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Temporal ecological niche partitioning is an underappreciated driver of
speciation. While insects have long been models for circadian biology, the
genes and circuits that allow adaptive changes in diel-niches remain poorly
understood. We compared gene expression in closely related day- and
night-active non-model wild silk moths, with otherwise similar ecologies.
Using an ortholog-based pipeline to compare RNA-Seq patterns across two
moth species, we find over 25 pairs of gene orthologs showing differential
expression. Notably, the gene disco, involved in circadian control, optic lobe
and clock neuron development in Drosophila, shows robust adult circadian
mRNA cycling in moth heads. Disco is highly conserved in moths and
has additional zinc-finger domains with specific nocturnal and diurnal
mutations. We propose disco as a candidate gene for the diversification of
temporal diel-niche in moths.

1. Introduction
Ecological niche, including the temporal partitioning of activities within
a day (diel-niche), is an underappreciated driver of speciation and adap-
tive evolution [1]. Partitioning can help organisms exploit resources, avoid
competition and reduce predation risk [2–7]. Differences in physiology and
performance at various temperatures, light levels and humidity can also drive
partitioning [8]. In insects, circadian rhythms are crucial for regulating daily
locomotor, reproductive behaviour and feeding activity [5,9–11]. Over the
past few decades, research in Drosophila has led to a better understanding of
the molecular and neural mechanisms underlying insect circadian rhythms
[12,13]. They are governed by transcriptional–translational feedback loops,
self-sustained molecular oscillations that affect patterns of gene expression
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at the cellular level and, due to expression in the central nervous system, scale up to determine whole-organism patterns of
activity (reviewed in D. melanogaster in [12,14]).

Four key elements have been identified in the circadian control system that may be relevant to temporal niche evolution:
(i) genes and proteins that govern the central clock, (ii) neural circuits connecting the clock to downstream processes, (iii)
neuropeptides, such as pigment-dispersing factor (PDF), released by these clock neurons to modulate the synchronization
within the clock network, and (iv) light detection by photoreceptors and photosensitive molecules, which entrain the clock to
match external light cycles. Behaviours with strong diel periodicity that also impact fitness could drive selection on genes and
circuits of the molecular clock or on those involved in entrainment to external stimuli.

While the identity and function of core clock genes have been explored extensively in D. melanogaster [15–17], the
clock proteins period (Per), timeless (Tim) and cryptochrome (Cry) are highly conserved across animals [18,19]. They
participate in auto-regulatory feedback loops to produce changes in gene expression on an approximately 24 h cycle.
Nearly one-third of cell types in D. melanogaster express clock genes [20], but daily circadian patterns only require
expression of core molecular clock components in about 150 clock neurons [21–24]. These cluster into 3 dorsal groups
(DNs) and 4 lateral groups (LNs) based on cell body location and cluster into 17 groups based on gene expression
[13,25]. A subset of LNs and DNs release PDFs and other neuromodulators to keep clock cells synchronized or signal to
other neuroendocrine centres [26]. These oscillators can be light entrained via light-sensitive proteins expressed in clock
cells (Cry) and peripheral photoreceptors (rhodopsin Rh6) [27,28]. Flies with different activity periods have displayed
species-specific expression patterns of Cry and PDF [29].

Comparisons among circadian genes and circuits across evolutionary time scales indicate a high degree of conservation
between invertebrates [30–32] and vertebrates [33], and insects serve as useful genetic models of human circadian disorders
[32,34,35]. However, since diel switches can occur over shorter evolutionary time scales [29], examining more divergent
circadian genes can shed light on circadian evolution. Lepidoptera (the moths and butterflies) contain many extreme diel-niche
switches, often between closely related species, and their evolutionary history is well known, making them ideal for studying
diel-niche evolution [36,37]. They also have some of the best characterized circadian and sensory genes and circuits, outside of
Drosophila [38–44]. For example, the wild silk moth family, Saturniidae is an important model for understanding chronobiology
[45,46]. Moths are thus a useful system to explore the adaptive significance of circadian rhythms in the context of ecological
niche partitioning [47,48].

