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Abstract: Background: Physiological curvature changes of the lumbar spine and disc herniation
can cause abnormal biomechanical responses of the lumbar spine. Finite element (FE) studies
on special weightlifter models are limited, yet understanding stress in damaged lumbar spines is
crucial for preventing and rehabilitating lumbar diseases. This study analyzes the biomechanical
responses of a weightlifter with lumbar straightening and L4-L5 disc herniation during symmetric
bending and lifting to optimize training and rehabilitation. Methods: Based on the weightlifter’s
computed tomography (CT) data, an FE lumbar spine model (L1-L5) was established. The model
included normal intervertebral discs (IVDs), vertebral endplates, ligaments, and a degenerated
L4-L5 disc. The bending angle was set to 45◦, and weights of 15 kg, 20 kg, and 25 kg were used.
The flexion moment for lifting these weights was theoretically calculated. The model was tilted
at 45◦ in Abaqus 2021 (Dassault Systèmes Simulia Corp., Johnston, RI, USA), with L5 constrained
in all six degrees of freedom. A vertical load equivalent to the weightlifter’s body mass and the
calculated flexion moments were applied to L1 to simulate the weightlifter’s bending and lifting
behavior. Biomechanical responses within the lumbar spine were then analyzed. Results: The
displacement and range of motion (ROM) of the lumbar spine were similar under all three loading
conditions. The flexion degree increased with the load, while extension remained unchanged. Right-
side movement and bending showed minimal change, with slightly more right rotation. Stress
distribution trends were similar across loads, primarily concentrated in the vertebral body, increasing
with load. Maximum stress occurred at the anterior inferior margin of L5, with significant stress at
the posterior joints, ligaments, and spinous processes. The posterior L5 and margins of L1 and L5
experienced high stress. The degenerated L4-L5 IVD showed stress concentration on its edges, with
significant stress also on L3-L4 IVD. Stress distribution in the lumbar spine was uneven. Conclusions:
Our findings highlight the impact on spinal biomechanics and suggest reducing anisotropic loading
and being cautious of loaded flexion positions affecting posterior joints, IVDs, and vertebrae. This
study offers valuable insights for the rehabilitation and treatment of similar patients.

Keywords: finite element; physiological straightening; herniated disc; bending and lifting; biomechanical

1. Introduction

Repetitive loading due to body posture, such as bending, is well documented as a
contributor to lumbar spine pathologies, including intervertebral disc (IVD) issues and
changes in physiological curvature. IVDs function as shock absorbers, enabling flexibility
for bending and rotation. The natural lordotic curvature of the lumbar spine aids in evenly
distributing mechanical loads during activities like standing and lifting. This curvature
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alleviates pressure on the IVD and lumbar vertebrae and enhances spinal flexibility and
stability [1,2]. Athletes confront gravitational forces and the imperative of maintaining
mechanical equilibrium within the athletic realm, particularly in weightlifting. This results
in the spinal column enduring substantial axial loads and shear stresses, significantly
contributing to the prevalence of lumbar spine disorders among sports-related injuries,
with a reported prevalence exceeding 80% [3,4]. Despite stringent health protocols in their
training, weightlifters still exceed physiological stress thresholds due to intensifying com-
petition and athletes’ relentless pursuit of excellence. Unfortunately, such circumstances
often lead to chronic lumbar spine conditions, of which IVD herniation is a prototypical
manifestation [5,6]. When the human disc herniates and pathological changes occur, this
usually leads to lower back pain and degenerative changes or inflammation caused by
cumulative training in the athlete’s role [7]. As a result, the original structure of the nucleus
pulposus and annulus fibularis is abnormal, and the original function of load distribution
and buffer is destroyed, resulting in uneven stress distribution and anisotropy during
activity [8] and, because of its structural failure and bringing other skeletal structural
abnormalities of the chain reaction, resulting in movement and daily life in the ability to
perform the behavior of the spine instability, including small joints and cartilage tissue,
ligaments, and so on, the force and its functional properties change [9–11]. Furthermore,
prolonged training over the years can impact the intrinsic compensatory mechanisms,
potentially influencing the curvature of the lumbar sagittal profile [12]. It is noteworthy,
however, that individual genetic predispositions constrain these mechanisms. Concurrently,
the anatomical characteristics of the spine are susceptible to alterations stemming from
discopathy, with a pronounced interrelationship between the two phenomena [13–17]. This
condition introduces several biomechanical deficiencies, culminating in aberrant body pos-
tures during mechanical activity, constrained balance capabilities, and restricted individual
joint mobility [18].

