

2528 2397 2317 272 1096 1840 6253 hsa-miR-499a-5p

1664 3486 2368 1272 1048 1185 5165 hsa-miR-99b-5p

1518 3079 2508 2021 848 946 4498 hsa-miR-99a-5p

2306 2956 2142 874 1256 1034 4838 hsa-miR-181a-5p

764 2217 1593 2737 1488 1875 4178 hsa-let-7b-5p

3068 2358 2571 523 976 664 4526 hsa-miR-30e-5p

1377 3945 2391 2752 671 508 2690 hsa-miR-145-5p

894 2055 1956 1684 712 909 3489 hsa-miR-199b-3p

1378 2869 1863 519 888 720 3044 hsa-miR-30e-3p

927 1861 1642 873 897 963 3769 hsa-miR-423-3p

927 1861 1642 873 897 963 3769 hsa-miR-3184-5p

912 1552 1243 2236 719 516 2638 hsa-miR-100-5p

951 2629 1462 1280 536 278 1718 hsa-miR-140-3p

1289 1841 1288 706 619 593 1990 hsa-miR-27a-3p

928 1654 1220 515 378 367 1917 hsa-miR-151a-3p
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Table 2. Cont.

Counts

Sample A1R Sample A2R Sample A4R Sample A6R Sample B1R Sample B2R Sample B5R Gene Symbol

729 1841 1080 386 513 522 1785 hsa-miR-30a-3p

1095 1195 1101 748 560 487 1617 hsa-miR-29a-3p

913 1935 1215 466 387 249 1449 hsa-miR-30b-5p

603 1136 945 598 764 562 1959 hsa-miR-191-5p

267 588 593 469 840 1560 2217 hsa-let-7e-5p

543 1081 910 461 539 605 1712 hsa-miR-151a-5p

71 203 353 759 862 416 2886 hsa-miR-10a-5p

267 768 737 486 849 777 1490 hsa-let-7d-5p

431 821 735 377 481 704 1800 hsa-miR-98-5p

96 163 236 1239 872 287 1942 hsa-miR-10b-5p

495 983 831 383 366 320 1333 hsa-miR-148a-3p
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4. Discussion

In the present study, we performed for the first time a wide-ranging characterization
of the mRNA and miRNA transcriptome of myocardial tissue from ACM patients. We gen-
erated an ACM-specific miRNA–target transcript interaction network, thereby providing
the first unbiased analysis of miRNAs and their targets in the context of ACM. Hereto, we
identified 689 mRNAs and 53 miRNAs with significant differential expression in ACM.
Subsequent pathway enrichment analysis of the DEGs showed significant enrichment for
genes, mainly regarding mitochondrial respiration, extracellular matrix, oxidative stress,
ER stress, apoptosis, cell–cell adhesion, inflammation, retinoic acid metabolic processes,
diabetic cardiomyopathy, lipid and atherosclerosis and cardiac muscle contraction, among
others. We created an ACM-associated miRNA interactome of eight miRNAs and their
135 likely target mRNAs.

ACM is characterized by the death of cardiomyocytes followed by inflammation and
the progressive accumulation of fibro-fatty tissue. Alterations in Wnt/ß-catenin and the
Hippo pathway due to abnormal cell–cell adhesion and intracellular signalling, caused by
deleterious rare variants located in genes encoding desmosomal proteins, is considered
the main cause [10,12]. This is in consonance with the deregulation of genes involved in
cell–cell adhesion, extracellular matrix-related pathways, apoptosis and cardiac muscle
contraction. Our results showed dysregulation of cardiac inflammation and lipid transport
pathways consistent with another research. Rainer et al. analysed the coding and non-
coding transcriptome of human cardiac stromal cells derived from endomyocardial biopsies
of ACM patients. They found that, in addition to cell–cell adhesion, deregulated genes
were also involved in cardiac inflammation and lipid transport [19]. Similarly, RNA-seq
data from left ventricular tissue from deceased ACM patients showed dysregulation of
cell–cell adhesion, extracellular matrix, and inflammation [20]. In alignment with these
findings, Lin et al. (2023) profiled the region-resolved transcriptome and proteome of
healthy and dilated cardiomyopathy (DCM) human myocardial tissue and obtained an
extensive dataset. Based on the core proteome and transcriptome characteristics of healthy
hearts, chamber-specific proteome alterations were further revealed in end-stage DCM,
among which extracellular matrix (ECM), mitochondrial function, and muscle contraction
were the most dysregulated biological processes. These results reinforce the relevance of
ECM and mitochondrial dysfunction in cardiomyopathies and provide additional context
for our findings in ACM, highlighting the broader implications of these dysregulated
processes across different types of cardiomyopathies [21].