We investigate two closely related saturniid moth species, the pink-striped oakworm moth (Anisota pellucida) and the rosy
maple moth (Dryocampa rubicunda) that overlap in geographic distribution and habitat but differ in daily activity patterns,
with Anisota being diurnal and Dryocampa being nocturnal. These species diverged approximately 3.8 Ma [49] and represent
a relatively recent shift in diel-niche. We compare the day–night cycling genes to identify candidate drivers of temporal
partitioning. We identify differentially expressed orthologs and focus our analysis on gene pairs that show day–night cycling
patterns in both species. We consider genes that switch from upregulation to downregulation or vice versa across species, and
those that are strongly differentially regulated in only one species, as suitable candidates for being involved in diel shifts. We
explore the evolution of the gene disco, one of these candidates, with known circadian function in flies. We use modelling to
predict and compare its protein structure, function and evolutionary conservation in moths and flies.

2. Methods
(a) Insect rearing and sampling design
Moths were reared under natural light–dark cycles at room temperature (25°C). In total, three–five adult males were sampled
2 days after eclosion at the two time points, midday (‘day’) and midnight (electronic supplementary material S1). Moths were
decapitated and heads flash-frozen using liquid nitrogen and stored at −80°C.

(b) RNA extraction, library preparation and sequencing
Tissues were homogenized using a bead beater and extracted using a modified Trizol extraction protocol (electronic supple-
mentary material, data15). RNA clean-up was done using a Thermo Scientific RapidOut DNA Removal Kit (Waltham, MA,
USA). Samples were shipped overnight to the NERC-NBAF, Liverpool, UK after dehydrating in a biosafety chamber using
GenTegraRNA tubes from (GenTegra, CA, USA) and assessed for DNA and RNA yields. We selected samples for library
preparation based on RNA quality to ensure equal sampling across treatments. RNA libraries were prepared using the NEB
polyA selection and NEBNext Ultra II directional stranded kit (New England Biolabs, MA, USA) suitable for low input yields.
Twelve samples were run on one lane of an Illumina NovaSeq using SP chemistry (Paired-end, 2 × 150 bp sequencing).

(c) Read trimming and clean-up
For A. pellucida and D. rubicunda, read trimming was undertaken by the NERC-NBAF core, and the raw Fastq files were
trimmed for the presence of Illumina adapter sequences using Cutadapt v. 1.2 [50]. The option ‘-O 3’ was used, so that the 3′ end
of any read that matched the adapter sequence for greater than 3 bp was trimmed. Reads were further trimmed using Sickle v.
1.200 [51] with a minimum window quality score of 20. Reads less than 15 bp after trimming were removed.
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(d) De novo transcriptomes, transcriptome library sizes, quality control and annotation
Quality control (QC) was conducted on trimmed reads; library size varied for each species (electronic supplementary material,
figure S2). We examined expression data and removed genes with transcripts per million (TPM) less than 1. We combined
reads from multiple samples and generated several reference de novo transcriptomes of these assemblers, combined them and
measured duplication, completeness and redundancy for the different versions (electronic supplementary material, table S2).
Further QC and filtering were conducted using BUSCO v. 5.2.0 [52], TransRate v. 1.0.3 [53], QUAST v. 5.02 [54], CD-HIT v. 4.6.8
[55,56] and cascaded clustering with MMseqs2 v. 12 [57]. We used the least duplicated and most complete assemblies; however,
we repeated certain analyses with less conservative assemblies (electronic supplementary material, S1). Transcriptomes were
annotated with eggNOG-mapper v. 2.1.9 [58] and OrthoFinder v. 2.5.2 [58,59].

(e) Differential gene expression enrichment, orthology and network analysis
Reads were mapped using Salmon v. 0.14.1 [60] and differential gene expression analysis was conducted using EdgeR v.
3.38.1 [61] and DESeq2 v. 1.36.0 [62]; the former was used to normalize and test for significantly expressed genes, and the
latter was used to normalize and to generate principal component analyses (PCAs) and other summary statistics. Genes were
assigned into orthogroups using OrthoFinder v. 2.5.2 [59,63], which used predicted genes from Bombyx mori, Antheraea pernyi
and Antheraea yammai as templates [64–66]. These orthogroups were used to transfer annotations from Bombyx (described later)
or to identify pairs of differentially expressed orthologs using orthologous gene pairs that showed significant fold change (FC)
in both species pairs. We performed gene enrichment analysis using GO terms with the tools TopGO v. 2.48.0 [67], ReviGo
(https://github.com/rajko-horvat) and ShinyGo v. 0.75c [68] (http://bioinformatics.sdstate.edu/goc/). Gene network analysis was
undertaken with WGCNA v. 1.71 [69,70].

