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Abstract: Throughout the isolation process, human islets are subjected to destruction of the islet
basement membrane (BM) and reduced oxygen supply. Reconstruction of the BM represents an
option to improve islet function and survival post-transplant and may particularly be relevant for
islet encapsulation devices and scaffolds. In the present study, we assessed whether Perlecan, used
alone or combined with the BM proteins (BMPs) Collagen-IV and Laminin-521, has the ability to
protect isolated human islets from hypoxia-induced damage. Islets isolated from the pancreas of
seven different organ donors were cultured for 4–5 days at 2% oxygen in plain CMRL (sham-treated
controls) or in CMRL supplemented with BMPs used either alone or in combination. Postculture,
islets were characterized regarding survival, in vitro function and production of chemokines and
reactive oxygen species (ROS). Individually added BMPs significantly doubled islet survival and
increased in vitro function. Combining BMPs did not provide a synergistic effect. Among the tested
BMPs, Perlecan demonstrated the significantly strongest inhibitory effect on chemokine and ROS
production when compared with sham-treatment (p < 0.001). Perlecan may be useful to improve islet
survival prior to and after transplantation. Its anti-inflammatory potency should be considered to
optimise encapsulation and scaffolds to protect isolated human islets post-transplant.

Keywords: collagen type IV; extracellular matrix proteins; human islet isolation; hypoxia; inflammation;
islet basement membrane; laminin-521; perlecan

1. Introduction

Over the last couple of decades, clinical islet transplantation has achieved excellent
results for specific indications for patients with type 1 diabetes mellitus [1]. Human
islet isolation from organ donor pancreata is a key step in islet transplantation which
requires the dissociation of the pancreas using a combination of enzymatic digestion and
mechanical agitation. The critical step within this complex procedure is to release islets
from within the surrounding pancreatic acinar tissue by dispersing the extracellular matrix
(ECM). This involves enzymatic cleavage of the islet basement membrane (BM) [2,3]. Islet
BMs are formed by large supra-structures mainly composed of Collagen-IV (COL-4) and
Laminin-511 (L-511) which are linked and assembled through Nidogen-1 (NID-1) and
Perlecan (PLC) [4–9]. Since islet BM proteins (BMPs) are essential for the transduction of
pro-survival signals between the ECM and the subcellular structures of islet cells via islet-
expressed integrins [10–14], the interruption of integrin-mediated communication induces
the activation of pro-inflammatory and pro-apoptotic pathways. This results in the loss
of the morphological and functional integrity of isolated islets after isolation and during
culture [11,15–21]. These findings clearly underline the need for strategies to embed isolated
islets into a microenvironment that improves the functional and morphological survival
of islets prior to and after transplantation. This may be particularly relevant for islets
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placed in immuno-isolating devices or scaffolds as previous studies have demonstrated
that BMPs can contribute to a biocompatible microenvironment that enhances the survival
and function of microencapsulated islets [22–24].

Because COL-IV and L-511 or L-521 represent the major components of BMs [6,14,25–30],
the majority of islet studies have investigated the effect of these BMPs on function and
survival of isolated and cultured islets [23,24,31–35]. In the present study, PLC, a member of
the heparan sulphate proteoglycan (HSPG) group, was used as integrative linker molecule
for COL-4 and L-521. Apart from its role as a biomechanical stabilizer, numerous other
vital functions of PLC have been described. Amongst those, the binding of growth factors,
such as VEGF and its signalling, as well as the regulation of angiogenesis and growth of
several tissues underline the relevance of this ubiquitous molecule for normal development
and physiology [36,37]. The aim of the present attempt was to evaluate the protective
efficiency of PLC for isolated human islets exposed to a pro-inflammatory environment
which is initially induced during the islet isolation procedure and is also present after
transplantation.

2. Materials and Methods
2.1. Human Islet Isolation

All donor pancreata were voluntarily donated with written consent according to the
Declaration of Istanbul. Ethical approval for using isolated human islets for research was
given by the Human Tissue Authority (22496) and by the NHS National Research Ethics
Service (10/H0605/41). Pancreata were retrieved from 7 (2 female/5 male) human multi-
organ donors with brain death with a mean age of 47.3 ± 3.1 years (±standard error) and a
mean body mass index of 27.0 ± 2.5 kg/m2. All pancreata were preserved with University
of Wisconsin solution (Bridge to Life, London, UK) for a mean cold ischaemia time of
4.8 ± 0.5 h. Human islets were isolated and purified using standard isolation techniques as
previously described in detail [3].

