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Abstract: Accurately capturing children’s word learning abilities is critical for advancing our un-
derstanding of language development. Researchers have demonstrated that utilizing more complex
statistical methods, such as mixed-effects regression and hierarchical linear modeling, can lead to a
more complete understanding of the variability observed within children’s word learning abilities.
In the current paper, we demonstrate how a person-centered approach to data analysis can provide
additional insights into the heterogeneity of word learning ability among children while also aiding
researchers’ efforts to draw individual-level conclusions. Using previously published data with
32 typically developing and 32 late-talking infants who completed a novel noun generalization
(NNG) task to assess word learning biases (i.e., shape and material biases), we compare this person-
centered method to three traditional statistical approaches: (1) a t-test against chance, (2) an analysis
of variance (ANOVA), and (3) a mixed-effects regression. With each comparison, we present a novel
question raised by the person-centered approach and show how results from the corresponding
analyses can lead to greater nuance in our understanding of children’s word learning capabilities.
Person-centered methods, then, are shown to be valuable tools that should be added to the growing
body of sophisticated statistical procedures used by modern researchers.
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1. Introduction

Within the fields of developmental psychology and language development specifically,
hypotheses are often posited for group-level phenomena. For example, researchers might
ask whether children with language delays, as a group, score lower on an assessment than
children without language delays, or whether children who receive a given intervention
have a mean vocabulary size that differs from children who did not receive the intervention.
However, as has become clear more recently, a subset of our hypotheses regarding develop-
mental and language outcomes is actually questions about specific children [1–5], such as
how an intervention may benefit an individual child. The goal with these hypotheses, then,
is to conduct and disseminate research in a way that assists in understanding the develop-
ment of the individual child. For language development researchers, this goal is especially
important because if we only posit and test group-level comparisons, then the differences
between specific individual children may go unexplained (e.g., [6]). For instance, Suzy, a
child who has been identified as a late talker, may show improvements over the year in
her expressive vocabulary development approaching her typically developing peers, but
Charlie, also a late talker, may continue to lag behind. A group level focus—late talkers
versus typical talkers—leaves questions as to why these two individuals differ unanswered
(e.g., see [6–8]).

This is not to say that language development researchers have avoided alternative
approaches to simple group mean comparisons. In fact, many language acquisition and
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word learning researchers have demonstrated that utilizing more complex statistics, such as
mixed-effects regression, are beneficial in capturing variation between individual children’s
word learning abilities [4,9–13]. Indeed, several articles and special issues throughout the
field of infant development have emphasized the importance of providing more nuanced
understandings of infant data (e.g., [4,11]), increasing the reliability of infant research
(e.g., [14,15]), and improving best practices in infant research to create a more robust field
(e.g., [16,17]). One particular effort to improve the field has focused on alternative statistical
methods (e.g., Bayesian inference, mixed-effects models) that better capture variability
across children (e.g., [4,11]). These alternatives have been shown to be superior in account-
ing for the heterogeneity in behavior across individual children compared to simple group
mean comparisons. However, the findings from these more sophisticated analyses never-
theless are often reported as group-aggregated statistics such as group means, variances,
standardized regression weights, and squared multiple correlations (i.e., R2). Individual
children within a group, like possible Suzies and Charlies, can unfortunately still get lost in
such statistics. As recently noted by van der Gaag [8], more person-centered approaches
toward data analysis can help keep this from happening within the developmental sciences.

Beyond dynamic structural equation modeling, Bayesian hierarchical modeling, latent
pattern analysis, and hierarchical linear modeling, an alternative set of person-centered
methods have recently been developed and tested. These methods are akin to traditional
non-parametric statistics and typically revolve around a visual presentation and exploration
of the data as well as the computation and interpretation of effect sizes based on raw,
individual-level data (e.g., [7,18,19]). Arocha [20], Beechey [21], Erisman and Blom [22],
de Klerk and colleagues [23], Sayette and colleagues [24], Speelman and McGann [19],
Valentine and Buchanan [25], and Valentine and colleagues [26] have demonstrated the
utility and effectiveness of these methods which offer two core advantages to the field of
language development.

First and foremost, results revolve around a person-centered effect size which indicates the
number of individuals in a study who behaved or performed according to theoretical expectation.
Speelman and McGann [19] refer to this statistic as a “pervasiveness index” whereas Grice
et al. [18] refer to it as the Percent Correct Classifications (PCC) index, and it is an effect size metric
that can readily convey the “theoretical, practical, or clinical importance of results from various
study designs and types of data” (Grice et al. [18], p. 9). Notably, developmental researchers
have begun to advocate for an increased reliance upon and interpretation of effect sizes as
opposed to solely relying on p-values (see [16,27,28]). The PCC index can clearly facilitate
these efforts as it can be easily understood by trained scientists, professionals, or laypersons.
When interpreting results from a study, a simple percentage can convey practical, clinical,
and theoretical importance in a way not typically found amongst traditional effect sizes,
such as Cohen’s d, r, or η2 (see also [29,30]). Furthermore, as Rutledge and Loh [31]
state, “transforming [traditional] effect size values into real-world impact is often not a
simple task” (p. 138). The PCC, however, is easily understood and can more readily
be interpreted in terms of a study’s real-world impact. For example, there would be no
ambiguity in interpreting the results of a study for which 80% of late-talking children
improved following one therapeutic intervention compared to 50% of late-talking children
who improved following a competing intervention.

