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Abstract

Rationale: Despite evidence demonstrating a prognostic role
for computed tomography (CT) scans in idiopathic pulmonary
fibrosis (IPF), image-based biomarkers are not routinely used in
clinical practice or trials.

Objectives: To develop automated imaging biomarkers using
deep learning–based segmentation of CT scans.

Methods: We developed segmentation processes for four
anatomical biomarkers, which were applied to a unique cohort of
treatment-naive patients with IPF enrolled in the PROFILE
(Prospective Observation of Fibrosis in the Lung Clinical
Endpoints) study and tested against a further United Kingdom
cohort. The relationships among CT biomarkers, lung function,
disease progression, and mortality were assessed.

Measurements and Main Results: Data from 446 PROFILE
patients were analyzed. Median follow-up duration was 39.1
months (interquartile range, 18.1–66.4mo), with a cumulative
incidence of death of 277 (62.1%) over 5 years. Segmentation was

successful on 97.8% of all scans, across multiple imaging vendors, at
slice thicknesses of 0.5–5mm. Of four segmentations, lung volume
showed the strongest correlation with FVC (r=0.82; P, 0.001).
Lung, vascular, and fibrosis volumes were consistently associated
across cohorts with differential 5-year survival, which persisted after
adjustment for baseline gender, age, and physiology score. Lower lung
volume (hazard ratio [HR], 0.98 [95% confidence interval (CI),
0.96–0.99]; P=0.001), increased vascular volume (HR, 1.30 [95% CI,
1.12–1.51]; P=0.001), and increased fibrosis volume (HR, 1.17
[95% CI, 1.12–1.22]; P, 0.001) were associated with reduced 2-year
progression-free survival in the pooled PROFILE cohort.
Longitudinally, decreasing lung volume (HR, 3.41 [95% CI,
1.36–8.54]; P=0.009) and increasing fibrosis volume (HR, 2.23 [95%
CI, 1.22–4.08]; P=0.009) were associated with differential survival.

Conclusions: Automated models can rapidly segment IPF CT
scans, providing prognostic near and long-term information,
which could be used in routine clinical practice or as key trial
endpoints.
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Idiopathic pulmonary fibrosis (IPF) is a
progressive and ultimately fatal condition
for which there is no cure (1). Antifibrotic
medications slow, but do not prevent,
disease progression (2). In clinical practice,
monitoring of IPF progression is performed
using serial measurements of lung
physiology, including FVC and DLCO (3–5).
Measurement variability often makes the
interpretation of short-term lung function
trends difficult (6). Furthermore, many
patients struggle to perform lung function
because of fatigue or cough, and comparison
of results obtained at different institutions
is frequently challenging (7).

Thoracic computed tomography (CT)
is the modality of choice for diagnosing
individuals with suspected IPF and has
largely supplanted lung biopsy, which carries
a significant risk of morbidity andmortality
in patients with lung fibrosis (8). Various CT
features of fibrosis are predictive of prognosis
when measured both at baseline and
longitudinally (9–11). However, visual

assessment and scoring of CT patterns is
time consuming, subjective, and associated
with high interobserver variability (12).
Manual segmentation of CT scans into
individual components (e.g., airways) is also
possible but requires both expert radiology
training and significant time to segment each
CT scan. Although computer-assisted
approaches for classifying and quantifying
CT patterns of fibrosis have been available
for nearly three decades, none is routinely
used in either clinical practice or as an
endpoint in trials (13). To be used as an
effective biomarker, automated assessment of
CT imaging needs to be agnostic to CT
equipment, tolerant of technical differences
between scans, reproducible, rapid to
perform, and readily interpretable. As with
other biomarkers, imaging algorithms
require validation in prospective cohorts so
that the relationship between change in any
given imaging parameter and outcomes of
importance to patients (disease worsening,
death, etc.) can be clearly defined.

We sought to develop CT-based
imaging biomarkers by using high-
throughput segmentation consisting of four
different anatomical models identified using
deep learning methods. These models were
applied to a unique cohort of treatment-
naive patients with IPF enrolled in the
PROFILE (Prospective Observation of
Fibrosis in the Lung Clinical Endpoints)
study, a multicenter prospective study of IPF
conducted in the United Kingdom. Although
a small number of patients in PROFILE were
treated toward the end of the observational
study, they were treatment naive at the point
of data capture (as it was before the
widespread use of antifibrotics). The
relationships between CT imaging
biomarkers and lung function, disease
progression, andmortality were assessed at
baseline and longitudinally.

