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Abstract: Objectives: Clinical molecular genetic testing and molecular imaging dramatically increase
the quantity of clinical data. Combined with the extensive application of electronic health records,
a medical data ecosystem is forming, which calls for big-data-based medicine models. We tried
to use big data analytics to search for similar patients in a cancer cohort, showing how to apply
artificial intelligence (AI) algorithms to clinical data processing to obtain clinically significant results,
with the ultimate goal of improving healthcare management. Methods: In order to overcome the
weaknesses of most data processing algorithms that rely on expert labeling and annotation, we
uniformly adopted one-hot encoding for all types of clinical data, calculating the Euclidean distance
to measure patient similarity and subgrouping via an unsupervised learning model. Overall survival
(OS) was investigated to assess the clinical validity and clinical relevance of the model. Results:
We took gastric cancers (GCs) as an example to build a high-dimensional clinical patient similarity
network (cPSN). When performing the survival analysis, we found that Cluster_2 had the longest
survival rates, while Cluster_5 had the worst prognosis among all the subgroups. As patients in the
same subgroup share some clinical characteristics, the clinical feature analysis found that Cluster_2
harbored more lower distal GCs than upper proximal GCs, shedding light on the debates. Conclusion:
Overall, we constructed a cancer-specific cPSN with excellent interpretability and clinical significance,
which would recapitulate patient similarity in the real-world. The constructed cPSN model is scalable,
generalizable, and performs well for various data types.

Keywords: cPSN; data integration; gastric cancer; one-hot encoding; patient similarity calculation

1. Introduction

There are approximately 19.3 million new cancer cases diagnosed worldwide every
year. Gastric cancer is the cancer with the fifth highest incidence and the fourth highest
mortality, and about two-thirds of all cases are found in East Asia and Southeast Asia [1,2].
Achieving precision medicine for gastric cancer will hinge on the viability of big data
analytics and AI models rooted in gastric cancer clinical data. While AI is widely used in
biomedical science [3,4], medical data analysis models based on other diseases or algorithms
adaptive for other conditions are ineffective in the field of tumors, which hinders the
practical benefits of tumor clinical analytics. This is due to the fact that the granularity of
clinical records is different in various diseases [5]. Tumor histopathological data as well
as molecular and genetic data represent pivotal features with high information density
and clinical value [6,7]. However, these two types of data are generally not involved
in other diseases. Histopathological information mainly includes clinical descriptions,
including imaging results, tumor site, tumor stage, differentiation, cellular composition,
pathological type, and final diagnosis. Molecular data comprise marker expressions,
genetic mutations, genomic features, and molecular classifications. Through pathological
examination and molecular detection, in combination with other clinical data, tumor
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and tumor microenvironment characteristics can be comprehensively described and an
exact diagnosis can be made, all of which underpin clinical decision-making. Moreover,
precision medicine claims to be able to provide personalized therapy for every patient,
fueled by clinical genetic testing because of the advances in cancer molecular genetics and
genomics [8].

Even now, cancer continues to pose a great threat to human health. Inter-patient het-
erogeneity represents a great obstacle to cancer therapy. Conceivably, as cases of cancer are
an enormous group, there are always some patients who are similar, and such historically
similar patients may shed light on treatments for future patients. However, determining
how to define and evaluate patient similarity remains controversial [9,10]. Patient similarity
calculation, which assesses the similarity between patients by mathematically calculating
data on the multi-modal heterogeneity metrics of patients, seems to be a solution. In
general, the first step in patient similarity calculation is determining a multi-modal data
processing and integration strategy. The second step is to define a similarity metric to
calculate the distance or similarity score among patients in a systematic and consistent
manner. The third step is to establish a patient similarity network (PSN) and carry out
cluster analysis and clinical feature analysis in the PSN system. Finally, for patients to be
evaluated, they would be embedded in the PSN and the group of patients most similar to
the patient of interest would be defined based on the patient’s similarity score [11].

There have been some explorations into patient similarity calculations in human
diseases [9,12]. They have generally used patient demographic information, diagnosis,
treatment, prescription drugs, laboratory test data, and physiological monitoring data
extracted from electronic medical records (EMRs). At present, some patient similarity
calculations only use numerical variables as parameters to calculate Euclidean distance.
This strategy presumes all variables are continuous, which is not perfectly suitable for
categorical variables [13–15]. Some use the International Classification of Diseases (ICD)
hierarchical coding to calculate the distance between the parent node and each child node
for disease diagnoses and then evaluate the similarity [16,17], while some orchestrate
medical record information into a medical knowledge graph and convert the medical
entity relations into vector space, which can be used to calculate the Euclidean distance,
Mahalanobis distance, or cosine similarity [18,19]. The method of encoding/embedding
conversion has obvious defects as the information needs to be converted into other systems
such as ICD coding and knowledge graphs, which are indirect calculations and bring
various additional influencing factors, eventually affecting the accuracy of the results. The
major drawback of patient similarity research is that it has struggled to incorporate diverse
clinical data types into a unified model.