The experimental design of the study is shown in Figure 1.

2.2. Human Islet Culture

After isolation and purification, a maximum of 550 islet equivalents (IEQs) were placed
per well in 24-well plates (Greiner Bio-One, Stonehouse, UK) and suspended in 500 µL of
the culture medium CMRL 1066, respectively. This corresponds to a seeding density of
250 IEQ per cm2 on average. Culture medium was supplemented with 20 mmol/L HEPES,
2 mmol/L L-glutamine, 200 units/mL penicillin, 200 µg/mL streptomycin (all reagents
from Life Technologies, Paisley, UK) and 2% foetal calf serum (PAA Laboratories, Pasching,
Austria). Isolated islets were cultured for four to five days in a hypoxic atmosphere (2%
oxygen, 5% carbon dioxide) at 37 ◦C in the presence or absence of 40 µg/mL Collagen-IV
(COL-4, Sigma-Aldrich, Dorset, UK), 10 µg/mL Laminin-521 (L-521, Biolam-ina, Stock-
holm, Sweden) or 10 µg/mL Perlecan (PLC, USCN Life Science, Brussels, Belgium) used
either alone or in combination by adding 40 µg/mL COL-4 plus 10 µg/mL L-521 plus
10 µg/mL PLC, i.e., using a total amount of 60 µg/mL BMPs. Although L-511 is the only
Laminin isoform present in the human islet BM [38], we could demonstrate in a previous
study that L-511 can be replaced by L-521 without experiencing a lower efficiency or any
disadvantages [35].
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µm of diameter which is defined as one IEQ. Proportional IEQ yield (%) was normalized 
to IEQ yield as counted after sham-treatment. Islet morphological integrity was deter-
mined by calculating the islet disintegration index dividing the number of size-independ-
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Figure 1. Experimental design of the study. * The first islet quality assessment, taking place before
starting the treatment, did not include the glucose-stimulated insulin secretion as performed after
4–5 days of treatment.

2.3. Islet Characterisation

Before and after culture, samples of defined volume were collected from any treatment
group and stained with dithizone (Sigma-Aldrich) to visually determine the number of
actual islets defined as dithizone-positive size-independent insulin-containing cell clusters.
Any counted islet was categorised according to its size and mathematically converted into
islet equivalents (IEQs) considering the individual volume of counted islets as previously
described in detail [39]. This conversion was normalized to a “standard” islet of 150 µm of
diameter which is defined as one IEQ. Proportional IEQ yield (%) was normalized to IEQ
yield as counted after sham-treatment. Islet morphological integrity was determined by
calculating the islet disintegration index dividing the number of size-independent actual
islets (IN) by IEQs (islet disintegration index = IN ÷ IEQ) [40]. Islet viability was assessed
utilising 0.67 µmol/L of fluorescein diacetate (FDA, Sigma-Aldrich) and 4.0 µmol/L of
propidium iodide (PI, Sigma-Aldrich) for staining of viable and dead cells, respectively [41].
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The fluorescence intensity (FI) of FDA-PI was quantified utilising a fluorometric plate
reader as previously described [42]. IEQ overall survival was calculated considering the
recovery of viable cells only, stained exclusively by FDA and not being penetrated by PI.

In vitro function of 20 hand-picked islets of similar size (150–200 µm) was assessed
in duplicate during static glucose incubation. These islets were seeded on 8 µm-pore size
filter inserts, transferred into 24-well plates and sequentially incubated for 45 min in 1 mL
of Krebs–Ringer buffer supplemented with 2.0 mmol/L glucose followed by 45 min at
20 mmol/L glucose and followed by a second period of 45 min at 2 mmol/L glucose. After
stimulation, islets were recovered and sonified in 1 mL of distilled water. An aliquot of the
disintegrated islet cell suspension was mixed with acid ethanol at a ratio of 1:4 followed by
overnight insulin extraction at 4 ◦C [43]. Before performance of the human insulin-specific
enzyme immunoassay (Mercodia, Uppsala, Sweden), samples were diluted and neutralized
by Krebs–Ringer buffer. The glucose stimulation index (GSI) was calculated by dividing
the insulin release at 20 mmol/L glucose by the mean of the two basal periods.