Methods

Study approval was obtained from ethics
committees (10/H0402/2, 10/H0720/12).
Incident IPF cases were recruited into
PROFILE (14) after informed consent was
obtained. Diagnosis for all patients with IPF
occurred in multidisciplinary meetings, with
clinical input from both pulmonologists and
thoracic radiologists. Patients were assessed
at baseline; at 1, 3, 6, and 12 months; and
then annually for 3 years. Survival status was

assessed on June 3, 2020. Thoracic CT scans
were captured as part of routine care before
enrollment and during follow-up.
Pulmonary function testing (PFT) closest to
CT acquisition (within 180 d) was used to
ascertain baseline lung function relative
to CT. The cohort was stratified into equally
sized discovery and validation cohorts on the
basis of the date of recruitment. Findings
were also tested in an independent validation
cohort of 195 patients with IPF from Royal
Papworth Hospital (Cambridge cohort).
These patients had CT scans analyzed at
baseline (CT performed closest to the time of
multidisciplinary diagnosis), and follow-up
vital status was acquired by review of the
medical record. Ethical approval was given
by the hospital research and development
committee (reference S02467).

Fibrosis and airway models were trained
using supervised approach with CT scans as
inputs and ground-truth segmentations as
outputs. Ground-truth labeling for both
models was bootstrapped by manual
segmentation masks performed by two
independent radiologists, each with more
than 10 years’ IPF reporting experience.
Airways were segmented from the trachea up
to the last visible generation of distal airways.
Fibrosis (areas of reticulation and
honeycombing) were segmented in both
lungs. Initial segmentation masks were used
to train a first model, which was then applied
to a new image set manually corrected by the
radiologists. Intermediate models were
iteratively retrained after 20–30 manual
corrections were performed. Fibrosis and
airway models were based on three-
dimensional convolutional neural networks
with UNet architecture consisting of encoder
and decoder networks with skip connections.
For fibrosis, images were resampled to 1.4-mm
resolution andmasked with lung
segmentations obtained from an open-source
model (15) also used for lung volume
segmentation. To focus on intrapulmonary
airways (up to the seventh generation), trachea
and proximal main bronchi were removed by
lungmask segmentationmultiplication.
Intrapulmonary vessels were segmented by
applying the Frangi enhancement filter (16). A
full description of the training and testing CT
scans, detailedmodel development, and
segmentationmethods is provided in the
online supplement.

Univariable and multivariable Cox
proportional-hazards regression adjusted for
baseline gender, age, and physiology (GAP)

At a Glance Commentary

Scientific Knowledge on the
Subject: A number of imaging
tools have been developed to
analyze computed tomography
scans in idiopathic pulmonary
fibrosis, but image-based
biomarkers are still not routinely
used in hospital practice or in
clinical trials.

What This Study Adds to the
Field: Deep learning was used to
create anatomical segmentation
models, which were applied to a
unique set of treatment-naive
patients from the PROFILE
(Prospective Observation of Fibrosis
in the Lung Clinical Endpoints)
study and further validated against
195 real-world patients with
idiopathic pulmonary fibrosis.
These models can rapidly segment
computed tomography scans and
provide prognostic near- and long-
term information, which could be
used in routine clinical practice or
as key trial endpoints.
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stage (13) at the time of CT was used to
assess the primary endpoint of five-year
overall survival, defined as the time from CT
to death of any cause or censoring at 60
months or before if lost to follow-up. The
PROFILE discovery and validation cohorts
were then pooled and secondary analyses
performed. Pearson correlation was used
to estimate correlations between CT and
baseline PFTmeasures. Two-year
progression-free survival, defined as the
time from CT to death,>10% relative FVC
decline, or censoring was assessed using a
multivariable Cox proportional-hazards
regression model adjusted for baseline
GAP stage.

Annual change in CT features was then
assessed using linear mixed-effects regression
in a subset of individuals who underwent
repeat CT 6–24 months after baseline CT
(n=134). This model included an
exchangeable correlation structure and a
random slope term, which produced the best
model fit. Using simple linear regression, we
then estimated patient-specific annualized
changes in CT biomarkers and, using these
values, categorized annual change in each CT
biomarker as stable or decreasing versus
increasing. The association between
categorical change and subsequent two-year
survival, defined as the time from second CT
to death or censoring, was assessed using
Cox proportional-hazards regression.
Survival between categorical change groups
was compared using a log-rank test and
plotted using the Kaplan-Meier estimator.