AI and deep learning have demonstrated usefulness in patient similarity analy-
sis [20,21]. For example, disease characteristics are often mathematically represented
as vectors or matrices, and neural networks are subsequently employed to learn similarities
and cluster patients. However, models derived from neural networks are usually highly
specialized [22]. Most patient similarity models based on supervised or semi-supervised
algorithms are dependent on pre-labeled training data and require the extraction of pa-
rameters and corresponding exact weights. Although such a model performs well on an
experimental dataset, the generalizability is weak. Even for the same disease, transferring
an algorithmic model is difficult when the data metrics are different. This is a drawback of
the supervised method [23]. Additionally, when defining and measuring patient similarity,
data labeling is laborious and susceptible to subjective factors. In the era of biomedical big
data [24], knowledge and decisions are obtained based on population data but not on the
clinician’s experience, so the labeling is disgusted. These two drawbacks have led to the
diminished clinical application value of deep learning represented by supervised neural
networks in patient similarity assessment. Maybe self-organizing map is a promising
neural network.

Regarding research on patient similarity among gastric cancer patients, the topic is rela-
tively understudied. One study developed a GC subtype classification model that integrates
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multi-omics fusion data and patient similarity networks via a residual graph convolutional
network. However, their method was limited to handling numerical variables [25].

Our review suggests that identifying similar cases from a large pool of historical cancer
patients, a process known as patient similarity analysis, holds great promise in clinical big
data analysis. Nevertheless, the methods for performing patient similarity analysis are still
in their infancy. The challenges are twofold: clinical data typically consist of both numerical
and categorical variables, accompanied by a significant number of missing values, which
demands an efficient data processing approach. Furthermore, the similarity of tumor
patients remains a rough estimate, and high-quality labeled data are scarce. Fortunately,
unsupervised learning techniques such as K-means and hierarchical clustering are well-
suited to handle unlabeled data. To address these challenges, we developed a pipeline
that leverages one-hot encoding and K-means clustering to construct a cancer-specific PSN.
Then, the PSN was validated using survival endpoints or other indicators to ensure clinical
validity. Our ultimate goal is to utilize the derived cPSN to facilitate patient stratification,
uncover clinical characteristics, provide personalized treatment recommendations, and
inform healthcare management.

2. Methods
2.1. Data Collection and Preprocessing

Multiple types of clinical data from one thousand patients with surgical GCs were
collected from the department of gastrointestinal surgery, Shanghai Changhai Hospital.
Clinical information was extracted from EMRs and medical examination reports, and the
data were then preprocessed to ensure consistency in formatting. Clinical descriptions were
summarized into keywords, such as classifying surgical procedures into laparotomy or la-
paroscopy. In terms of histopathological data, our dataset contained mesenteric vein/portal
vein involvement, qualitative description of surgical margin status, tumor stage, tumor
differentiation, etc. (Table 1). In terms of molecular genetic data, the dataset contained gene
mutations derived from clinical genetic testing, gene expression, and immunohistochemical
data. Emphatically, each gene mutation and each tumor marker/gene expression level can
be considered as an independent variable. Missing data are marked with NA.

Table 1. Data summary of baseline characteristics of 1000 GC patients.

Parameter Name Count Parameter Type Parameter Name Count Parameter Type

Median age (range) 64 (24–93) Continuous Nerve_invasion Binary
Median BMI (range) 23.1 (14.2–54.1) Continuous Yes 433
Median lymphocyte_count (range) 1.41 (0.12–3.81) Continuous No 567
Median leukocyte_count (range) 6.4 (2.66–27.58) Continuous Tumor_thrombus Binary
Median AFP (range) 2.46 (0.74–136.41) Continuous Yes 353
Median CA724 (range) 2.2 (0.37–300) Continuous No 647
Median CA125 (range) 10.7 (2.7–391.4) Continuous Cancerous_node Binary
Median CA153 (range) 7 (2.7–20.2) Continuous Yes 138
Median CEA 2.3 (0.5–1500) Continuous No 862
Median Ki67_expression 0.6 (0.01–0.9) Continuous Positive_margin Binary
Median Topo_expression 0.4 (0.01–0.9) Continuous Yes 138
Median max_diameter 3 (0.8–18) Continuous No 862
operater_codeEMR Categorical Surgical_complications Binary