Production of reactive oxygen species (ROS) was determined by measuring the intra-
islet conversion of dichlorofluorescein diacetate into fluorescent dichlorodihydrofluores-
cein as previously described in detail [44]. After culture in a hypoxic atmosphere, islet-
preconditioned supernatants were collected and assessed for secretion of hypoxia- and
inflammation-related chemokines. Release of Interleukin-1 beta (IL-1β), IL-6, IL-8, mono-
cyte chemoattractant protein-1 (MCP-1), tumour necrosis factor alpha (TNF-α) and vascular
endothelial growth factor A (VEGF-A) was detected utilising enzyme immunoassays spe-
cific for human chemokines (Abcam, Cambridge, UK). Early apoptosis was demonstrated
by exclusive staining of phospatidylserine using Annexin-V. In contrast, islet late apoptosis
was determined by simultaneous staining with Annexin-V FITC (Becton-Dickinson Bio-
sciences, Oxford, UK) as well as PI used at a concentration of 450 ng/mL and 4.0 µmol/L,
respectively [45,46].

ROS production as well as chemokine release, glucose-stimulated insulin secretion,
necrosis and expression of apoptosis markers were normalized to IEQs.

2.4. Statistical Analysis

Statistical analysis and graphical presentations were performed using Prism 9.5.1
(GraphPad, La Jolla, CA, USA). Analysis of data was carried out using the nonparametric
Friedman test followed by Dunn’s test for multiple comparisons or by the Wilcoxon test
for subsequent insulin release at 2 and 20 mmol/L of glucose. Correlation analysis was
performed calculating the nonparametric Spearman’s correlation coefficient (r) subsequent
to outlier identification using the ROUT method at a Q-level of 1% [47]. Where appropriate,
data were normalized to sham treatment. Differences were considered significant at p less
than 0.05. p-values larger than 0.05 were termed nonsignificant (NS). Results are generally
expressed as mean ± standard error (SEM).

3. Results
3.1. Protective Effect of Islet BMPs on Islet Survival and In Vitro Function

As shown in Figure 2A, exposure of isolated human islets to a hypoxic atmosphere
reduced the number of initially incubated islets substantially. Apart from the islets treated
with COL-4 (NS), the yield of IEQ dropped significantly during four to five days of hypoxic
culture at 2% oxygen in all experimental groups when compared with the pre-culture islets.
When opposed to sham-treated islets a significantly improved recovery of IEQ could be
obtained after treatment with COL-4 (p < 0.001) and L-521 (p < 0.01) but not with PLC (NS)
or with the combined BMPs (NS). IEQ loss was associated with increased morphological
fragmentation as expressed by the disintegration index which was highest in sham-treated
islets (p < 0.001 vs. pre-culture) but was also significant in the PLC group (p < 0.01) and
the combination group (p < 0.01) (Figure 2B). In comparison with sham-treated islets, only
COL-4 (p < 0.01) and L-521 (p < 0.01) protected islets from hypoxia-induced disintegration.
Comparing the outcomes of all treatment groups, COL-4 seemed to have the strongest
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protective capacity for IEQ yield and corresponding morphological integrity as expressed
by the disintegration index (p < 0.05 vs. PLC, combination).
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Figure 2. Effect of different islet BMPs on (A) islet yield, (B) islet disintegration index, (C) islet
viability, (D) islet overall survival, (E) islet early apoptosis and (F) islet late apoptosis after 4–5 days of
culture in hypoxia (n = 7). Lines/arrows indicate *** p < 0.001, ** p < 0.01, * p < 0.05 for comparison of
experimental groups. Figures inside bars display variable figures normalized to sham-treated islets.

Islet morphological integrity and disintegration is also demonstrated by light mi-
croscopy in Figure 3. Whilst dithizone-stained islets pre-culture showed an ovoid shape
with a clearly defined periphery (Figure 3A), sham-treated islets (Figure 3B) and islets
treated for 4–5 days with the combination (Figure 3F) are characterized by an irregular and
disintegrated periphery accompanied by an accumulation of single cells at the bottom of
the wells. In contrast, islets treated with COL-4 (Figure 3C), or L-521 (Figure 3D) still had a
well-preserved periphery and were underlaid with only a few dropped single cells.
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Figure 3. Effect of different islet BMPs on the morphology of dithizone-stained human islets after
4–5 days of culture in hypoxia. Treatment groups are (A) pre-culture, (B) sham-treatment, (C) COL-4,
(D) L-521, (E) PLC and (F) the combination of COL-4 plus L-521 plus PLC. All treatment groups were
isolated from the same donor pancreas (original magnification × 50).