Second, analyses conducted with these person-centered methods do not require many
of the numerous technical assumptions underlying both traditional and newer statisti-
cal methods, such as the continuous quantity assumption, the normality assumption, or
random sampling assumption [32–35]. Of particular importance, even the more recently
popular statistical methods, such as Bayesian inference and mixed-effects regression, re-
quire the assumption of random sampling [33–35], though this feat is rarely achieved in
developmental work (e.g., [36,37]). By removing concerns about statistical assumptions
made in the process of estimating population parameters, person-centered analyses en-
courage researchers to connect with the individuals in their studies by way of carefully
constructed causal theories (see [18]).
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Applications of Person-Centered Analyses to the Study of Language Development

The benefit of employing these person-centered methods can be demonstrated by
exploring individual differences in late-talking and typically developing children. Under-
standing why some late-talking (LT) children catch up to their typically developing (TD)
peers while others lag behind is critically important for language development researchers
because of the consequences faced by LT children [38]. The LT children who do not catch
up to their TD peers have an elevated likelihood of continued language delays, diagnosed
disorders, and problems in academic, social, and general work settings [38,39]. In fact,
some LT children will go on to develop developmental language disorder, putting them at
further risk of delays [40–42]. Nonetheless, the majority of LT children will be within the
normal range of language skills by grade school [38,43–51]. It is hence critical for language
development researchers to identify factors that could explain this heterogeneity among LT
children (see also [5,52,53]). One such area of recent work is LT children’s shape bias, or
attention to shape features during word learning [4,54–58].

In the current study, we use data originally reported by Perry and Kucker from their
2019 study of novel noun generalization (NNG) and vocabulary knowledge. Perry and
Kucker compared children’s choices in an NNG task in which an experimenter named a
novel exemplar object and asked children to choose an item with the same name as the
exemplar: a novel object matching the exemplar in shape, but not color or material (i.e.,
“shape match”), or a novel object matching the exemplar in material, but not color or shape
(i.e., “material match”). Across trials, selecting shape matches more often than material
matches is known as a “shape bias” (see [59]).

As a group, late-talking children tended to select the shape-matched item less fre-
quently than typically developing children [4,56,57]. The development of the shape bias
has previously been demonstrated to be associated with accelerations in vocabulary devel-
opment [2,60–62]. Differences between children’s development of the shape bias have been
tied to disparities in their vocabulary structure (e.g., [55,63]), such that children who know
more object nouns naming categories organized by similarity in shape (e.g., “shape-based
nouns”) are more likely to show a shape bias than those who knew fewer shape-based
nouns, even after controlling for overall vocabulary size. Furthermore, children’s long-
term language outcomes, such as whether or not they are diagnosed with developmental
language disorder, are associated with both their tendency of showing a shape bias [54]
and the proportion of shape-based nouns in their vocabulary as toddlers [5]. Indeed, in
Perry and Kucker’s [4] work, they found that there was an association between the number
of shape-based nouns in children’s vocabularies and the proportion of NNG trials on
which they generalized the novel names by similarity in shape. However, the strength of
this association was greater for typically developing children than late-talking children,
highlighting the large amount of heterogeneity in the late talker population.

By comparing mixed-effects regression analyses to traditional group mean comparison
methods (viz., t-tests and ANOVA), Perry and Kucker [4] showed how researchers can
begin to account for the heterogeneity among samples in LT and TD children. In the
analyses to follow we show how person-centered analyses can also be used to address
heterogeneity in Perry and Kucker’s [4] sample of children while also providing answers
to novel questions not raised by other traditional methods. In particular, we will show how
a person-centered analysis allows researchers to ask novel questions and to focus upon
specific late-talking children to prevent such cases from being lost in an aggregate form of
analysis while simultaneously offering the tools necessary for explaining their differences
in behavior.

2. Methods
2.1. Participants

The same sample of 64 children (NFemale = 26) from Perry and Kucker [4] were re-
analyzed here. All children were between 16–30 months (M = 22 months) of age and
monolingual English-speakers. Half were classified as late talkers (LTs) with productive
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vocabularies below the 30th percentile and were matched to a typically developing (TD)
child on age and sex (see Perry and Kucker [4], p. 556).