Manual material handling is a common labor practice in daily life, with tasks such
as bending to lift objects posing a high risk for lumbar spine injury [19]. This behavior
is prevalent among both professional workers, such as gardeners and movers, and non-
professionals engaging in activities like relocating or moving household items [20]. For
athletes, their training often includes exercises targeting arm strength, body balance, and
localized muscle groups, such as kettlebell or barbell training. Unlike weightlifters who
engage in high-load training, manual labor typically involves lighter loads and less stringent
body posture requirements. However, performing such activities on already diseased
lumbar spines appears to be a random behavior. Hence, exploring the biomechanical
response of the lesion lumbar spine to manual material handling is crucial. This relates
to athletes’ training and competitions and affects their retirement careers and lumbar
spine rehabilitation.

Understanding the internal loads within IVD is crucial for preventing injuries during
exercise and activities. Investigating the load distribution in specific areas of the human
body often requires considering the overall response. Therefore, finite element (FE) model-
ing is widely utilized in biomechanical studies of the lumbar spine. FE models of individual
segments, including lumbar vertebrae L1-L5, have been developed [21–25]. These models
are utilized to investigate material properties, surgical interventions, biomechanical effects
of lumbar loads, and boundary conditions, aiming to optimize treatment methods and
reduce postoperative recurrence rates. Multiple reports have been previously published
on establishing FE models for specific healthy lumbar spine weightlifters to examine their
biomechanical responses [26–28]. Analyzing internal stresses under various conditions to
identify factors contributing to injury risk and offer guidance for preventing and treating
sports injuries. In addition, some studies have focused on IVD herniation symptoms. For
instance, Mimura et al. [29] explored the relationship between lumbar IVD herniation and
reduced multidirectional spine flexibility, finding that affected lumbar discs had reduced
range of motion (ROM) in flexion and lateral bending motion under different load condi-
tions. Raheem et al. [30] used a three-dimensional FE model to investigate how changes
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in the status of the nucleus pulposus lead to lumbar IVD herniation, highlighting signif-
icant changes in disc response after nucleus pulposus removal. Yu et al. [31] developed
and validated a high-precision three-dimensional FE model of the L4-L5 lumbar spine
segment, encompassing both normal and various degrees of IVD herniation, and simulated
the mechanical performance of these models under different conditions to mimic human
physiological activities. While these reports offer diverse and in-depth perspectives, there
is limited focus on specific weightlifter considerations.

This study established a personalized three-dimensional FE model of the weightlifter
with physiological straightening and lumbar IVD herniation and analyzed the internal
stress changes in the damaged lumbar vertebrae when simulating symmetric bending and
weightlifting movements. It was hypothesized that mechanical loading would cause un-
even stress distribution in the weightlifter’s lumbar spine and present abnormal mechanical
transmission. These results will provide a scientific basis for daily preventive measures,
physical interventions, and clinical surgical methods for similar patients.

2. Materials and Methods
2.1. Participant

The subject of this investigation is a professional weightlifter, aged 21 years, with a
height of 169 cm and a body weight of 71 kg. A seasoned physician clinically diagnosed the
weightlifter with an L4-L5 IVD herniation, characterized by nucleus pulposus protrusion
into the vertebral canal, exerting pressure on adjacent nerve roots, and evaluated the
lumbar segmental curvature using the Cobb angle [32,33]. In the computed tomography
(CT) image, to measure the Cobb angle, a horizontal line is drawn at the upper edge of
the upper vertebra and another at the lower edge of the lower vertebra. Perpendicular
lines are then drawn from each of these horizontal lines, and the angle between these
perpendicular lines represents the Cobb angle, as shown in Figure 1. A comprehensive
assessment of symptomatic manifestations, including pronounced lower back and leg pain,
ambulatory difficulties, and disturbances in sensory perception, confirmed the diagnosis.
Informed consent, emphasizing the voluntary nature of participation, was obtained in
writing from the participant. The Ethics Committee of Ningbo University granted ethical
approval for this study, verifying its adherence to established ethical standards (protocol
code: RAGH 20240118).
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2.2. Collection of Data