The mitochondrial impairment might constitute substrates for electrical and structural
remodelling in ACM hearts, playing, therefore, a role in the electrical stability [22]. Lippi
et al. recently demonstrated epigenetic and gene expression profiles of cardiac mesenchy-
mal stromal cells and confirmed for the first time that mitochondrial dysfunction is present
in ACM [23]. This group also proposed that oxidative stress represents a cofactor con-
tributing to the pathogenesis of ACM [24], which might be a consequence of mitochondrial
dysfunction. This fact was evidenced in patients carrying pathogenic PKP2 variants [25].
Consistently, our results revealed dysregulation of mitochondrial respiration pathways and
oxidative stress-related pathways. Similarly, we found that DEGs in ACM are involved in
ER stress pathways, which is in line with previous observations showing the overexpression
of ER stress markers in the myocardial tissue of ACM murine models [26]. A comparative
analysis of pathways identified in this study versus the reported literature is shown in
Table 3.
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Table 3. Comparative analysis of pathways identified in this study versus the reported literature.

Pathway This Study Reported Literature

Adipogenesis ✓ [27,28]
Apoptosis ✓ [29]

Cardiac Electrophysiology ✓ [30,31]
Cardiac Muscle Contraction ✓ [10,12]

Cardiovascular System Development [20]
Cell–Cell Adhesion ✓ [19,20,22]

Chromatin Organization [22]
Circulatory System Development [20]

EMT Process ✓ [32]
ER Stress ✓ [25]

Extracellular Matrix ✓ [19,20]
Inflammation ✓ [19,20]

Lipid and Atherosclerosis ✓ [19]
Lipid Metabolism ✓ [33]

Mitochondrial Respiration ✓ [22]
Oxidative Stress ✓ [23]

Oxidized LDL-Dependent Pathway [23]
Platelet Degranulation [19]

Regulation of Protein Secretion [22]
Retinoic Acid Metabolic Process ✓ [34]

TGF-ß Signalling ✓ [35]
Tissue Development [20]

We identified eleven negatively correlated miRNA-target transcript pairs: miR-486-
5p/ITGA5, miR-125a-5p/NIPAL4, miR-125a-5p/ALDH1A3, let-7e-5p/EDN1, let-7e-5p/
HCN2, let-7e-5p/SMAD7, miR-135a-5p/ZNF385B, miR-135a-5p/BMPER, miR-140-3p/
FKBP3, miR-140-3p/SKP1 and miR-140-3p/NDUFA4. The epicardium is a source of
multiple cardiac cell types, including fibroblasts, playing a key role during cardiac devel-
opment and remodelling through the epithelial-to-mesenchymal (EMT) process [36–39].
Several studies have proposed the epicardium as the initial site of manifestation of classic
ACM [40–44]. Integrin alpha 5 (ITGA5) is necessary for proper heart morphogenesis, and
the binding of ITGA5 to the epicardial secreted fibronectin (FN1) is required for cardiomy-
ocyte maturation [45–48]. In the adult heart, ITGA5 has been found to be upregulated in
the atrial tissues of patients with atrial fibrillation, whereas epicardial secreted fibronectin
has been identified as a source of fibroblasts through the EMT process [32]. Moreover,
ITGA5 has been suggested as a promotor of adipocyte fibrosis-related gene expression [49].
Although in distinct biological contexts both ITGA5 and miR-486-5p have been reported
to modulate the TGF-β-mediated EMT process, adipogenesis and fibrosis [35,49–53], the
miR-486-5p/ITGA5 axis has been suggested as a potential target to modulate fibro-fatty
infiltration of subepicardial layers into the myocardium. Interestingly, SMAD7, a negative
regulator of TGF-ß signalling [54], was also deregulated in ACM samples, supporting the
notion that TGF-ß signalling might be a key regulator of epicardial EMT processes in ACM.
In colorectal cancer (CRC), TGF-β1 induces a partial EMT (pEMT) process and collective cell
invasion without full mesenchymal transition, maintained by Smad transcription factors.
This mechanism might similarly induce EMT processes in epicardial cells in ACM, leading
to fibroblast accumulation [51]. miR-486-5p also plays a role in aging and adipogenesis in
human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) by targeting SIRT1,
inhibiting proliferation and differentiation. This suggests miR-486-5p might similarly affect
epicardial adipogenesis in ACM, contributing to its fibro-fatty phenotype [53]. ITGA5
plays a crucial role in adipocyte differentiation, where its reduction promotes adipogenesis
and overexpression inhibits it. This regulatory role of ITGA5 could be disrupted in ACM,
leading to pathological adipocyte accumulation [50]. Additionally, miR-486-5p inhibits
adipogenesis in mesenchymal stem cells and prevents steroid-induced osteonecrosis by
targeting TBX2 and upregulating p21. These anti-adipogenic effects could be leveraged to
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counteract ACM’s adipogenic component. Thus, the miR-486-5p/ITGA5 axis is a critical
regulatory pathway in ACM, influencing both fibroblast and adipocyte behaviour. miR-486-
5p has also been identified as a tumour suppressor in non-small cell lung cancer (NSCLC)
progression, where it modulates TGF-β signalling and EMT processes. High expression
of SMAD2, a downstream effector of TGF-β, correlates with poor prognosis in NSCLC
and promotes EMT processes. miR-486-5p targets SMAD2, inhibiting TGF-β-induced EMT
processes and metastasis in NSCLC cells [51]. Similarly, in ACM, miR-486-5p could inhibit
TGF-β-mediated EMT processes by targeting ITGA5, thus preventing fibro-fatty infiltra-
tion. This highlights miR-486-5p as a potential modulator of epicardial EMT processes in
ACM, which may be crucial for controlling disease progression. Understanding the miR-
486-5p/ITGA5 axis offers potential therapeutic insights. Therapeutically, modulating this
pathway could inhibit pathological EMT processes and adipogenesis, reducing fibro-fatty
infiltration in ACM. Although little is known about the role of let-7e-5p in cardiac disease,
several studies suggest an active role in the pathogenesis of heart failure [55,56]; however,
its role in regulating TGF-ß signalling remains to be investigated.