2.2. Procedures

As described by Perry and Kucker [4], children completed a novel noun generalization
(NNG) task to measure their tendency to select the shape-matched items. During the task,
children were presented with a novel exemplar and an item that matched the exemplar in
shape only and one that matched the exemplar in material only. The exemplar was named
by the experimenter (e.g., “This is my kiv!”), and then the children were presented with
the shape- and material-matching items and asked to select an item by name (e.g., “Can
you get your kiv?”). Children’s choice of shape was coded offline by researchers blind to
hypothesis and child language status. Four sets of items paired with names relatively equal
in novelty and phonological density (viz., Kiv, Mip, Fum, and Zup; see Figure 1) were used,
with four trials per set, for a total of 16 possible trials. Trials in which the child did not
respond were removed and treated like missing data (including the analyses found in the
Supplementary Files); thus, some children may have fewer than 16 total trials.
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Figure 1. Novel noun generalization exemplars.

The TD and LT children had nearly equivalent rates of missing data (which typically
occurred when a child refused to give a response), although the TD children had slightly
more total missing cases and slightly more children missing at least one trial. As a group, the
TD children successfully completed 467 out of 512 possible trials, with 45 total missing trials.
In total, 12 out of 32 TD children (37.50%) had at least one missing trial. By comparison,
the LT children successfully completed 458 out of 512 possible trials, with 54 total missing
trials, and a total of 15 out of the 32 LT children (46.88%) had at least one missing trial (see
Perry and Kucker [4], for further details).

2.3. Analytical Plan

In the analyses to follow, we demonstrate how one might conduct a t-test against
chance, analysis of variance, and a mixed-effects regression with a person-centered perspec-
tive (the Observation Oriented Modeling software [64]), which can be freely downloaded,
was used to conduct the analyses herein). Specifically, we conducted 3 pattern-based
analyses (plus those found in the Supplementary Files) to analyze the quantity of shape
choices for individual TD and individual LT children. In our case, these analyses will be
utilized to analyze the frequency of shape choices across all 16 trials for TD and LT children.
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The analyses are presented in a sequential fashion such that we begin by comparing the
concatenated pattern analysis against the t-test against chance, followed by the ANOVA,
and finally the mixed-effects regression, including random effects. Finally, we included
exploratory concatenated pattern analyses within the Supplementary Files to assess trial
order effects.

3. Results
3.1. Person-Centered Tests against Chance versus Aggregate Tests of Chance

Do both TD and LT children select the shape-matching item, on average, significantly
better than chance in the NNG task? With 0.50 as the expected mean value for chance, Perry
and Kucker [4] performed single-sample t-tests to answer this question and concluded
that, given the statistically significant results, “both sets of children performed better
than chance” (p. 560). From a person-centered perspective, an additional question to be
asked is “which individual TD and LT children performed better than chance in the NNG task?”
Two advantages to asking this question are that (1) it permits us to go beyond average
effects and focus on individual children, and (2) it aids in the exploration of potential
heterogeneity of responses within the two groups.

To do this, a pattern analysis, which is based on the pattern of the individual responses
of each child, was conducted. Figure 2 shows responses for an example TD child (case
#18). Here, the figure is comprised of two rows with the top row representing the material
choices and the bottom row showing shape choices. Each of the sixteen columns represent
the trials, with 1s representing the child’s actual choice responses. The shaded cells for the
“Shape” row represent our expectation that each child will exhibit a perfect tendency to
select the shape-matched item.
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marked with a 1) patterns for case #18, a TD child.

For the particular child in Figure 2, 12 of their 16 responses were in the “Shape” row.
Converting this result to a percentage yields a Percent Correct Classifications index (PCC)
equal to 75.00%. The PCC index is essentially a person-centered effect size [18]) and it
appears to be high for this child if 50% is adopted as a baseline for no preference to either
material or shape. In addition to this index, the pattern analysis performs a randomization
test to compute a distribution-free plausibility value, referred to as a chance-value (c-value;
see [65,66]). (The randomization test is considered distribution free; however, in cases
where the data are binary, like the current paper, the distribution will approximate the
binomial distribution. In a more complex study design that includes multiple variables
and varying numbers of categories, however, the sampling distribution may not be known.
The randomization test can still be used in such complex study designs, thus providing
researchers with a general tool for drawing inferences from their observations. Equally
important, the randomization test serves as a reminder that the goal of the analysis is to
draw an explanatory inference rather than an inference to a population parameter as is
common with null hypothesis significance testing (see [66]).

This value informs us as to whether the observed PCC could be explained by phys-
ical chance; in other words, it informs us whether these data could plausibly have been
generated by accident. For example, could the responses for case #18 presented in Figure 2
above be randomly generated and an equivalent PCC or higher PCC be obtained? If the
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answer is yes, then we would conclude that the data can be best understood as a product
of physical chance, or in simpler terms, as unsystematically or haphazardly produced. If
the answer is no, then we would conclude that the pattern of responses is plausibly due to
theoretically posited causal forces (viz., a shape bias is operating).

To compute the c-value for this design, we randomly determined the child’s observation
of material or shape choice for each completed trial, re-computed the PCC from the pattern
analysis, tallied whether the randomly generated PCC was greater than or equal to the observed
PCC, and then repeated this process a set number of times (e.g., 10,000 iterations). The c-value
was then computed by dividing the total sum of instances for which the randomized
PCC was greater than or equal to the observed PCC by the total number of iterations.