Utilizing a Somatom Sensation 16 spiral CT device (Siemens, Munich, Germany), a
series of axial CT images were acquired from the superior border of the first to the inferior
border of the fifth lumbar vertebra in a volunteer. The individual was placed in dorsal
recumbency to ensure orthogonality of the body axis to the imaging plane. Each image was
preserved in digital imaging and communications in medicine (DICOM) format with a bone
structure window featuring an interlayer distance of 0.75 mm, culminating in 377 slices.

2.3. Model Establishment

CT-acquired DICOM data were imported into Mimics 21.0 (Materialise, Leuven, Bel-
gium) for segmentation based on grayscale thresholds ranging from 216 to 2944 Hounsfield
units to delineate osseous structures, resulting in a 3D reconstruction of the lumbar verte-
brae L1-L5. Subsequent refinement was performed in Geomagic Studio (Geomagic, Inc.,
Research Triangle Park, NC, USA), involving porosity fills and edge smoothing, meticu-
lously preserving the original curvature to retain primary morphological features. The
isolated vertebral models were then assembled with an IVD construct in SolidWorks 2021
(Dassault Systèmes, Waltham, MA, USA), using anatomical landmarks to extrude endplates
from each vertebra’s superior and inferior surfaces. Components representing the nucleus
pulposus, annulus fibrosus, and articular cartilage were subsequently modeled on the
endplate surfaces. The assembly was meshed using HyperMesh 2019 (Altair Engineering,
Inc., Troy, MI, USA). The cancellous bone was modeled using C3D4 tetrahedral solid ele-
ments. The external layer of this bone was converted into a 1 mm thick cortical bone shell,
defined as S3R three-node shell elements. The nucleus pulposus, endplate, and annulus
fibrosus represented C3D8H hexahedral solid elements. Additionally, the ligament was
modeled as a ligament as a T3D2 line element, as illustrated in Figure 2. FE analysis was
conducted in Abaqus 2021 (Dassault Systèmes Simulia Corp., Johnston, RI, USA), applying
physiologically relevant boundary conditions to explore biomechanical responses.
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Figure 2. Modeling process.

Under the actual kinematic attributes of the lumbar spine, the contact condition be-
tween the annulus fibrosus and the nucleus pulposus of the IVD is designated as “bonded”
due to their characteristic of remaining unified and inseparable under a normal load, sim-
ulating their unified behavior in a physiological state. Concerning the vertebral bodies
and facet joints, which may exhibit sliding under specified loading conditions, the contact
condition is set to “frictional”, with a friction coefficient of 0.01 [34] to represent the low-
resistance sliding attributed to the synovial fluid within the joint spaces. Additionally, to
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maintain the simulation’s structural cohesion and fidelity, the interfaces between cortical
bone and cancellous bone, and between cortical bone and the endplate, are defined as
shared nodes. In contrast, the endplate and the IVD are connected via a “tie” constraint.
This arrangement denotes that they are virtually coalesced within the model, ensuring the
proper transmission and dispersion of forces. Components within the model are charac-
terized as elastomeric materials, with the skeletal framework and discs conceptualized
through isotropic elasticity. Empirical investigations have guided the choice of material
properties for the model’s bony structures, IVD, and ligamentous components [35–37].
To gain a comprehensive understanding of the material parameters of the skeletal frame-
work and the associated soft tissues, one must consult Table 1 [35]. In instances of IVD
herniation, histopathological examination predominantly reveals the desiccation of the
nucleus pulposus, and breaches in the annulus fibrosus integrity, alongside modifications
in the biochemical makeup and permeability of both the annulus fibrosus and the nucleus
pulposus [38–40]. These alterations markedly diminish the hydration levels of the annulus
fibrosus and appreciably escalate the elastic modulus of the IVD when juxtaposed with
their normal counterparts. This investigation adopts an IVD herniation model, orchestrated
by adjusting the material attributes of the nucleus pulposus and annulus fibrosus [35], as
detailed in Table 2. The complete three-dimensional FE model of the lumbar spine consisted
of 419,439 total meshes and 147,723 total nodes.