(f) Gene functional annotation
We functionally annotated genes by cross-referencing them with the B. mori annotations and adding EggNOG annotations.
We divided these into functional groups of vision, smell, hearing, circadian, behaviour and brain using GO terms from amigo
(http://amigo.geneontology.org/) (electronic supplementary material, table S8).

(g) Gene mining and in silico evolution
We mined genes of interest from moths and insects using well-annotated genomes on Ensembl and NCBI, insectbase [71].
Bombyx mori and A. pernyi were taken from the source papers [64–66]. Two sets of analyses were conducted: (i) 18 Bombycoidea
moths and their relatives and (ii) 38 insect genomes (electronic supplementary material, data 11). We assigned a reference
protein sequence for each gene of interest from the B. mori-predicted proteome. We used OrthoFinder v. 2.5.2 to identify
orthologs [59,63] and filtered orthogroups containing the reference sequence. To ensure a single sequence per species in each
orthogroup, custom python scripts filtered the longest and most similar sequences to the reference.

We ran AlphaFold v. 2.1.2 [72] to predict the three-dimensional structures for each reference B. mori sequence. For align-
ments less than 1500 amino acids and with high conservation scores, calculated using Alistat v. 1.12 [73], we modelled
conservation using the webserver of Consurf (https://consurf.tau.ac.il/consurf_index.php) [74–78]. Results were displayed using
Jmol first glance viewer (http://firstglance.jmol.org/). Outputs for alpha fold runs and consurf are available as electronic
supplementary material data. PyMol v. 2.5.5 [79] was used to align the three-dimensional structures, and Aliview was used to
compare alignments. We used InterProScan webserver v. 5.66-98.0 [80,81] (https://www.ebi.ac.uk/interpro/about/interproscan/)
and NetPhos v. 3.1 [82,83] for predicting the domains and phosphorylated sites.

3. Results
We compared gene expression across two wild silk moth species, A. pellucida and D. rubicunda (referred to as Anisota and
Dryocampa hereon) whose males are diurnal and nocturnal, respectively (figure 1, electronic supplementary material, table S1).
We generated head (eyes and brain) transcriptomes from moths collected and flash frozen at midday and midnight, referred to
as ‘day’ and ‘night’ hereafter. Using multiple programs to assemble high-quality de novo assemblies (electronic supplementary
material, table S2), we characterized the level of gene (mRNA) expression mapping reads to them.

(a) Day–night gene expression patterns switch between nocturnal and diurnal species
We found 350 and 393 significantly differentially expressed genes (DEGs) when comparing day and night treatments for each
species (figure 2a; electronic supplementary material, table S3,data 1). Anisota had more day-upregulated genes (56%), and
Dryocampa was slightly more night-upregulated (53%). To compare DEG sets between species, we mapped our DEGs to B. mori
(electronic supplementary material, data S1). Approximately 60% of DEGs from each species had identifiable orthologs in B.
mori (electronic supplementary material, table S3), and only a small number of DEGs (6–8 genes) overlapped between both
species (figure 2b). We also replicated this analysis using DESeq2, another differential gene expression (DGE) tool, to ensure
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that our results were robust to different normalization methods [84]. With DESeq2, we found 498 and 697 DEGs (figure 2c;
electronic supplementary material, table S3, data S2), with similar B. mori annotation rates (61%), although the proportion of
day upregulated genes increased considerably in Anisota (79%) compared with being more evenly split in Dryocampa (50%;
electronic supplementary material, table S3). The total number of overlapping genes increased (19–26; figure 2d) when using
DESeq2. A comparison of the two methods revealed that 174 and 216 genes were shared between Anisota and Dryocampa,
respectively.