Results

PROFILE Data Clinical and
Demographic Analysis
Of 628 PROFILE participants, 426 met
inclusion criteria (i.e., had at least a baseline
CT scan, baseline PFT, and PFT values
within 180days of CT scan). CT
segmentation resulted in approximately
7,800 segmentations derived from the four
different models (fibrosis, airway, vascular,
and lung volumes), with a success rate of
99.3%. The discovery and validation cohorts
were well balanced in terms of age, sex,
smoking history, lung function, and
outcomes (Table 1). Forty-six percent
(n=97) of patients died within three years of
baseline CT in the discovery cohort and 44%
(n=93) in the validation cohort. Nearly half
of each cohort experienced IPF progression
within two years (i.e., 24-mo progression).

Model Training Results and CT
Correlation with Lung Function
The performance of the fibrosis and airways
models was validated using the Dice score
coefficient, which is a measure of overlap
widely used to assess segmentation
performance against the ground truth (here
represented by the testing dataset consisting
of segmentations performed by the two
independent radiologists and excluded from
the training dataset) (17). With respect to the
testing dataset, the airways segmentation
model achieved a Dice score 0.936 0.05.
The fibrosis segmentation model achieved a

Dice score of 0.906 0.11. There was no
correlation between Dice score and any
of image attributes, such as scanner
manufacturer, convolution kernel, or slice
thickness.

Baseline CT scans from PROFILE were
each segmented into lung, airways, vascular,
and fibrosis (Figure 1). Of the four imaging
segmentations, lung volume showed the
strongest correlation with FVC (r=0.82;
P, 0.001). No strong correlations were seen
between imaging outputs and any other
physiological variable (Figure 2).

Survival Analysis
In cross-sectional analysis, baseline CT scans
with lower lung volume, higher vascular
volume, higher airway volume, and higher
fibrosis volume were all associated with
reduced five-year survival in both the
discovery and validation cohorts (Table 2).
When adjusted for baseline disease severity,
lung volume (hazard ratio [HR], 0.98 [95%
confidence interval (CI), 0.97–0.99];
P=0.007), Vascular volume (HR, 1.37 [95%
CI, 1.20–1.56]; P, 0.001), fibrosis volume
(HR, 1.17 [95% CI, 1.12–1.22]; P, 0.001),
and airway volume (HR, 5.41 [95% CI,
1.87–15.66]; P=0.002) all maintained this
survival association in the cohort as a whole.
When stratifying by tertile, each measure
effectively discriminated survival in
combined cohort analysis (Figures 3A–3D).
In the additional Cambridge validation set,
lung volume, vascular volume, and fibrosis
volume were all associated with five-year

Table 1. Baseline Characteristics and Outcomes for the PROFILE and Cambridge Cohorts

Characteristic
PROFILE Discovery

(n=223)*
PROFILE Validation

(n=223)†
Cambridge Validation

(n=195)‡

Age, yr, mean (SD) 69.4 (8.2) 70.8 (8.2) 72.6 (7.7)
Male sex, n (%) 179 (80.3) 170 (76.2) 142 (85.0)
Ever-smoker, n (%) 163 (73.0) 142 (63.7) 153 (78.5)
Pulmonary function, mean (SD)
FVC% predicted 75.5 (18.9) 79.3 (18.9) 77.2 (15.5)
DLCO% predicted 43.5 (15.7) 44.7 (14.6) 50.1 (14.4)

Lung volume, L, mean (SD) 4.02 (1.13) 4.00 (1.01) 3.97 (1.12)
Airway volume, L, mean (SD) 0.02 (0.01) 0.02 (0.01) 0.07 (0.03)
Vascular volume, L, mean (SD) 0.27 (0.10) 0.25 (0.09) 0.23 (0.08)
Fibrosis volume, L, mean (SD) 0.63 (0.33) 0.54 (0.26) 0.57 (0.26)
Outcomes
24-mo progression 116 (52.0) 101 (45.3) NA
60-mo mortality 150 (67.3) 127 (57.0) 138 (70.8)

Definition of abbreviation: PROFILE=Prospective Observation of Fibrosis in the Lung Clinical Endpoints.
*Number missing: FVC, n=2; DLCO, n=11.
†Number missing: FVC, n=1; DLCO, n=8.
‡Number missing: FVC, n=28; DLCO, n=28.
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survival. When stratifying by category, lung
volume and fibrosis volume both still
discriminated survival (see Figure E1 in the
online supplement).