Table 1. Material parameters of the FE model.

Young’s Modulus (MPa) Mesh Size (mm) Poisson Ratio

Cortical bone 12,000.00 1.5 0.30

Cancellous bone 100.00 1.5 0.20

Endplate 25.00 0.8 0.40

Annulus fibrosis 1.00 0.8 0.49

Nucleus pulposus 4.20 0.8 0.45

Anterior longitudinal ligament 7.80 / 0.30

Posterior longitudinal ligament 10.00 / 0.30

Ligamentum flavum 15.00 / 0.30

Interspinous ligament 10.00 / 0.30

Transverse ligament 7.50 / 0.30

Intertransverse ligament 10.00 / 0.30

Supraspinous ligament 8.00 / 0.30

Table 2. Material setting of IVD herniation between L4-L5.

Young’s Modulus (MPa) Poisson Ratio

Annulus fibrosis 1.62 0.40

Nucleus pulposus 10.29 0.40

Due to the model being based on the physiological structure of a weightlifter’s lumbar
spine, the physiological straightening model cannot be compared with a normal lumbar
spine. Based on the anatomical indicators of the human frame and appropriate material
properties, this graduate student developed a detailed L1-L5 FE representation of the
weightlifter’s specific lumbar spine. The morphological consistency between the designed
model and the actual structure was verified by comparison with computed tomography
(CT) images to ensure the validity of the model [41].
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2.4. Boundary and Loading Condition

Lifting an object symmetrically with both hands is common, involving the coordinated
action of skeletal joints, muscles, and other body parts. The internal mechanical behavior
of the human body is complex. When using simulation techniques to model real-world
situations, it is necessary to approximate actual stress models. This study adopts a simpli-
fied mechanical model, defining the trunk flexion angle as 45◦ for symmetrical lifting and
treating the lumbar spine as a rigid body. According to the theory of static mechanical equi-
librium, the moment exerted by the erector spinae muscles to maintain lumbar flexion is
calculated. This approach is based on the mathematical model developed by Bao et al. [42],
which estimates the lumbar forward bending moment in athletes preparing to lift a barbell.
The estimation model is shown in Figure 3.
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Figure 3. (a) Human body symmetrical bending and lifting objects schematic; (b) static force analysis
of lumbar spine.

Taking the lumbosacral region as the pivot point, N represents the force acting on
the sacral region, N1, and N2 the counterweight; F is the strength of the erector spinae to
maintain spine flexion; F1 is the total mass of the trunk; and F2 is the cumulative weight of
the head, neck, arms, and the lifted object. S is the distance of the erector spinae from the
spine, while S1 and S2 are the moment arms of F1 and F2, respectively [43].

According to the principles of theoretical mechanics’ equilibrium theory, the entirety
of the force system must satisfy conditions of force balance across horizontal and vertical
axes as well as rotational equilibrium. The equation is as follows:

∑ M = 0 (1)

F × S = F1 × S1 + F2 × S2 (2)

The torso accounts for 43% of total body weight. In contrast, the combined weight
of the head, neck, and arm is 17%, and the L-arm S from the erector spinae to the lumbar
spine is about 5 cm [42]. The distance from the human head to the sacrum is considered a
straight-line distance during bending and lifting. The length of the head and neck accounts
for 19% of the height and 29% of the torso [44], the S1 is about 35 cm, and the S2 is about
57 cm. We set the weight of the lifted object as 15 kg, 20 kg, and 25 kg to calculate flexion
moment as 26.12 Nm, 28.97 Nm, and 30.68 Nm, respectively.