(b) Divergently expressed genes are linked to brain optic lobe, antennal and neural development
To identify important regulators involved in diel-niche evolution, we applied two filtering criteria to our gene expression data.
First, we selected genes that exhibited highly significant differential expression in both species. Second, we focused on genes
that displayed upregulation or downregulation patterns consistent with the natural diel activity of each species. Our rationale
was that this subset of genes was more likely to contain key candidate regulatory genes. To compare DGE overlap between
the two species, we grouped transcripts to their matching orthologs from B. mori; if two transcripts from different species
mapped to the same ortholog, we treated them as being the same. This allowed us to examine overlapping genes between the
species to see if any genes switched fold-change sign from positive to negative or vice versa (figure 2, electronic supplementary
material, data S3). We found 51 overlapping DEG transcripts that mapped to 28 unique B. mori genes. Nine genes showed
flipped patterns of expression between the two species, and eight coincided with known diel activity patterns (electronic
supplementary material, table S7). Examining gene ontology (GO) annotations and comparing orthologs from flybase (https://
flybase.org/), we found genes linked to optic lobe and antennal development (disco), locomotion and energy use (SLC2A6
and SLC17A5), brain and neural development (TUBG1) and other essential biological processes like transcription, ribosomal
translation, protein processing, mitochondrial maintenance (RpS4, PARL and Mrps5) and wound response (PRP2) (figure 2b,d;
electronic supplementary material, table S7). Of these, only three, disco, Spt5 and Gcc2, were recovered using both methods.

(c) Gene network analysis identifies diel activity and species-specific co-expressed clusters
Identifying highly expressed genes helps understand which genes are activated during certain biological processes. However,
determining only those that are highly expressed can often overlook genes with important biological functions [85]. We
examined co-expressed genes that may be correlated with diel-niche or RNA collection time. We used WGCNA, a weighted
correlation network analysis tool to cluster genes together using their normalized counts [70]. Examining co-expression patterns
for each species separately, we found one module in each species that clustered with day–night treatment (cluster-grey60 and
cluster-tan) (electronic supplementary material, figure S6 and data S4). Since we were interested in species-specific differences,
we re-ran analyses and combined counts from Anisota and Dryocampa, using only normalized counts for genes that had valid
B. mori annotations for both species resulting in a list of 2000 genes. Among these, we discovered two clusters (cluster-blue and
cluster-turquoise) with 50 genes each that exhibited species-specific expression patterns (figure 3).

(d) Gene ontology enrichment of photoperiodism, circadian control, muscle and neural growth genes
We used a gene enrichment analysis to determine if GO terms were significantly over-represented in the DEG and WGCNA
sets compared with the appropriate background of GO terms. Using TopGo, which allows custom gene sets, we found an
over-representation of genes involved in several biological functions (electronic supplementary material, data S5). Neural
retinal development, such as folic acid serine, glycine and retinoic acid metabolism had potential links to vision (electronic
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supplementary material, figure S15). We also used ShinyGo to examine WGCNA clusters (electronic supplementary material,
data S5). The less duplicated, filtered transcriptomes were annotated using B. mori orthologs (electronic supplementary material,
table S4). We examined the enrichment of both tan and grey60 modules, listing the non-redundant terms using ReviGo
(electronic supplementary material, figure S7 and data S5). Gene clusters that co-expressed in the same direction together in the
day and night treatments of both species included photoperiodism, circadian control, negative phototaxis and nervous system
development. Next, we checked for the enrichment of modules that showed species-specific patterns (blue and turquoise;
electronic supplementary material, figure S8 and data S5). These included genes involved in muscle proliferation and nerve
growth, neural signalling, glycolysis, oxidative stress response and basic cellular functioning such as protein processing and
transcriptional regulation.
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(e) Day upregulation of vision genes in the diurnal moth
Since both EdgeR and DESeq2 analyses use different normalization methods and statistical model assumptions to calculate
fold change between groups [84,86], we repeated enrichment analyses by examining genes that appeared in both analyses. For
Anisota, we tested over-enrichment of a smaller subset (FC ≤ −5) of diurnally highly upregulated genes (figure S15, electronic
supplementary material, table S5). We found gene enrichment for visual perception, excretion regulation, negative gravitaxis,
synaptic plasticity, along with genes associated with other biological processes, such as RNA interference, endopeptidase
activity and endocytosis. A reduction in stringency (FC ≤ −2) did not alter results considerably (electronic supplementary
material, figure S4). Night-upregulated genes (FC ≥ 2) included ocellary pigment genes, eye-photoreceptor cell development,
snRNA processing, post-embryonic development and neurotransmitter secretion, among a host of other processes that may
be required for growth, development and metabolism (wnt signalling, tricarboxylic acid cycle and cellular response to insulin,
glucose transport; electronic supplementary material, figure S4). We also report upregulation (FC ≤ 0) and downregulation (FC ≤
0) enrichment analyses (electronic supplementary material, data S5).