Mathematically, the process is represented as follows: ∑k
i=1 (PCC k ≥ PCCobs)

k ; where k = the
total number of iterations, PCCk = the randomly generated PCC from the kth iteration,
and PCCobs = the observed PCC computed from the raw data. In the current paper, 10,000
iterations were utilized for all c-value computations.

For case #18 in Figure 2, the c-value from 10,000 iterations was equal to 0.04, thus
indicating that their pattern of responses was not plausibly the result of physical chance. In
other words, the child chose shape-matched items at a rate that exceeded what one would
expect under conditions of physical chance. By way of comparison, Figure 3 shows the
results for case #25, also a TD child. The PCC for their pattern was low (50.00%), and the
c-value was high (0.60), thus indicating that their responses did not demonstrate a specific
preference for either shape or material.
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In Table 1, the left-hand columns report results for each of the 32 TD children, the over-
whelming majority of whom had computed PCCs greater than 50% and low c-values (viz.,
<0.20), thus indicating a stronger preference to the shape-matched item. The PCCs varied
somewhat (absolute median deviation = 9.94%) but were generally high. More specifically, 29
of the 32 TD children chose the shape-matching item more than what was expected by a
50% preference, and eight of the 32 children demonstrated extremely high PCCs that were
greater than or equal to 80% across all completed trials. (We adopted 50/50 (i.e., 50%) as
a baseline comparison point because each child was faced with a binary choice outcome
(shape or material), after removing no responses, across all 16 trials. In this case, since we
are concerned with the shape-matched choice as our outcome, a value above 50% would
indicate a preference to shape, and a value below 50% would indicate a preference to mate-
rial. Moreover, using 50% as a baseline is consistent with how researchers typically define
the t-test against chance, where the aggregated shape choices of LT and TD children are
compared against a value of 0.50 (see Perry and Kucker [4] for an example). Additionally,
we chose 80% as a benchmark for an impressive bias to shape because a child whose shape
choice frequency exceeded this value would have had to have chosen the shape choice for
the large majority of trials, regardless of set and regardless of no responses. For example, if
a child completed two sets worth of data (i.e., eight trials), then the child would have to
choose a shape for seven out of eight trials to have a shape choice percentage greater than
80%. Specifically, this would mean the child chose a shape perfectly for one set and got at
least three out of four shape choices for the next set). Only two TD children showed slight
material biases with PCCs of 40.00% and 46.15%.
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Table 1. Typically developing and late-talking children shape choice results.

Typically Developing Late Talking

Case # Trials PCC c-Value Case # Trials PCC c-Value

1 16 56.25 0.40 33 16 75.00 0.04
2 16 68.75 0.10 34 16 62.50 0.23
3 12 66.67 0.19 35 16 43.75 * 0.78
4 15 40.00 * 0.85 36 11 36.36 * 0.89
5 12 75.00 0.07 37 16 56.25 0.40
6 14 71.43 0.09 38 16 50.00 * 0.60
7 15 73.33 0.06 39 13 46.15 * 0.71
8 16 68.75 0.10 40 15 60.00 0.30
9 14 92.86 0.001 41 15 33.33 * 0.94

10 16 68.75 0.10 42 12 58.33 0.38
11 16 75.00 0.04 43 15 60.00 0.30
12 16 68.75 0.11 44 16 50.00 * 0.59
13 16 75.00 0.04 45 10 40.00 * 0.83
14 16 62.50 0.22 46 16 93.75 <0.0001
15 8 62.50 0.37 47 13 53.85 0.49
16 6 100.00 0.02 48 14 64.29 0.21
17 16 75.00 0.04 49 16 75.00 0.04
18 16 75.00 0.04 50 16 43.75 * 0.77
19 16 62.50 0.22 51 14 71.43 0.09
20 16 68.75 0.10 52 16 50.00 * 0.60
21 13 46.15 * 0.71 53 6 66.67 0.34
22 9 55.56 0.50 54 11 54.55 0.50
23 15 80.00 0.02 55 13 38.46 * 0.86
24 16 56.25 0.40 56 16 31.25 * 0.96
25 16 50.00 * 0.60 57 16 37.50 * 0.89
26 16 93.75 <0.0001 58 9 77.78 0.09
27 16 68.75 0.10 59 16 75.00 0.04
28 14 71.43 0.09 60 16 68.75 0.11
29 16 56.25 0.41 61 16 50.00 * 0.60
30 16 87.50 0.002 62 16 87.50 0.002
31 16 81.25 0.01 63 16 37.50 * 0.90
32 16 81.25 0.01 64 15 66.67 0.16

Totals 467 69.59 <0.0001 Totals 458 56.77 0.002

Note: Trial numbers vary because some children did not complete all sixteen trials. The chance-value (c-value) is
from a randomization test with 10,000 iterations. PCC = Percent Correct Classifications index. * Denotes a child’s
PCC that was equal to or less than a 50/50 preference.