According to Bao et al. [42], body mass above L1 is estimated concerning Chinese
human body parameter values. This parameter is obtained from many Chinese human
body samples investigated by Zheng et al. [45]. Based on the weightlifter’s height and
weight, the estimated weight on L1 is about 28.6 kg.
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We fully restrain the lower surface of the L5 vertebra. The moment exerted by the
erector spinal muscles to maintain lumbar spine flexion and the body weight acting on the
upper surface of the L1 vertebral body are applied as loading conditions (Qing-Hua and
Chun-yu) to simulate the static action of bending and lifting an object. Flexion moment
and vertical loads are applied to the upper surface of L1, as shown in Figure 4.
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Figure 4. Boundary and loading conditions in FE model.

3. Results
3.1. Whole Vertebrae Deformation during Weight Lifting

Under the three kinds of load, the displacement and range of motion (ROM) of the
lumbar spine are similar; flexion shows an upward trend with the increase in load, and
the extension almost does not change. In addition, moving more to the right and bending
slightly to the right, little changes as the load increases. At the same time, the left–right
rotation is small, with minimal change as the load increases, and the right rotation is slightly
more than the left rotation. Due to the changing trends being similar, we only present the
displacement and rotation cloud diagrams when simulating lifting a 15 kg object, as shown
in Figure 5. For data under three loads, refer to Table 3.

Table 3. Displacement and ROM data for three loads.

15 kg 20 kg 25 kg

X (+) * X (−) * X (+) X (−) X (+) X (−)

UI 4.32 1.74 4.38 1.85 4.41 1.92

UR1 * 53.88 2.29 57.87 2.29 60.15 2.29

Y (+) Y (−) Y (+) Y (−) Y (+) Y (−)

U2 2.88 92.2 3.05 98.2 3.16 101.80

UR2 3.99 1.15 3.99 1.15 3.99 1.15

Z (+) Z (−) Z (+) Z (−) Z (+) Z (−)

U3 11.60 74.60 12.39 79.33 12.86 82.17

UR3 1.14 1.72 1.14 2.29 1.72 2.29
* UR unit: deg; (+) positive direction of the axis; (−) opposite direction of the axis.
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object. In Abaqus, U1, U2, and U3 represent displacements along the X, Y, and Z axes, respectively.
The X-axis represents lef-right displacement, the Y-axis represents front-back displacement, and the
Z-axis represents up-down displacement. UR1, UR2, and UR3 represent rotations around the X, Y,
and Z axes in the local coordinate system. Rotation around the X-axis indicates flexion and extension;
rotation around the Y-axis indicates left-right bending; and rotation around the Z-axis indicates
left-right rotation.

3.2. Distribution of Biomechanical Forces in FE Modeling of the Lumbar Spine

Under three different loading conditions, the stress distribution trends of the lumbar
spine are similar, primarily concentrating within the vertebral bodies, and, with increasing
load, stress values escalate. In the overall lumbar spine, the principal stresses in the lumbar
spine are concentrated at the upper and lower anterior margins of the vertebral bodies,
with the L5 vertebral body’s anterior aspect experiencing the highest concentration of stress.
The maximum stresses are localized at the lower anterior edge of the L5 vertebral body,
measuring 175.50 MPa, 184.30 MPa, and 189.60 MPa, respectively. Stress concentrations
are also noted near the junctions between vertebral bodies and facet joints, particularly at
posterior junctions and at ligament and spinous process interfaces, where the posterior
structures of the L5 vertebra bear the most stress. Within the vertebral bodies, stress
primarily concentrates at the upper and lower anterior edges, diffusing towards the middle
portions, with the highest stress observed at the upper edge of the L5 vertebral body.
Additionally, significant stress concentrations are evident at the posterior margins of the
L1 and L5 vertebral bodies. In the vertebral regions, stress is predominantly concentrated
at the upper and lower anterior edges, spreading towards the central regions, with the
highest concentration observed at the upper anterior edge of the L5 vertebral body, while
significant stress concentrations are also evident at the posterior edges of the L1 and L5
vertebral bodies. In the IVD regions, the most extensive stress concentrations occur in the
degenerated L4-L5 IVD, including its anterior upper and lower edges, and the posterior
lower edge. The anterior foremost edge and outer surface of the L3-L4 IVD also show
notable stress concentrations, while stress distributions in the L1-L2 and L2-L3 regions are
comparatively more diffuse and localized. Overall, the lumbar spine exhibits uneven stress
distributions among the vertebral bodies and IVDs, as shown in Figure 6.
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Figure 6. (a) Global stress distribution in the lumbar spine; (b) vertebral stress distribution; (c) IVD
stress distribution. From top to bottom are L1-L2IVD, L2-L3IVD, L3-L4IVD, and L4-L5IVD.