Laparotomy 585 Yes 31
Laparoscope 283 No 969
Laparoscopic_exploratory_surgery 120 Omental_involvement Binary
NA 12 Yes 7

Complications Binary No 295
Yes 288 NA 698
No 712 TRG Categorical

Tumor_location Categorical 1 grade 1
Lower 408 2 grade 4
Middle 222 3 grade 5
Upper 360 NA 990
Residual 10 MLH1_IHC Categorical
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Table 1. Cont.

Parameter Name Count Parameter Type Parameter Name Count Parameter Type

pT Categorical (-) 20
Tis/T1 309 (+) 363
T2 112 NA 617
T3 394 MSH2_IHC Categorical
T4a 172 (-) 13
T4b 13 (+) 357

pN Categorical Little (+) 12
N0 447 NA 618
N1 162 MSH6_IHC Categorical
N2 157 (-) 6
N3a 149 (+) 320
N3b 85 Little (+) 48

M Categorical NA 626
M0 299 PMS2_IHC Categorical
M1 6 (-) 19
Mx 134 (+) 363
NA 561 NA 618

AJCC_Stage Categorical dMMR Binary
Stage 0/stage I 338 Yes 38
Stage II 278 No 332
Stage III 378 NA 630
Stage IV 6 EGFR-IHC Categorical

Sample_type Categorical (-) 586
Proximal 68 (+) 406
Total 409 (±) 8
Distal 508 ERBB2-IHC Categorical
Residual 15 (-) 663

Differentiation Categorical (+) 337
High 26 p53-IHC Categorical
Middle 367 (-) 183
Poorly 365 (+) 185
Middle_poorly 233 NA 632
High_middle 9

Lauren Categorical
Intestinal type 128
Diffuse type 124
Mixed 76
NA 672

2.2. Encoding

In the encoding process, categorical variables were directly coded, numerical variables
and clinical qualitative descriptions were converted into categorical variables, and each
categorical state of each variable was recorded as a one-hot feature. Suppose that there
are M observation indices (variables) in a set of samples, denoted as X1, X2, . . . , XM, and
each observation index Xi has Ni different classification states, denoted as N1, N2, ..., NM;
altogether, we would obtain ∑M

i=1 Ni one-hot features. Continuous values were transformed
into discrete values by equivalent partitioning. Preferably, for numerical variables, the
values in a set of samples were divided into 4 parts according to the quartile method so
that 4 categorical variables were formed. For clinical qualitative descriptions, N states were
formed into N categorical variables.

A missing value was regarded as an independent one-hot coding type in the observa-
tion index of clinical data, and there was no need to fill in null values.

The one-hot encoding method was engaged to integrate multi-modal medical data.
Subsequently, the heterogeneous data of patients were transformed into a feature embed-
ding matrix.

Through distance calculation (Euclidean distance in this study), the feature embed-
ding matrix was organized into a PSN. Preferably, the t-distributed stochastic neighbor
embedding (t-SNE) method can be used to visualize the high-dimensional network in a
two-dimensional or three-dimensional display.

2.3. Subgrouping

K-means clustering, an unsupervised learning algorithm, was conducted for the
patient similarity analysis to divide all patients into K clusters. K is a hyperparameter that
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is set between 2 and 10. The elbow method or gap statistic method was used to evaluate
the effect of clustering for each selected K. Data encoding and clustering analyses were
conducted using scikit-learn packages in Python 3.10.

2.4. Survival Analysis

The Kaplan–Meier method was used for clinical endpoint correlation analysis. The
log-rank test was used to assess the statistical differences in OS between different groups
of patients following clustering. PSNs with or without clinical implications were ob-
tained based on the statistical significance of p-values. If the p-value is less than 0.05, we
would consider the constructed PSN to be correlated with a clinically meaningful end-
point, namely a cPSN. Survival analysis was conducted in R 4.0.3 using the survival and
survminer packages.

2.5. Statistical Analysis

Statistical analyses were conducted using the chi-square test (χ2) in SPSS Statistics
20. Briefly, we created a contingency table to display the frequency of each classification
(clustering group, patient age, cancer differentiation, or tumor stage). We examined the
distribution of multiple categorical variables (dMMR, EGFR-IHC, ERBB2-IHC, p53-IHC)
simultaneously and used a statistical test to determine if there is a significant association
between the variables and subgroup, patient age, cancer differentiation, and tumor stage.
A p-value of less than 0.01 indicates statistical significance.