Bone morphogenetic proteins (BMPs) are members of the TGF-ß superfamily. Several
studies have described BMPER as a regulator of BMP signalling [57–59]. Besides its regula-
tory function in endothelial biology [57,60–63], BMPER has also been identified as an EMT
process-related gene [64]. Furthermore, BMPER has been proposed as a potential regulator
of epicardial adipose tissue (EAT) mesenchymal stem cells (MSCs). EAT is an ectopic
visceral fat deposit enveloping the heart that acts as an active endocrine organ with effects
on myocardial metabolism [65,66]. Curiously, the amount of right and left ventricular
EAT has been associated with ACM and the disease’s severity in humans [27]. Hence,
BMPER may play a role in ACM regulating EAT stem cells. Interestingly, miR-135a-5p has
been reported to modulate adipogenesis in EAT MSCs through the Hippo signalling path-
way [28,34]. This miRNA is downregulated during preadipocyte differentiation, and its
overexpression impairs adipogenic marker gene expression, emphasizing its regulatory role
in adipogenesis [27]. Furthermore, miR-135a-5p influences the canonical Wnt/β-catenin
signalling pathway by targeting APC, thereby affecting cell differentiation processes [28].
In the context of ACM, both BMPER and miR-135a-5p are relevant due to their roles in
regulating adipogenesis and fibrosis. BMPER has been shown to regulate BMP2-mediated
signalling, influencing EMT processes and extracellular matrix deposition [63]. Addition-
ally, miR-135a-5p has been reported to modulate adipogenesis in EAT MSCs through the
Hippo signalling pathway, and its dysregulation may contribute to pathological changes
in ACM [28]. The connection between BMPER and miR-135a-5p in regulating EAT MSCs
presents a novel perspective on ACM treatment. The miR-135a-5p/BMPER axis may offer
new therapeutic opportunities by targeting key pathways involved in fibrosis and adipoge-
nesis. Given the association between EAT volume and ACM severity, modulating this axis
could potentially mitigate fibro-fatty infiltration and improve disease outcomes.