The differences in membrane integrity as measured by the FDA-PI viability assay
were relatively small between the different experimental groups with the exception of
sham-treated islets which lost nearly 40% of the initial viability (p < 0.001 vs. pre-culture;
Figure 2C). Compared with L-521 and the combination, COL-4-treated islets showed a
significantly higher viability (p < 0.05). When IEQ overall survival was calculated, i.e.,
the recovery of viable cells only, simultaneously excluding the recovery of dead cells, it
became obvious that treatment of islets with individually used BMPs nearly doubled the
IEQ overall survival after hypoxic culture in comparison with sham-treated islets (p < 0.001
vs. COL-4; p < 0.01 vs. L-521; p < 0.05 vs. PLC; NS vs. combination; Figure 2D). As observed
for islet yield, COL-4 demonstrated the highest potency to preserve IEQ overall survival
when compared with PLC (p < 0.05) and the combination (p < 0.01).

Apart from their morphological integrity, the functional capacity of cultured islets
was significantly affected by the hypoxic atmosphere during culture as well. As detailed
in Figure 4, hypoxic sham-treated islets were not able to properly respond to an increase
of the glucose concentration. This finding might be related to the fact that the initial basal
insulin release of sham-treated islets was significantly higher in comparison with the other
treatment groups (p < 0.001 vs. COL-4; p < 0.05 vs. L-521; p < 0.01 vs. PLC, combination).
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In addition, sham-treated islets could not downregulate insulin release when glucose was
switched back from a stimulatory to a basal level. In contrast, when islet BMPs had been
present during hypoxic culture a physiological insulin response could be observed in BMP-
treated islets. Consequently, the GSI, reflecting the secretory capacity of islets, was similar
in all treatment groups except in sham-treated islets which showed a significantly reduced
GSI (p < 0.01 vs. COL-4; p < 0.001 vs. L-521, PLC; p < 0.05 vs. combination; Figure 4).
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Figure 4. Glucose-stimulated insulin secretion after 4–5 days of culture in a hypoxic atmosphere
utilising different islet BMPs as supplements for culture media. Basal (white bars), stimulated insulin
release (grey bars) and GSI (black bars) of 20 human islets are normalized to IEQ. Symbols inside
white and grey bars indicate * p < 0.05 for 2 vs. 20 mmol/L of glucose. Lines/arrows indicate
*** p < 0.001, ** p < 0.01, * p < 0.05 for comparison of basal or stimulated insulin release. Symbols
inside back bars indicate # p < 0.001, ‡ p < 0.01, † p < 0.05 for comparison of GSI calculated for different
treatment groups.

3.2. Inhibitory Effect of Islet BMPs on Islet-Related Inflammation and Apoptosis

As shown in Figure 5, several days of culture in hypoxia had a significant effect on
the production of ROS. In sham-treated islets, the intra-islet formation of ROS increased
by more than two-fold when compared with islets preculture. In contrast, the presence
of islet BMPs approximately halved the ROS generation in sham-treated islets. PCL was
most effective to reduce the production of ROS in comparison with sham-treated islets
(Figure 5). Unexpectedly, we could not verify a significantly harmful effect of ROS on
glucose-stimulated insulin release (r = −0.16, NS) or on early apoptosis (r = 0.32, NS) of
hypoxic islets utilizing Spearman’s rank correlation. On the other hand, a close association
of ROS production with chemokine release was confirmed by the tight correlation that was
found between ROS and TNF-α (r = 0.73, p < 0.001; Figure 6A).
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After analysis of cell-depleted media collected postculture, the observations made
with hypoxia-induced ROS could be verified. The lack of oxygen induced an approxi-
mately three-fold increase of chemokine release in sham-treated controls (p < 0.001 vs.
pre-culture; Figure 7A–F). Although the magnitude of secretion varied enormously be-
tween the different chemokines assessed, the release followed a very similar pattern as
shown in Figure 7A–F. In contrast, the presence of islet BMPs substantially reduced the
chemokine production measured in sham-treated islets by approximately 50%. Remarkably,
COL-4 had no statistically significant inhibitory effect on chemokine production in islets
when compared with sham-treated islets. Moreover, significant differences were found
comparing COL-4 with PLC (p < 0.001 vs. sham-treated) and the combination (p < 0.01,
p < 0.001 vs. sham-treated), which showed the largest anti-inflammatory potency amongst
all islet BMPs assessed. The enormous capacity of PLC to decrease chemokine production
was also demonstrated by comparison with L-521 (p < 0.01; Figure 7A–F).