4. Discussion

FE analysis is particularly conducive to studying abnormal bony structures, avoiding
the need for implantable structures. This non-invasive method allows for the detailed
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study of internal stress, predicting potential failure points and areas of high stress, thus
aiding in designing preventive measures and rehabilitation strategies [46,47]. Our study
involves constructing a three-dimensional FE model based on the case of a professional
weightlifter with a damaged lumbar spine. The aim is to predict the biomechanical response
of the lumbar spine under symmetric bending and lifting activities by applying external
loads, thereby reflecting the ROM and internal stress in the lumbar spine during routine
symmetric lifting of everyday materials. In the context of kinematics, our results indicate
that under anterior bending moments and vertical loading, the lumbar flexion angle of
the weightlifter’s lumbar spine increases with the load. Simultaneously, there is a slight
left–right rotation and bending, with minor rightward bending and rotation overall. As the
load increases, rotation and flexion remain almost unchanged. The segmental structure of
the lumbar spine undergoes Euler rotations under any movement, but the lumbar spine’s
physiological structure and pathological conditions influence its kinematics [48]. The mech-
anisms in this area are complex, and current research is ongoing. Due to the fixed motion
simulation in this study, there are no completely equivalent experimental simulations
in previous reports. We compared our results with the kinematic study conclusions of
Chowdhury et al. [49] on normal lumbar spine during symmetrical bending and lifting.
We found several differences. First, the load applied in our study was greater than their
study’s variables, but the lumbar flexion angle in our weightlifter seemed smaller than in
normal individuals. Additionally, lumbar rotation and lateral bending were almost non-
existent and did not change significantly with increased load. Secondly, lumbar rotation
and lateral bending were much smaller than normal individuals, whose variability was
more pronounced with increased load. This seemed to confirm that the weightlifter’s range
of motion was limited. This could be due to the lumbar spine exhibiting reduced curvature
in the sagittal plane, leading to decreased buffering capacity, tighter nesting of the vertebral
spinous processes and facet joints, and increased lumbar stiffness. This is consistent with
flexion stiffness in the low protrusion model of the lumbar spine constructed by Naserkhaki
et al. [50]. The common denominator of these two personalized lumbar spine models is
that the sagittal curvature of the lumbar spine is smaller than that of normal people. We
also simulated IVD degeneration. Ohlmann et al. [51]’s study using FE analysis on the
impact of degenerative discs on lumbar mobility found that increased disc degeneration
significantly reduces coupled movements of the lumbar spine, affecting vertebral torsion.
Cai et al. [52] found that the lumbar ROM would be reduced with the deepening of the
degenerated IVD. Many researchers have also confirmed this [53,54]. It is crucial to note
that bony structures and lumbar pathologies influence each other, especially since this
weightlifter had a history of heavy bending and lifting exercises before falling ill. Therefore,
the internal structural mechanism is complex. In our study, the load was much smaller
than their usual practice load, but the cumulative effect of small loads seems to push the
lumbar spine to the limits of its range of motion in left–right rotation and bending. This
suggests that similar patients should reduce bending and lifting tasks, as such actions will
likely cause vertebral compression and fractures.