ALDH1A3 is a member of the Aldehyde dehydrogenase 1 family (ALDH1) that
participates in the retinoic acid (RA) biosynthesis [67], a vitamin A metabolite that plays a
significant role in the contribution of the epicardium to heart development and function [68].
In the mouse heart, RA has been described to mediate dilated cardiomyopathy (DCM)
and cardiomyocyte apoptosis after myocardial infarction, suggesting a role in the adult
human heart as well [33,69]. Interestingly, RA has been implicated in adipogenesis through
transcriptional regulation of PPARγ [70]. In this sense, the induction of PPARγ expression
mediated by RA can convert both primary myogenic cells and the myoblast cell line to
adipogenic cells in avian samples [71]. Our data showed miR-125a-5p as a potential target
of ALDH1A3. Curiously, it has been shown that inhibition of this miRNA accelerates
3T3-L1 preadipocyte differentiation and upregulation of fatty acid metabolism-related
genes [30]. Accordingly, we observed downregulation of miR-125a-5p and upregulation
of ALDH1A3 in ACM samples. The ALDH1A3/miR-125a-5p axis therefore offers a novel
perspective on the regulation of adipogenesis in ACM. ALDH1A3-mediated RA synthesis
and subsequent RA-induced PPARγ expression could drive adipogenic differentiation
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in the epicardium, contributing to the fibro-fatty remodelling characteristic of ACM. The
downregulation of miR-125a-5p, which typically inhibits adipogenesis, further supports
this process, suggesting a coordinated regulatory mechanism involving both ALDH1A3 and
miR-125a-5p. Therapeutically, targeting the ALDH1A3/miR-125a-5p axis could modulate
adipogenesis and fibrosis in ACM, potentially mitigating disease progression. However,
further research is needed to validate these findings and explore the clinical applications of
manipulating the ALDH1A3/miR-125a-5p axis in ACM.

Altogether, our results reinforce the concept of the epicardial contribution to fibro-fatty
remodelling in ACM and offer potential new therapeutic targets for the treatment of the
disease. HCN2 is one of a family of four genes (HCN1-4) that encodes a hyperpolarization-
activated, cyclic nucleotide-gated cation channel [31] whose altered function is associated
with arrhythmogenic events [72]. Although alteration in the expression of HCN2 has
not been related to arrhythmias in physiological conditions, under pathological condi-
tions HCN2 overexpression induces arrhythmias [73,74], which is consistent with higher
expression levels of HCN2, therefore suggesting that HCN2 might play a role in ACM.
Dysregulation of Endothelin-1 (EDN1) has been linked to DCM [72]. Furthermore, EDN1
expression has been positively correlated with the levels of superoxide (SOD1 and SOD2)
and the amount of collagen in the mouse heart [75]. Accordingly, we observed upregulation
of EDN1 in ACM hearts, suggesting EDN1 as an important player in controlling fibrosis
and oxidative stress in ACM.

Regarding the miRNA–mRNA pairs, miR-125a-5p/NIPAL4, miR-135a-5p/ZNF385B,
miR-140-3p/FKBP3, miR-140-3p/SKP1 and miR-140-3p/NDUFA4, very little or nothing is
known about the function of these genes in cardiac disease. Whereas Skp1 has been related
to cardiac hypertrophy and the degradation of key sarcomeric proteins [29,76], NDUFA4
has been associated with cardiomyocyte apoptosis and mitochondrial dysfunction, two
ACM-related processes [77]. Further research will be required to explore the role of NIPAL4,
ZNF385B and FKBP3 in ACM. Finally, miR-135a-5p and miR-140-3p have been involved in
a wide range of cardiac-related processes, such as cardiomyocyte apoptosis, cardiomyocyte
hypoxia, oxidative stress, fibrosis, cardiac inflammation, cardiac hypertrophy and heart
failure, making them good candidates for therapeutic targets for ACM.

Targeting miRNAs in preclinical and clinical settings shows promise for treating var-
ious diseases, including cancer. Preclinical studies demonstrate the potential of miRNA
modulation in altering disease progression and overcoming resistance. Advanced tech-
niques like CRISPR and next-generation sequencing enhance our understanding of miRNA
dysregulation. However, challenges such as toxicity and off-target effects need to be
addressed for successful clinical translation. Ongoing clinical trials are evaluating miRNA-
based therapies, emphasizing the importance of ensuring safety and efficacy in clinical
applications. Continued research is crucial to harness the therapeutic potential of targeting
miRNAs and non-coding RNAs for improved patient outcomes [78].

In our study, there are some limitations to mention. First is the number of samples. It
is difficult to obtain human ventricular samples in proper condition to perform analyses
such as those we performed in our study. However, we have a set of ACM samples which
underwent clinical diagnostics and the gene variant was determined as the definite cause
of disease; this is one of the main points nowadays as a large portion of rare variants
remain with no definitive causality. Another limitation is the confirmation/validation of all
these interactions, despite some of them having been previously validated. Moreover, it
is important to take into account that the heart samples came from deceased individuals
and RNA integrity could be affected by this condition. It is because of this that our control
group shares similar postmortem intervals.

In summary, the evaluation of these miRNA–mRNA interactions highlight the poten-
tial for developing therapeutic agents that target these miRNAs as a promising approach in
treating ACM. Therefore, this study successfully identified key miRNAs associated with
ACM, offering new perspectives on the underlying mechanisms of ACM’s development.
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