The results for all LT children are similarly reported in the right-hand columns of
Table 1, and as can be seen only 18 of the 32 LT children performed better than what was
expected by a 50% preference: viz., PCCs > 50% and c-values < 0.20. The PCCs were
also more varied (absolute median deviation = 13.20%) with six LT children exhibiting low
tendencies to select the shape-matched item (PCCs < 40%) and, remarkably, two LT children
(case #’s 46 and 62) exhibiting impressive shape choice frequencies with computed PCCs
equal to 93.75% and 87.50%, respectively. These two children were the only LT children
with PCCs above 80% across all completed trials. Finally, 10 children showed slight to
moderate material biases as their PCCs were less than 50% (min = 31.25%). None of the
c-values for these children were less than 10% when evaluating material preference using a
randomization test.

In summary, these person-centered analyses allowed us to go beyond the original
t-test results and identify the individual children from each group who performed better
than chance in the NNG task. Nearly all the TD children chose the shape item at rates
higher than a 50% preference, whereas only a slight majority of LT children chose the shape
item at rates that exceeded 50%. Moreover, two of the LT children performed on par with
or better than most of their TD peers. The PCCs for both groups revealed heterogeneity in
shape choice frequencies, with greater variability noted for the LT children compared to
the TD children.
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3.2. Group Comparisons with Persons

Do TD children differ from LT children in terms of their average tendency to choose
shape matches? Perry and Kucker [4] performed a between-subjects ANOVA to answer this
question, and their results revealed a statistically significant, higher average shape choice
for the TD children. (Although the TD and LT children were matched on age and gender,
Perry and Kucker treated the two groups as independent in each of their statistical analyses.
To be consistent with their approach, we also treated the groups as independent. The
matched pairs of children are presented side-by-side in Table 1). From a person-centered
perspective, a related question based on the children’s individual responses can be asked;
namely, “does the total of the individual shape choice responses for the TD children exceed the
total responses for the LT children?” The advantages of asking this question will again entail
focusing upon tallies of individual responses rather than means and variances while not
losing sight of the differences in heterogeneity within the two groups of children.

The pattern analysis described above can also tally responses across all of the children,
thus generating group-level results. Figure 4 reports the two PCCs for the computed shape
preference across all TD and LT children and standard deviations (as error bars) derived
from the randomization tests for each group. Each child’s PCC taken from Table 1 is
also shown in the figure. As can be seen, across all TD children the shape-matched item
was chosen for 325 of the 467 completed trials (PCC = 69.59%, c < 0.0001), while across
all LT children the shape-matched item was chosen for 260 of the 458 completed trials
(PCC = 56.77%, c = 0.001). These group-level PCCs correspond to the observed mean
proportions (0.70 and 0.57, respectively) reported and tested by Perry and Kucker [4].
The group difference in shape-matched choices between the TD and LT children was
thus equal to +/−12.82%. This difference was itself evaluated using a randomization test
based on the differences between the 10,000 PCCs generated from the TD and LT group
randomization tests (viz., PCCdiff = PCCTD − PCCLT). The results revealed that only one of
these differences equaled or exceeded +/−12.82%, thus yielding a c-value = 0.0001.
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In summary, the person-centered analysis, like Perry and Kucker’s [4] ANOVA, re-
vealed that the TD children chose the shape-matched item at a frequency higher than their
LT peers. This difference was moreover judged as not plausibly due to physical chance
alone. Importantly, the heterogeneity within each group of children was again made clear
in the analysis as their individual PCCs were plotted in the bar graph. The two LT children,
case #’s 46 and 62, who exhibited unusually high shape choice frequencies that were greater
than most of the TD children, were also plainly visible in the figure. Despite the group-
level nature of the analysis, then, the individual performance of each child was not lost
from sight.

3.3. Mixed-Effects and Person-Centered Approaches

The percentage of shape choices in our two previous analyses were found to be hetero-
geneous in both groups of children, though more so in the late-talking children. Will the
addition of another variable to the analysis capture this unexplained variability? Perry and
Kucker [4] sought to answer this question by creating a novel variable (shape-based vocab-
ulary) that informed them whether the child’s shape-based vocabulary was above, equal to,
or below their expectations based upon each child’s residual object noun vocabulary size.
Going beyond the single-factor ANOVA, they used a mixed-effects multiple regression
analysis to examine the impact of this moderator variable on the relationship between
group membership (TD vs. LT) and the shape choice PCCs examined in the analyses above.
The result was statistically significant, and follow-up tests revealed that for the TD children,
higher shaped-based vocabulary was associated with a greater tendency of choosing shape
matches during the NNG task. For the LT children, shape-based vocabulary was not associ-
ated with an increased tendency to choose the shape-matching item. However, excluding
two outliers from the analysis showed no interaction, only a main effect of language group.