Regarding lumbar spine stress, the overall stress distribution across the lumbar verte-
brae is uneven and relatively dispersed. The anterior surface stress of the L5 vertebra is
significantly greater than other vertebrae, concentrated at the upper and lower edges of the
vertebral body. Concurrently, several stress concentrations are observed in the posterior
structures of the L5 vertebra, which may be related to the degeneration of the L4-L5 IVD,
hindering effective stress transmission [55,56]. Other stress concentrations are primarily
located at the joint interfaces. During symmetrical flexion movements, normal lumbar
spine stress typically concentrates on the vertebral bodies [57,58], with rare occurrences
of uneven stress distribution. The posterior joints play a protective and connective role
in lumbar spine movements; however, stress is also observed in the posterior vertebral
structures in this weightlifter, and flexion moment increases the risk of joint fractures. The
range of stress in degenerated IVDs is broader [59], similar to normal lumbar discs, with
stress concentrating at the disc margins during movements [60]. Naserkhaki et al. [50]’s
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study also noted that, while different types of lordosis affect the mechanics of flexion
and extension, they exhibit similar load sharing when it comes to disc compression. This
suggests that, although the geometry and degree of lordosis of the spine structure can alter
the spine components’ mechanical response and load distribution, the increased degree of
disc compression is similar across spine types. Notably, this weightlifter shows significant
stress concentrations at both the anterior and posterior upper and lower edges of the L5
IVD. This suggests potential risk factors during activities such as bending and lifting, which
could exacerbate disc degeneration. Previously reported [61] indicates a close interaction
between disc degeneration and skeletal abnormalities. Disc degeneration exacerbates the
pathological process of skeletal abnormalities, and skeletal abnormalities further accelerate
disc degeneration by altering mechanical transmission paths, leading to excessive stress
in certain areas [62]. The influence of bony structural abnormalities and lumbar spine
pathologies on stress responses is highly complex. This weightlifter’s lumbar spine exhibits
a wider overall stress range than normal, likely due to a physiological vertical alignment
markedly different from the typical lordotic curvature of normal lumbar spines. This
increases overall stiffness and a reduced ability to disperse stress, leading to irregular stress
concentration zones. For this weightlifter, it is crucial to reduce the stress concentrations
caused by anisotropic lumbar spine loads, prevent the progression of degenerative changes,
and implement protective measures.

Instances of lumbar spine structural abnormalities are notably frequent among
weightlifters, encompassing conditions such as back pain and impairments in performing
daily tasks. Previous studies have documented a myriad of osseous anomalies and early
degeneration of IVD among these athletes. The impact of symmetric loading in weightlift-
ing on athletes varies [63–65]; some athletes exhibit an increase in lumbar curvature, which
might be a beneficial adaptation to enhancing their competitive capabilities [5]. In contrast,
adverse reactions similar to those observed in this weightlifter arise, although most re-
search focuses more on restoring athletes’ competitive abilities rather than their capability
to perform everyday activities [5]. Symmetric loading exercises hold potential applications
across various domains, including daily activities and rehabilitation efforts, resulting in a
holistic mechanical response from the body. This study acknowledges certain limitations,
such as our modeling of the IVD’s physical structure, which inadvertently increases the
overall stiffness of the lumbar spine, a scenario that may differ from reality in stiffness.
Furthermore, the degree of disc degeneration is challenging to simulate realistically, given
our reliance on materials from previous studies. Moreover, excluding a muscle model
and opting instead for theoretical calculations to simulate conditions marks another lim-
itation. Lastly, this study is carried out within a single-case research framework. Due to
the inherent complexity of the finite element (FE) model, single-case design is frequently
used in current FE investigations [66,67]. However, it is crucial to recognize that genetic
variability exists among individuals, which may lead to concerns about the generalizability
of the results obtained. To address this issue, future research could consider incorporating
batch modeling with multiple samples to improve the external validity of the findings.
Despite these constraints, employing FE analysis has significantly supported clinical and
practical research. Our research advancements, through elucidating the biomechanical and
physiological impacts of symmetric loading in weightlifting, offer substantial implications
for the prevention and diagnosis of conditions akin to those observed in the subject of
this study.

5. Conclusions

In our simulation, we examine a unique weightlifter by utilizing the FE method to
simulate symmetric loading of the lumbar spine. These findings underscore the impact of
abnormal physiological lumbar curvature and degenerative IVDs on the biomechanics of
the spine. With our analysis, we demonstrate abnormalities in the biomechanical transfer
of the lumbar spine under symmetric weight, suggesting the weightlifter should reduce
anisotropic loading while also being mindful of the effects of loaded flexion positions on
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the posterior joints, IVDs, and vertebrae. Our study provides valuable insights for the
rehabilitation and clinical treatment of patients with similar conditions.
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