1 
 

 
 
  Figure 7. Effect of different islet BMPs on release of (A) TNF-α, (B) IL-1β, (C) IL-6, (D) IL-8,

(E) MCP-1 and (F) VEGF normalized to IEQs after 4–5 days of culture in hypoxia (n = 7). Lines/arrows
indicate *** p < 0.001, ** p < 0.01, * p < 0.05 for comparison of experimental groups. Figures inside
bars display chemokine release normalized to sham-treated islets.

Figure 6 demonstrates that the correlation coefficients between TNF-α, playing a
central role in the chemokine network, and other proinflammatory cytokines such as IL-8
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(r = 0.74, p < 0.001; Figure 6B), IL-1β (r = 0.87, p < 0.001; Figure 6C) and MCP-1 (r = 0.73,
p < 0.001; Figure 6D) were highly significant. In contrast, VEGF-A (r = 0.53, p < 0.01) and IL-
6 (r = 0.48, p < 0.01), which are not included in Figure 6, showed a much weaker correlation
with TNF-α.

The detrimental effect of TNF-α on islet functional integrity is depicted in Figure 8.
Whilst an inverse correlation of TNF-α was calculated for the GSI (r = −0.48, p < 0.01), the
expression of phospatidylserine, a marker for early apoptosis correlated positively with
TNF-α (r = 0.51, p < 0.01). A nearly identical correlation was found between TNF-α and
late apoptosis (r = 0.50, p < 0.01) which is v in Figure 8. 

2 

 

Figure 8. Effect of islet TNF-α release on early apoptosis (▼, dashed line, left y-axis) and glucose
stimulation index (•, solid line, right y-axis). Each data point represents the intensity of Annexin-
V staining or the glucose stimulation index in relation to the corresponding generation of TNF-α
secretion. The correlation coefficient (r) was calculated using Spearman’s rank correlation after outlier
identification (n = 32).

The anti-inflammatory effect of islet BMPs was associated with a substantial reduction
in early islet apoptosis which was significantly doubled in sham-treated islets when com-
pared with islets pre-culture (p < 0.001; Figure 2E). Except for the combination group (NS
vs. sham-treated, p < 0.01 vs. COL-4, PLC), all other islet BMPs were highly effective in
inhibiting early apoptosis in comparison with the sham-treatment (p < 0.001 vs. COL-4,
PLC; p < 0.01 vs. L-521). Moreover, the level of early apoptosis in islets treated with single
BMPs was similar to islet early apoptosis measured pre-culture.

The expression of late apoptosis, characterized by the simultaneous expression of
markers of apoptosis and necrosis, was only moderately enhanced in sham-treated islets
when compared to pre-culture (p < 0.05, Figure 2F). Whilst the presence of COL-4, L-521 or
PLC reduced late apoptosis to its pre-culture levels (NS vs. pre-culture; p < 0.01 vs. sham-
treated), the combination of these three islet BMPs had a weaker effect on late apoptosis
(NS vs. sham-treated, p < 0.05 vs. COL-4, PLC; Figure 2F).
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4. Discussion

Throughout the isolation process, human islets are exposed to myriads of harmful
variables severely affecting islet functional and morphological integrity. The central factors
in this process are the interrupted supply of oxygen and nutrients, and the destruction
of the natural pancreatic islet environment by collagenolytic enzymes and mechanical
pancreas treatment [48]. Since the digestion of the ECM is an essential and inevitable
key step of the islet isolation procedure, the reconstruction of the ECM may represent a
significant option to improve islet survival prior to and after transplantation. Taking all
these factors into account, it is obvious that the demand for a successful protective and
regenerative islet treatment prior to transplantation is high.

Considering the tremendous complexity of the pancreatic ECM, and the endless quan-
tity of different signals that are generated and harmonized by this structure to maintain
tissue integrity, the decellularized pancreatic ECM represents the current gold standard for
engineering a scaffold for isolated pancreatic islets [49]. Thus, it appears to be quite implau-
sible that the functional potency of the whole pancreatic ECM can be replaced by individual
isolated ECM components [7,50,51]. Nevertheless, before the use of decellularized ECM
can be translated into clinical practice, major hurdles such as sterility, immunogenicity and
standardization of the decellularized ECM have to be overcome [52]. In the meantime,
the present study primarily used individual components of the islet BM that are already
commercially available as sterile recombinant human proteins such as L-521 or PLC or that
are extracted from human placenta like COL-IV, in order to limit the number of regulatory
issues to be clarified for clinical application [51]. This strategy would also facilitate blending
with encapsulation materials such as alginate [23,24].