(f) Night upregulation of antennal and olfactory brain regions mushroom development genes
We repeated the same analyses for Dryocampa and tested the nocturnally upregulated genes (FC ≥ 5). Our results show
upregulation in genes associated with mushroom body development, locomotor rhythm, synaptic growth, energy utilization
(sialin transport) and mitochondrial translation (figure S15, electronic supplementary material, table S6). A reduction in
stringency (|FC| ≥ 2) showed entrainment of the clock cycle and antennal development genes. Genes associated with innate
immune response, DNA repair, cell division, histone acetylation, circadian rhythm and retinoid cycle were upregulated during
the day, possibly indicating a period of cellular repair during a time when these moths are inactive (electronic supplementary
material, figure S5). We also report upregulation (FC ≤ 0) and downregulation (FC ≤ 0) enrichment analyses (electronic
supplementary material, data S5).

(g) Sensory, circadian, eye development and behavioural genes show up in gene network analyses
We combined results from the DEG (EdgeR and DESeq2) and gene network analyses (WGCNA) to create a cumulative list
of 1700 transcripts (electronic supplementary material, data S6). Focusing on genes that were recovered across Anisota and
Dryocampa reduced the set to 274 transcripts (electronic supplementary material, data S7). Because many transcripts had
poorly annotated B. mori hits, we improved annotations using the program eggNOG-mapper [58]. We tested if these genes
had GO terms associated with sensory, circadian, brain and neural development or behavioural regulatory genes (electronic
supplementary material, table S7 and data S8). We found that several genes in each category had GO terms associated with
vision and brain development (electronic supplementary material, figure S13 and data S9).

(h) Expanded genes of interest set identified using a differentially expressed ortholog approach
Since B. mori annotations might miss certain genes, we used OrthoFinder to identify orthologs from the de novo transcriptomes
of Anisota and Dryocampa. We used the differentially expressed transcript list from the DESeq2 analyses for each species to
find if any transcript had a corresponding ortholog in the other species with differential expression. Thereby identifying pairs
of differentially expressed transcripts and their respective fold change values (electronic supplementary material, figure S14).
Many of these shared orthologs from the B. mori sets; but they also identified 10 additional orthologs (electronic supplementary
material, data S6).

(i) Predicted functional regions and homology patterns identified for genes of interest
We examined protein and gene evolution for a set of genes which we found were of interest based on results from DGE,
WGCNA and GO annotations (figure 4; electronic supplementary material, data S10). We obtained orthologs from publicly
available Bombycoidea moth genomes, choosing representative species with the highest identity sequence relative to the B.
mori reference. We modelled the three-dimensional structure of B. mori proteins and mapped the evolutionary conservation
onto the three-dimensional predicted structure for proteins above a certain conservation threshold (electronic supplementary
material, figure S13 and data S12). These analyses predict structurally and functionally conserved regions of proteins (electronic
supplementary material, figure S9 and data 13). We repeated this analysis with 38 insect genomes (electronic supplementary
material, data 11) and mapped evolutionary conservation onto three-dimensional protein structure (electronic supplementary
material, data S12 and S13). We include results of evolutionary conservation analyses for two regulatory candidates (disco and
tk) that showed varying levels of sequence and protein evolution between insects and moths (electronic supplementary material,
figure S10).
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(j) Modelling predicts additional functional zinc finger domains for disco in Lepidoptera
The gene disco was recovered across multiple analyses. In D. melanogaster, disco is known for its role in eye development,
circadian maintenance, clock neuron development and appendage formation [87–91]. To determine if disco was conserved
between moths and D. melanogaster, we compared the primary sequence and three-dimensional protein structure of B. mori and
D. melanogaster. The sequence length of disco in B. mori was nearly double that of D. melanogaster (figure 4a). However, a region
spanning over 100 amino acids was highly conserved, contained the zinc-finger domain important for its function and showed
strong three-dimensional structural conservation measured by various structural similarity metrics (whole protein alignment:
RMSD: align = 37.833, super = 2.566, MatchAlign score: align = 540 (2234 atoms), super = 333.1 (554 atoms) versus alignment of
conserved region: RMSD: align = 2.699, super = 2.566, MatchAlignScore: align = 443 (671 atoms), 351 (615) atoms). These results
indicate that the DNA binding domain of disco has probably been conserved. However, an additional approximately 500 amino
acid region absent in D. melanogaster is highly conserved across moths and includes several regions predicted to be functional
(figure 4a, electronic supplementary material, figure S10). We hypothesize that disco has functions in moths that it may not
play in flies. To further test this hypothesis, we compared disco sequences across Anisota and Dryocampa finding 23 mutations,
3 of which mapped to the predicted functional region (figure 4b, electronic supplementary material, data S14). InterProScan
predicted four zinc-finger domains, three in this region, although the CATH-Gene3D databases prediction combined the two
separate domains into a single predicted domain (electronic supplementary material, figure S11). We also found 53 sites with
predicted phosphorylation potential, with roughly a third of these (18 sites) around the second zinc-finger domain. Reducing
the stringency from 0.9 to 0.5 increased the total to 142 sites, which were still enriched around the second domain.