Progression-Free Survival Analysis
The protocolized, prospective nature of
PROFILE allowed us to assess near-term
outcomes. Lower lung volume, increased
vascular volume, and increased fibrosis
volume were again associated with reduced
progression-free survival in the discovery
and validation cohorts. Lung volume

(HR, 0.98 [95% CI, 0.96–0.99]; P=0.001),
vascular volume (HR, 1.30 [95% CI,
1.12–1.51]; P=0.001), and fibrosis volume
(HR, 1.17 [95% CI, 1.12–1.22]; P, 0.001)
maintained this survival association in the
cohort as a whole when the model was
adjusted for baseline GAP index (Table 3) as
well as through a sensitivity analysis iteratively
adding each GAP component (see Table E1).

Longitudinal Analysis
In an exploratory longitudinal analysis of 134
patients who underwent repeat CT 6–24

months after baseline CT, lung volume
decreased by 8.9% annually (95% CI,
214.38% to23.43%; P=0.001), and fibrosis
volume increased by 13.2% (95% CI, 3.59%
to 22.85%; P=0.007). Vascular volume did
not significantly change over time, and
airway volume values could not be estimated,
as model assumptions were not satisfied.
When assessing survival after the last CT
scan obtained, those with decreasing lung
volume had a greater than threefold
increased risk of death (HR, 3.41 [95% CI,
1.36–8.54]; P=0.009) compared with those

Figure 1. (A and B) Axial (A) and three-dimensional rendering (B) of an example high-resolution computed tomography scan that has been
segmented to show areas of fibrosis (purple), blood vessels (red), and airways (green) within a lung mask.

Figure 2. Scatterplots displaying relationships between pulmonary function testing (PFT) measures and high-resolution computed tomography
(HRCT) segmentations. All PFT measurements were taken within 180 days of HRCT scans. TLCO= transfer capacity of the lung for carbon
monoxide.
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with stable or increasing lung volume (Figure
4A). Those with increasing fibrosis volume
hadmore than twofold increased risk of
death (HR, 2.23 [95% CI, 1.22–4.08];
P=0.009) compared with those with stable
or decreasing fibrosis volume (Figure 4B).

Discussion

We demonstrate that CT scans from patients
with IPF can be used to train and develop
models that can rapidly segment CT scans at
scale to produce data on fibrosis, vessel,

airway, and lung volumes and that these can
predict both progressive disease and
mortality. All four of our CT imaging models
at baseline are predictive of mortality.
Fibrosis extent, vascular volume, and lung
volume are also predictive of near-term

Table 2. Unadjusted Associations between Baseline Quantitative CT Features and Five-Year Survival in the PROFILE and
Cambridge Cohorts

CT Measure

PROFILE Discovery (n=223) PROFILE Validation (n= 223) Cambridge Validation (n= 195)

HR 95% CI P Value HR 95% CI P Value HR 95% CI P Value

Lung volume 0.98 0.96–0.99 0.001 0.97 0.96–0.99 0.003 0.98 0.96–0.99 0.005
Airway volume 1.90 0.46–7.82 0.374 10.09 2.06–49.35 0.004 1.82 0.96–3.45 0.068
Vascular volume 1.43 1.20–1.69 ,0.001 1.31 1.09–1.59 0.005 1.23 1.01–1.50 0.042
Fibrosis volume 1.22 1.17–1.28 ,0.001 1.22 1.15–1.30 ,0.001 1.11 1.05–1.18 0.001

Definition of abbreviations: CI = confidence interval; CT=computed tomography; HR=hazard ratio; PROFILE=Prospective Observation of
Fibrosis in the Lung Clinical Endpoints.

Figure 3. (A–D) KM survival curve for combined PROFILE cohort stratified by category (tertile) of lung volume (A), airway volume (B), vascular
volume (C), and fibrosis volume (D). CT=computed tomography; KM=Kaplan-Meier; PROFILE=Prospective Observation of Fibrosis in the Lung
Clinical Endpoints.
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progressive disease. The PROFILE dataset is
unique in that it consists of patients who
were treatment naive in that the data were
collected before the advent of widespread
antifibrotics. Nevertheless, to validate the
models further, we applied them to
another dataset of real-world patients from
Cambridge. Although those patients
were from a smaller dataset and had the
confounding factor that many were treated
with antifibrotics, baseline lung volume,
vascular volume, and fibrosis volume in that
additional cohort were all still associated
with 5-year survival.