As with the group-level analyses above, the person-centered approach generates
questions that revolve around the children themselves rather than around means and
variances, allowing for a better way to examine outliers without requiring their removal.
Two relevant findings from the analyses above are the following: (1) two LT children
showed extreme tendencies to the shape-matched item (PCCs > 85%), and (2) LT children
showed greater heterogeneity in their novel noun generalization compared to the TD
children. By applying the person-centered approach, some additional questions can be
assessed. For instance, can the shape-based vocabulary variable created by Kucker and
Perry help explain these two relevant findings? Particularly, do the two LT children that
showed a strong tendency to select the shape-matching items also have especially large
shape-based vocabularies? If differences in the size of children’s shape-based vocabularies
helps to explain differences in the tendency of showing a bias to shape choices among TD
children [63], does it also do so for LT children? Consequently, the two LT children that
demonstrated a high tendency in selecting the shape-matching item were first examined.

The analyses to address these additional person-centered questions and the two un-
usual LT children with high shape choices begin by first binning the shape-based vocabulary
variable, in order to create three categories for the analysis. Consistent with Perry and
Kucker’s [4] description (e.g., a positive residual score suggests the child’s shape-based
vocabulary was above expectations, given the group mean), the residual scores were
used to bin children into three groups with nearly equal sample sizes: below expectation
(n = 21; shape residuals [−0.721, −0.038]), approximately equal to expectation (n = 22; shape
residuals [−0.031, 0.021]), and above expectation (n = 21; shape residuals = [0.022, 0.284]). As
no child’s residual score was exactly equal to zero, values close to zero were considered as
“approximately equal to expectation”.

With our binned scores in hand, the two LT children with strong tendencies for
selecting the shape-matching items can now be further considered. Case #46, whose shape
choice PCC was equal to 93.75%, was found to be included in the below-expectation group
for shape-based vocabulary, whereas case #62 (shape choice PCC = 87.50%) was found to
be included in the approximately equal group. Visual examination of the results for all



Behav. Sci. 2024, 14, 708 10 of 17

32 LT children did not reveal a clear relationship between the tendency of shape-matching
choices and shape-based vocabulary variables. To examine potential dependencies between
shape-based vocabulary and group (TD vs. LT), the two categorical variables were first
crossed to create six groups of children. Harris [67] showed that moderated effects (i.e.,
interactions) can be investigated efficiently by creating such a grouping variable from
crossed combinations of independent variables in a study.

The pattern analysis used in the first two analytic examinations comparing the
t-test and ANOVA was then conducted using each of these six groups of children. The
resulting PCCs are reported in Figure 5. As can be seen, the TD children typically showed
more shape-matching choices than the LT children, as already reported above. All groups
showed a great deal of heterogeneity as well, with a potentially influential case in the
LT/below-expectation group (PCC = 93.75, case #46). Importantly, the overall patterns
of PCCs for the TD and LT children (i.e., the relative bar heights in the figure) did not
differ markedly across the below-expectation, approximately equal, and above-expectation
shape vocabulary groups. The PCC for the TD children was higher than the PCC for the
LT children in all three groups, and the differences were similar in magnitude. In other
words, the pattern of results in Figure 5 did not reveal visually compelling evidence of an
interaction (i.e., a moderation effect) between the two variables.
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Specific comparisons between PCCs computed from all responses for each group of
children supported this conclusion. The TD children in the below-expectation group
(PCC = 62.76%) showed overall fewer shape choices than their approximately equal
(PCC = 72.54%) and above-expectation (PCC = 72.87%) counterparts. The c-values compar-
ing the below-expectation to the approximately equal and above-expectation group PCCs
were low (viz., 0.04 and 0.03, respectively), whereas the c-value based on comparing the
approximately equal and above-expectation PCCs was high (0.95).

For the LT children, the below-expectation group (PCC = 52.87%) similarly showed
overall fewer shape choices than the approximately equal (PCC = 60.29%) and above-
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expectation (PCC = 57.58%) groups. The c-values comparing pairs of group-level PCCs for
these three groups, however, were not very low (viz., >0.18). Removing the influential case
from the LT/below-expectation group reduced the PCC to 48.23%, resulting in an even
more parallel pattern of PCCs and c-values between the TD and LT groups; specifically,
the c-values comparing the below-expectation group to the approximately equal and
above-expectation LT groups were reduced to 0.04 and 0.08, respectively. These results
therefore indicate stronger support for a lack of interaction between the binned shape-based
vocabulary and group variables.

In summary, the person-centered analyses revealed that the two unusual LT chil-
dren with strong tendencies of selecting the shape-matching items did not have above-
expectation shape-based vocabularies, as one might anticipate based on theory. Instead,
these two children (case #’s 46 and 62) had below- or approximately-equal-to-expectation
vocabularies. Considering all children, heterogeneity in the individual shape choice per-
centages was still highly visible in each of the six groups plotted in Figure 5. With or
without the influential case in the LT/below-expectation group, the patterns of overall
PCCs for the TD and LT children in the figure were moreover highly similar, indicating
that the addition of the shape-based vocabulary variable to the analysis unfortunately did
not help to further explain the heterogeneity (i.e., variability) in the tendency to choose the
shape-matching items.