4. Discussion
We examined gene expression in the heads of two closely related moths with different activity times: the diurnal A. pellucida
and the nocturnal D. rubicunda. We found 300–700 genes with different expression levels between day and night. Diurnal
moths upregulated genes associated with vision while nocturnal moths upregulated genes linked to olfaction and locomotion.
Notably, the gene disconnected (disco) showed differential expression in both species even accounting for the different models
and parameters that were implicated in vision, circadian, hearing, locomotion and brain development in vinegar flies [88,91,92].
Interestingly, disco in moths has a larger size and potentially more functional domains compared with its counterpart in fruit
flies, suggesting a broader role in moth biology. Several point mutations between Anisota and Dryocampa disco also mapped to
these domains, highlighting the need to further study disco.

(a) Vision and olfaction
Visual systems often accompany diel and photic environment shifts [93], many of these changes are morphological, for example,
nocturnal carpenter bees have much larger facets in their eyes than their diurnal counterparts [94], with poorly characterized
single genes. Colour vision genes opsin are known to have diel-niche-linked evolution [42,95,96]. However, we found no
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Figure 4. Three-dimensional conservation and domain distribution of disco across Bombyx mori (1054 aa) and Drosophila melanogaster (568 aa). (a) Top: disco best
Uniprot hit in Drosophila using default settings (blastp, e-threshold 10, Auto-Blosum62). Bottom: disco aligned and superimposed predicted structures for B. mori and
D. melanogaster. Peach colour: B. mori alpha-fold predicted structure for disco, Cyan: D. melanogaster alpha-fold predicted structure for disco. (b) Top: partial views of
the Consurf predicted residues for disco. Views encompassing the region where 3/14 mutated sites between nocturnal Dryocampa and diurnal Anisota overlap with
predicted functional residues. Bottom: residues that were mutated between the nocturnal and diurnal species are highlighted on an overlay of the Consurf scores
mapped onto the predicted alpha fold structure of disco from B. mori. Green residues indicate mutated and predicted functional sites, red indicates mutated sites that
did not have a predicted residue. (c) Overlap of the highly conserved region of disco, this region includes the zinc-finger domain that is characteristic of the disco
transcription factor.
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diel-expression patterns in colour vision opsins, a result corroborated by a recent study [95]. However, we discovered a cerebral
opsin (ceropsin), implicated in photoperiodism [97] upregulated during the day.

We also found several eye development genes (ANKRD17, EHD4, JAK2 and TENM2), phototransduction genes (PPAP2,
RDH11), and retina homeostasis, eye-antennal disc development and photoreceptor cell maintenance genes (disco, glass) [98].
Surprisingly a few visual genes, such as garnet and rugose also appeared to have different isoforms present, showing both day
and night upregulation. Garnet is an eye-colour mutant gene in flies [99], and rugose is implicated in retinal pattern formation
[100].

There is evidence for increased investment in olfaction in dim light, with larger mushroom bodies in nocturnal species
[93,101,102]. We also found several differently expressed olfactory genes, including those involved in odorant binding (Obp84a,
Obp58b), pheromone response (tk), mushroom body development (DAAM2, DST) and antennal development (disco).