A longitudinal analysis of CT scans in
patients with multiple CT scans showed that
over time, there were significant reductions
in lung volume and increases in fibrosis
volume. This is consistent with our
understanding of IPF disease progression,
with progressive loss of volume and fibrosis
extent. Although baseline vascular volume
predicted mortality, it is interesting that we
observed no significant change over time in
longitudinal imaging. Our findings echo the

data linking vessels (or vessel-related
structures as defined by Computer-Aided
Lung Informatics for Pathology Evaluation
and Rating [CALIPER]) with mortality in
IPF (18, 19). It may be that although other
measures (such as fibrosis volume) change as
IPF progresses, the vascular volume in the
lung (while being predictive of mortality) is
slower to change and is therefore a less useful
marker longitudinally.

Exploring associations with the
segmentation models and conventional
markers of disease severity in IPF, the lung
volumemodel showed a positive correlation
with FVC.We previously used this model to
show a correlation over time in an
independent dataset of 93 patients with CT
scans and lung function data over 7 years, in
which we showed a significant difference in
CT lung volume decline between progressive
and stable cohorts, with annual progression
defined by five variables: survival time and
annualized changes in FVC, FEV1, DLCO,
and VA (20). It is interesting that none of the
other models here were associated with

either FVC or DLCO, despite their being
associated with progression (fibrosis and
vessel models), mortality (fibrosis and vessel
models), and change over time (fibrosis and
lung volumemodels). This suggests that the
fibrosis, vessel, and airway volume models
may be measuring IPF disease severity
signals that are independent of pulmonary
function andmay help identify subtypes of
patients to study in more detail or may help
explain differing treatment responses across
large cohorts.

A number of visual scoring systems
have been used to assess the severity of
fibrotic lung disease on the basis of
anatomical findings on CT (21, 22). These
methods are labor intensive, subjective, and
prone to poor interobserver variability.
Although these visual scoring systems can be
performed by radiologists, manual
segmentation of individual CT scans cannot
be performed at scale manually, as significant
radiology expertise and time are required.
The use of deep learning to segment CT
scans from patients with IPF at scale is a

Table 3. Adjusted Association between Baseline Quantitative CT Features and Clinically Relevant Outcomes in the Pooled
Prospective Observation of Fibrosis in the Lung Clinical Endpoints Cohort (n=426)

CT Measure n

Two-Year Progression-Free Survival Five-Year Survival

HR 95% CI P Value HR 95% CI P Value

Lung volume 427 0.98 0.96–0.99 0.001 0.98 0.97–0.99 0.007
Airway volume 415 1.45 0.43–4.85 0.545 3.74 1.28–10.92 0.016
Vascular volume 426 1.30 1.12–1.51 0.001 1.37 1.20–1.57 ,0.001
Fibrosis volume 427 1.17 1.12–1.22 ,0.001 1.17 1.12–1.22 ,0.001

Definition of abbreviations: CI = confidence interval; CT=computed tomography; HR=hazard ratio.
Model adjusted for gender, age, and physiology stage at the time of CT. HRs are per 0.1-L change in high-resolution CT biomarker volume.

Figure 4. (A and B) KM survival curves for PROFILE participants who underwent serial CT stratified by categorical change in (A) lung volume
and (B) fibrosis volume. For definition of abbreviations, see Figure 3.
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novel approach that has a number of
applications for the development of imaging-
based biomarkers in this disease.

The advantages of this method
(compared with both manual segmentation
and a visual scoring system) include the
speed of segmentation and the production of
quantifiable data (e.g., volume of airways)
compared with a scoring system that
produces an aggregate of visual scores.
Computer-assisted approaches to classify and
quantify CT patterns have been available for
nearly four decades (23, 24). CALIPER offers
a computer-vision approach based on
volumetric local histogram andmorphologic
analysis, which labels automatically the
typical high-resolution CT (HRCT)
parenchymal features (25). It also allows
the quantification of pulmonary vascular
volume, which has been shown to be a
strong predictor of FVC decline in patients
with IPF (26).

Another technique, quantitative lung
fibrosis (QLF), uses a support vector
machine to quantitatively measure
honeycombing, ground-glass opacity, and
a composite quantitative interstitial lung
disease score (27). QLF and quantitative
interstitial lung disease scores have been used
as surrogate endpoints in seven IPF clinical
trials to date, showing correlations with FVC
change and treatment efficacy (28). An
alternative method is functional respiratory
imaging (FRI), in flow simulations are
performed within the airways and
pulmonary vessels are extracted from low-
dose HRCT scans taken during inspiration
and expiration (29). Changes in airway
caliber using FRI have been shown to
correlate with IPF disease progression (30).