3.4. Random Effects and Person-Centered Approaches

Within the NNG paradigm, the sets of objects were randomized so that children did
not get the same sets in the same order. For example, one child may have received the
items ordered as zup, mip, kiv, and fum, whereas another child may have received the
items ordered as mip, kiv, fum, and zup. In this way, each child judged each of the items
four times, but potential item and order effects were controlled. Nonetheless, there is a
question of if variation across the zup, fum, kiv, and mip items is substantial and potentially
important. To account for this, Perry and Kucker [4] included a random intercept of item
in their mixed-effects regression analysis, though its impact was nonsignificant in each
of the models tested (p-values > 0.20). As with its emphasis on individual children, the
person-centered approach emphasizes responses to individual items as well. Consequently,
an additional question to be asked is “do particular items reveal a propensity toward shape
choices, and is this propensity found equally among TD and LT children?”.

The same type of pattern analyses utilized previously (see Figures 2 and 3) were
conducted to determine whether the individual TD or LT children chose the shape-matched
item at a higher rate for certain items (e.g., zup) compared to others (e.g., fum, kiv, and
mip). Accordingly, the data were re-organized so that all four trials of each item set were
analyzed together, for a total of four computed PCCs for both groups of children. Figure 6
shows the general results of the percentage of shape choices (i.e., NNG PCCs) between the
TD and LT children for the zup, fum, kiv, and mip items in the bar graphs, along with plots
of the individual children’s NNG PCCs.

The TD children outperformed the LT children on each of the four corresponding
items, choosing the shape-matched item with frequencies above 60% for each. As can
be seen in the figure, the TD children’s lowest percentage of shape-matching choices
(PCC = 63.93%, c = 0.001) was observed for the mip item. Notably, variation between
items was observed, as the differences between the TD children’s NNG PCCs for kiv and
mip (PCCdiff = 11.07%, c = 0.07) and for fum and mip (PCCdiff = 9.35%, c = 0.15) were less
plausibly explainable as due to physical chance. The difference between the NNG PCCs
between the zup and mip sets (PCCdiff = 3.01%, c = 0.66) was more plausibly explained as
having arisen from physical chance.
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(PCCmdn = 65.48%) across all 64 children. The error bars represent the standard deviations of the
10,000-iteration randomized PCCs for each trial and group.

The NNG PCCs for the LT children were similar in magnitude for the zup, fum,
and mip items. Interestingly, the LT children’s highest percentage of shape-matching
choices (PCC = 65.22, c < 0.001) occurred for the kiv item and was nearly equal to the
median PCC value (65.48%) for both groups and as well as the zup and mip PCCs for the
TD children (66.94% and 63.93%, respectively, c’s < 0.001; see Figure 5). The differences
between LT children’s NNG PCCs for kiv and mip (PCCdiff = 11.37, c = 0.08), kiv and
fum (PCCdiff = 10.17%, c = 0.09), and kiv and zup (PCCdiff = 12.23%, c = 0.05) were less
plausibly explainable by physical chance. In summary, both the TD and LT children
showed heterogeneity in shape choices between the four items, and the LT children showed
a relatively high percentage of shape choices for the kiv item that was nearly equal to the
percentage of shape choices of TD children for the zup and mip items. The TD children by
comparison chose the shape over the material at a frequency greater than 60% for each of
the four items.

In summary, the person-centered analyses focusing on the items in the NNG task yielded
novel results. Specifically, the patterns of responses suggest there may be item effects present
for the LT children, particularly the kiv item, that exceed physical chance. In other words,
something about the kiv object may have caused the LT children to attune to its shape more
than the material of which it was made. Similarly, exploratory analyses of trial order effects also
found high heterogeneity across the groups of children (see Supplemental Files). Indeed, prior
work has suggested a critical role for item-specific features more generally [68] and order
effects of items [69] in children’s word learning. Together with the item-level analysis, this
lays the foundation for future work with LT children.

4. Discussion

Recent advances in statistical methodologies have provided developmental and lan-
guage development researchers with a remarkably diverse and powerful set of analytical
tools for testing their empirical hypotheses. The re-analysis of Perry and Kucker’s [4] data
above shows that person-centered methods are an important addition to this ever-growing
list of tools as they can be used to address questions about group differences as well as
unique questions about individual participants (see also [8]). For example, how many
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individuals in a group match expectation with regard to their responses, and are there
differences in variability of responses (i.e., heterogeneity) between groups? Are there
individuals like Suzy and Charlie (two LTs, one of whom blooms late and the other who
has persisting delays), and how can their differences be understood? With person-centered
methods such questions revolve around the individual responses of participants in any
given study. Unlike ANOVA, multiple regression, and other traditional analyses, these
methods do not require the computation of a single mean, variance, or covariance. This
fact was demonstrated here by examining individual responses tallied in the context of
a predicted pattern to address hypotheses about particular children, and raw responses
similarly tallied across children to address group-level hypotheses.