(b) Brain and neural rewiring
We found an upregulation of neural and brain development genes that are also implicated in adult brain plasticity in Lepi-
doptera and other insects [103–105]. These include genes linked to axon regeneration (APOD), central complex development
(ALDH3A2, DST, OGT, Ten-a and TENM2), central nervous system development (disco, RpL4) and neuropeptide hormonal
activity (tk). We speculate that plasticity could occur through neural wiring shaping sensory adaptation. Many Lepidoptera
show seasonal plasticity in foraging preferences [106], and some override innate preferences for novel visual and olfactory cues
after eclosion [107]. Diel-niche and circadian rhythms may also show plasticity, such as Hyles lineata showing relatively labile
diel-niches possibly driven by temperature and resources [108–110].

(c) Circadian and behavioural regulators
We found differential expression of genes involved in locomotion (KCTD15, Tk, unc-22) and circadian or rhythmic behaviour
(disco, JAK2, OGT and SREBF1/SREBF2) in both species. We also found several key clock genes such as per and tim, although
they were downregulated only in Dryocampa. Clock-like (also called takeout), another gene under circadian control [111],
was expressed in both species, although without any significant upregulation or downregulation. Clock-like was moderately
conserved in the moths we examined but recovered fewer orthologs across the insects. In D. melanogaster, its closest homologs,
Jhbp5 and takeout, had only 21–25% sequence identity (electronic supplementary material, data S10 and S14). Despite this, its
three-dimensional structure was highly conserved (electronic supplementary material, data S14 and figure S12), indicating
likely functional convergence.

(d) Disco as candidate diel-niche gene in adult moths
To identify candidates that might be key regulators of diel-niche, we searched for genes that were (i) expressed in both species,
(ii) showed coincident expression patterns with respect to diel-niche, and (iii) played a role in sensory and circadian control.
Only disconnected (disco) fit all criteria.

Disco was first described as a locus required for proper optic lobe formation in Drosophila melanogaster [112] but is implicated
in the disruption of circadian rhythms [87,88,113], potentially through its role in the development of neurosecretory cells in
the fly brain [114]. Wild-type flies show a bimodal, crepuscular activity pattern entrained to the external light–dark cycle,
which becomes free-running in the absence of the entrainment cue (such as in constant darkness). Disco mutants show diurnal
entrainment to a light–dark cycle but become arrhythmic in constant darkness [88,114], which appears to be owing to the loss
of a set of PDF neurons, from disco mutant brains [115,116]. Pdf mutants show reduced morning activity bouts in light–dark
conditions and, similar to disco mutants, become arrhythmic in constant darkness [117,118]. Importantly, these clusters of
PDF-expressing cells appear conserved across many insect groups, having been identified in locusts, crickets, stick insects and
cockroaches [119,120]. There are no previous studies on disco specifically in moths, but publicly available bulk RNA-Seq data
from B. mori and Manduca sexta show disco expression in adult in heads and antennae with high larval but minimal pupal
expression [65,121]. However, single cell-expression analyses, antibody staining and mRNA in situ hybridization are needed to
determine if disco is expressed in or required for the development of clock neurons in Lepidoptera [122].

The disco gene encodes the acid zinc-finger transcription factor, 500 amino acids in length in D. melanogaster and 1000 in
B. mori. Our modelling showed that an approximately 150 amino acid region is conserved structurally at the sequence level,
and this region also contains zinc-finger motifs associated with DNA binding [123]. This indicates that disco probably has
retained its DNA binding and pupal and appendage patterning function in moths. We predicted the functional regions of
disco in B. mori based on evolutionary conservation modelling and found that an additional 500 amino acids that were absent
in D. melanogaster are predicted to be functional (conserved and exposed). Domain- and family-level modelling predicted at
least two additional zinc-finger domains in this region (electronic supplementary material, figures S10 and S11). We also found
many phosphorylated sites surrounding the zinc-finger domains. Examining mutations between Anisota and Dryocampa disco
revealed three mutations mapped to these predicted functional regions (figure 5b). Given disco’s adult diel-specific expression
in moths, its additional zinc-finger DNA binding domains and the high number of phosphorylated sites, we believe that it
may be a candidate gene for diel-regulation in adult moths. we also identify other candidate genes for diel-niche evolution in
Lepidoptera, which can be useful targets for further exploration in other diel-species pairs as well as functional validation using
more direct experimental techniques.
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