The Systematic Objective Fibrotic
Imaging Analysis Algorithm, a deep
learning–based approach to classify usual
interstitial pneumonia (UIP) on HRCT, has
been shown to provide enhanced outcome
prediction in patients with progressive
fibrotic lung disease compared with expert
radiologist evaluation or guideline-based
histologic pattern (31). More recently, a
larger study of more than 2,000 patients with
IPF showed the development of a machine
learning–based UIP classifier that classified
patients as “UIP positive” if they had a
significantly greater annual decline in FVC
than those classified as “UIP negative” (32).

The segmentation approaches adopted
in our models have a number of significant
advantages and benefits over the previously
described approaches. First, rather than

arbitrary scoring systems, we produce
quantifiable volume data for lung, airway,
vessel, and fibrosis volume. The fibrosis and
airway models have been trained and
segmented from a variety of real-world CT
scans frommultiple (n=5) imaging vendors
and at various slice thicknesses between 0.5
and 5mm. These models are therefore able
to segmentate images from a wide range of
CT scans in patients with IPF, unlike other
methods that have rigid criteria for image
suitability, such as CALIPER, which requires
scans with,1-mm slice thickness with a
reconstruction algorithm that is not too
sharp (e.g.,<B70 on a Siemens scanner but
not B80) (33). Our segmentation models are
therefore likely to be more broadly clinically
applicable.

The overall segmentation success rate
across all four models on our platform was
high, with almost all (97.8%) CT scans
(which were all collected as part of routine
clinical care) successfully segmented into the
four models. This is higher than with other
described computer-assisted classification
approaches, which can be affected by a
number of factors, including reconstruction
algorithm, pixel size, and CT scanner used
(34). We showed that in addition to a high
rate of segmentation success, the Dice scores
for our models did not differ according to
any of the image attributes, such as scanner
manufacturer, convolution kernel, and slice
thickness. Furthermore, in comparison with
techniques such as FRI that require specific
protocols for patient inspiration to capture
CT images (35), our models were applied to
CT scans that were collected during the
course of routine clinical care, with no
prespecified patient breathing cycle or image
specification protocol. Three of our models
(fibrosis, vascular, and airway) were
also created using three-dimensional
convolutional neural networks (compared
with two-dimensional slice models used in
computer techniques such as QLF), which
allows a detailed volume analysis from each
CT scan.

Our work has several limitations. One is
that the PROFILE CT data were collected as
part of routine clinical care rather than as
part of a protocolized clinical trial. However,
this is also a strength, as the segmentations
were performed on CT scans frommultiple
scanners, with multiple reconstructions and
slice thicknesses, but still maintained a high
segmentation success rate. The scans were
obtained during inspiration but were not
spirometry controlled; had they been, the

correlation between lung volume and FVC
might have been stronger. Finally because
the data were collected as part of
routine clinical care, there was limited
synchronization between CT and PFT time,
and for our analysis of CTmodel against
FVC and DLCO, we chose data that were
within 180days of each other. We did show a
strong correlation between FVC and lung
volume, if we had had data that were more
contemporaneous, we might have seen other
correlations between CTmodels and
pulmonary function.

Segmentation models have a number of
uses in the management of patients with IPF.
In the clinic, they might be used to provide
information on disease progression to help
both patients and clinicians make decisions
on the timing of antifibrotic initiation or
transplantation. As multiple IPF therapies
become available, these models could also be
used as relatively short term prognostic
biomarkers to inform early change of therapy
because of nonresponse to medication. The
prediction of mortality from baseline CT
scans can also help patients with decisions
regarding quality of life versus end-of-life
care. In the clinical trial setting, apart from
their obvious potential as novel endpoints,
these models could be used to help stratify
trial participants into studies and both allow
researchers to select patients with disease that
is more likely to progress (and therefore
increase the possibility of finding a treatment
effect between study arms) and ensure that
study groups are as carefully matched as
possible to ensure that any difference
between arms is real.

Conclusions
We have shown the ability to automate the
segmentation and interpretation of CT scans,
providing prognostic information on the
basis of a baseline scan on both progression-
free survival andmortality in patients with
IPF. Longitudinal changes in radiological
lung volumes, airways, and fibrosis extent
can also then identify progressive disease.
These segmentation algorithms could easily
be integrated into routine clinical practice to
help provide prognostic information to
patients with this complicated and
progressive lung disease, and they show
promise as future key endpoints or imaging
biomarkers in clinical trials.�
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text of this article at www.atsjournals.org.
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