Focusing on individual responses in Perry and Kucker’s [4] study created an avenue
to also examine children’s behaviors toward particular stimuli. Results from these analyses
revealed that LT children showed a qualitatively different response pattern toward one
particular set of items in this study (the kiv). This unique effect was missed by the mixed-
effects regression analyses based on aggregate statistics. Should the kiv item be considered
as a potential methodological confound, or is there something to learn theoretically by
examining it more closely? What additional items, if any, yield similar patterns of novel
noun generalization between the TD and LT children? Such questions can open the door to
further theoretical developments and exploration of how individual stimuli may impact
models such as that by Smith et al. [62]. Focusing on individuals can also generate important
questions about research design. Using person-centered methods, for example, Grice and
colleagues [18] discovered a methodological confound which had gone undetected in an
established research paradigm used by evolutionary cognitive psychologists. For Perry
and Kucker’s [4] study, are the number of responses collected from each child sufficient
for determining whether or not learning had occurred? Should each child be assessed
twice using the same techniques to address individual reliability, thereby buttressing the
conclusions? After all, as advocates of single-subject research designs have long pointed
out, the strongest claim of replicability is made at the level of the individual, not at the level
of the aggregate (e.g., see [70–72]). Answering such questions and considering the related
issues would strengthen the conclusions drawn from the current results.

With regard to implications for the study of language development more generally, the
results here show the utility of considering individual-level data when predicting abilities
for an individual child as well as exploring patterns of performance across a highly variable
group of children. For decades, language researchers have grappled with variations of the
question “which children will progress on their own and which will continue to lag behind
their peers?” For instance, how do we track LT children’s vocabulary growth to determine
who will “catch up” [5,38], and how can we predict outcomes of children with DLD or
cochlear implants [73–75]? The answers have a common thread—individual-level data.

While our standard analytical approaches can offer some insight and do provide
critical foundations for advancing our understanding of language development, tools such
as those demonstrated here can allow for a deeper dive into current data sets and set up a
new perspective for future data. Importantly, such an approach is also flexible, allowing
for the inclusion of a complex array of individual factors that may be driving behavior
(see [8]). Indeed, the analysis here is not limited solely to the three variables explored (late
talker status, shape vocabulary, item effects), but as shown in the Supplemental Materials,
can illuminate the impacts of trial order and fatigue effects, which are particularly relevant
when testing young infants. That is, person-centered approaches like those analyzed here
allow researchers to see new patterns that may give beneficial insight into the validity of
the methods themselves as well as critical views of the individual child’s performance.

Regarding the benefits as they pertain to speech language pathologists or clinically
oriented language researchers, let us return to the case of Charlie one final time. Sup-
pose the data from Perry and Kucker [4] had been collected after the completion of an
intervention aimed at bolstering late-talking children’s attention to shapes when learn-
ing novel nouns. In such a scenario, the person-centered analyses would have readily
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identified two ‘Charlies’ who would have shown highly successful results in support of
the hypothetical intervention. Furthermore, had competing interventions been tested, the
person-centered analyses would readily allow for direct comparisons of the competing
interventions (see [76]). Such information would be of immense benefit in helping explain
other late-talking children.

In closing, much like using both idiographic and nomothetic approaches to provide a
more complete understanding of infant behavior [77], researchers can use person-centered
methods like those above as complements to traditional statistical analyses because they
possess a number of distinct and helpful properties. First, as demonstrated above, they lead
to questions that are not normally considered when using traditional methods. Second,
they are easy to use and yield results that are easy to understand. The Percent Correct
Classifications index is essentially a universal index of effect size, and the c-value is a
distribution-free statistic that eschews the common assumptions underlying the traditional
p-value in NHST. Third, while interval- and ratio-scaled observations can be analyzed
with person-centered methods (e.g, [20,21,78]), the assumption of continuous, quantitative
measurement is not necessary. Perry and Kucker [4] measured children’s responses in a
binary fashion and noted that t-tests and ANOVAs are not optimal for these categorical
outcome observations (see also [79]). (With regard to binary variables, the classification of
children as late-talking or typically developing is worth further consideration. The cut-off
for distinguishing between the two types is arbitrary and there is growing evidence to
suggest that language abilities represent more of a continuum with LT children simply
at the lower end of the spectrum compared to TD children. Indeed, in other analyses of
this same set of data, there is very little difference in results if a continuous measure of
vocabulary percentile is used rather than a dichotomous classification (LT vs. TD; [80]; see
also [43,50,81]). Given this work, we do not anticipate a meaningful difference in results
based on how children are categorized. A key point is children with lower language abilities
for their age show incrementally different behaviors than those with stronger language
skills). The person-centered methods used above are optimal for such data as they do not
rely upon the assumption of continuous, quantitative measurement. Furthermore, when
the data are binary, such as in the current example, the only assumptions which must be
met by the researcher are identical to those which must be met for the binomial test. (The
three assumptions of the binomial distribution are as follows: (1) one outcome for each trial,
(2) each trial has the same probability of success, and (3) each trial is mutually exclusive or
independent of the other trials). Finally, by adopting such simple, clear, and assumption-
free methods, developmental and language development researchers can devote more
intellectual resources toward building explanatory theories that accurately account for the
causes underlying the behaviors of children in their studies and beyond.
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