The continuous presence of hypoxia during culture, implemented in the setting of
our study to perpetuate the pro-inflammatory conditions as present during islet isola-
tion and post-transplant, seems to be the major stimulus for the increased production
of ROS and chemokines [53,54]. The present study revealed a tight correlation between
nearly all chemokines assessed and outlined a chemokine network that comprises not
only pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α but also protective ones
like VEGF [55] or ambivalent chemokines such as IL-8 [56]. Our observations about the
close relationship between different chemokines are in agreement with a previous study
about the chemokine production of cultured human islets prior to transplantation [57]. In
this complex network, TNF-α is the central element [58–60], whilst ROS are the dominant
mediator of TNF-α-induced activities [54,61,62].

A continuous ROS overproduction cannot be compensated by the relatively low anti-
oxidative enzyme expression in islets [63–65] leading to a substantial stimulation of TNF-
α [62,66] which, in turn, boosts the mitochondrial generation of ROS [54]. As a consequence
of this harmful loop, the excessive ROS overproduction can result in the damage of oxidized
enzymes and structural proteins [67], induction of apoptosis [68–71] and human islet
dysfunction in vitro as well as post-transplant [57,72–75]. In contrast, our study could not
demonstrate a significant correlation of ROS with islet yield, viability, secretory capacity
and early or late apoptosis. Our present data rather suggest that hypoxia in human islets
results in a strong pro-apoptotic response and in a relatively mild increase of necrotic cell
death. Vice versa, the protective capacity of the islet BMPs was significantly more potent in
early apoptosis when compared with necrosis as measured by the FDA-PI assay.

The most relevant finding of our study is that PLC has the most powerful anti-
inflammatory and anti-apoptotic capabilities amongst all islet BMPs tested. This was
demonstrated by the strongest reduction in terms of ROS production and by the massive
decrease of chemokine secretion. Whilst the chemokine release in sham-treated islets
was at least triplicated when compared with islets pre-culture, PLC-treated islets secreted
chemokines in quantities which were similar to the pre-culture baseline. On the other hand,
PLC had only a relatively weak protective effect regarding islet yield and morphological
integrity which was significantly more pronounced in COL-4. Apart from this property,
COL-4 had only weak capabilities to reduce the production and secretion of the chemokines
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assessed. However, the observation that the protective feasibilities seem to vary between
different islet BMPs clearly indicates that one single islet BMP cannot protect against the
full spectrum of harmful factors associated with islet isolation and transplantation. Despite
our finding that the combination of several islet BMPs is not as effective as single BMPs, the
necessity to combine different islet BMPs to obtain a wide range of protection is still valid.

Integrins are essential mediators of ECM-derived signals into the cellular interior [10,76,77].
Previous studies localized several integrins on islets or beta cells isolated from different
species and identified some metabolic pathways triggered by these integrins
[11,12,16,18,33,34,78,79]. Nevertheless, since different BMPs can bind to the same inte-
grins it is difficult to precisely attribute a defined effect of individual BMPs on certain
anti-inflammatory and anti-apoptotic survival pathways [37,77,80]. In accordance with
previous approaches, we could not detect any synergies between islet BMPs when added
in combination [22,35,81,82] which may indicate a competitive ligation of different BMPs
to the same integrins. The close cross-linking of the different chemokines, as shown in the
present study, additionally aggravates the identification of specific effects of the islet BMPs
tested. Further studies with competitive antibodies will be required in the future to identify
the most relevant islet BMP-specific integrins [83]. This may also facilitate the definition of
the ideal stoichiometric ratio between the most relevant components of the islet BM [23,84].

5. Conclusions

The present study demonstrated that PLC has the most potent anti-inflammatory
capacity when compared with COL-4 and L-521, whilst COL-4 has the strongest potency to
preserve islet yield. Combining COL-4, L-521 and PLC did not result in a further increase of
islet protection against hypoxia-related impacts. From this study, we conclude that PLC is
an effective anti-inflammatory and anti-apoptotic BMP candidate for islet encapsulation and
transplantation but with a relatively low capacity to protect islet morphological integrity.
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