3. Results

We collected multiple types of clinical data from 1000 patients with surgical GCs. In
this study, the heterogeneous medical data we dealt with included demographic data,
histopathological data, molecular and genetic data, laboratory tests, and the surgical
paradigm narrative. The types of data contained numerical variables, binary variables,
categorical variables, and clinical qualitative descriptions (Table 1).

Categorical data representation has advantages in capturing data from clinical records [26].
Numerical data is continuous values that are accurate, but this information does not neces-
sarily have to be presented this way. Given that continuous values within a certain range
could be considered to have similar clinical significance, and to improve the generalizability
of the model, we transformed the continuous values into discrete values using equivalent
partitioning. In this case, categorical variables were directly coded in the encoding process,
and numerical variables and clinical qualitative descriptions were first converted into cate-
gorical variables. In order to integrate multi-modal medical data, we encoded the feature
parameters of each patient using the one-hot encoding method. A total of 143 one-hot
encoding values were identified from 37 variables, as a result of each categorical state of
each variable being recorded as a one-hot feature. Subsequently, the heterogeneous data of
patients were transformed into a feature embedding matrix.

Through feature coding, patient embedding, and distance calculation, all patient
data were orchestrated to form a PSN, which is an M-dimensional network, where M
is the sum of observation parameters. The PSN reflects the similarity distance between
patients (Figure 1). Each point in the high-dimensional PSN represents a patient. We
then conducted cluster analysis. The 1000 surgical GC patients were divided into 2 to
11 clusters via the K-means algorithm. Using the elbow method, five clusters were found to
provide the best clustering performance. Each cluster represents a similar group sharing
some clinical characteristics (Figure 2), which is the immanent foundation for treatment
recommendations for a given patient who is clustered into a specific group.
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Figure 2. Clinical characteristics of each cluster derived from the constructed cPSN. The colors show
the frequency of each categorical state of the variable. All 37 variables are shown in each cluster.
※ indicates specific features of Cluster_2 compared to other clusters.

We performed a correlation analysis of a clinically meaningful endpoint to evaluate
the clinical validity of the clustering. OS, which serves as the gold standard of oncological
clinical endpoints [27], was investigated to assess the validity and clinical relevance of
the constructed PSN. When the patients in our cohort were divided into five clusters, the
OS differences between clusters were statistically significant (log-rank test, p < 0.0001,
Figure 3A). In addition to distinguishing this clinical endpoint, our clustering could also
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suggest specific gene mutations and genomic features in various subgroups (Table 2). Our
strategy achieved an excellent performance that was superior to that using traditional classi-
fications such as patient age, cancer differentiation, and tumor stage (Figure 3B–D, Table 2).
Notably, ERBB2-IHC is related to differentiation, with the proportion of ERBB2-IHC positiv-
ity in patients with high, moderate-high, moderate, moderate-low, and low differentiation
being 0.462, 0.556, 0.450, 0.322, and 0.219, respectively. This is the sole demonstration of
an association between conventional classification approaches and genomic molecular
features (Table 2).
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Figure 3. Kaplan–Meier survival analysis for OS by (A) subgroups, (B) patient age, (C) cancer
differentiation, and (D) tumor stage. The five subgroups represent the patients classified into
5 clusters based on patient similarity calculation. Patient age is classified into quartiles. p-value
shows statistical significance based on log-rank analysis.

Table 2. Chi-square tests between the categorical variables and subgroups, patient age, cancer
differentiation, and tumor stage.

Classification dMMR EGFR-IHC ERBB2-IHC p53-IHC

Clustering 0.000 * 0.000 * 0.001 * 0.000 *
Age 0.193 0.723 0.010 0.575

Differentiation 0.036 0.339 0.000 * 0.043
Stage 0.106 0.794 0.162 0.396

* Statistically significant.

Cluster_2 has the longest survival rates. Most patients in Cluster_2 are negative for
nerve invasion, negative tumor thrombus, negative cancerous node, and regional nodal
involvement. The patients are mainly in pathological stage I and stage II, with some
scattered across other stages. All of these clinical indicators support better prognosis.
Interestingly, we found that lower distal GCs are more common than upper proximal GCs,
shedding light on the debates [28,29] (Figure 2). Cluster_5 has the worst prognosis among
all subgroups. The patients are mainly in pathological stage III, with the majority having
upper tumor locations. Cluster_1 contains 71.6% of patients of Mx, meaning that distant
metastasis cannot be determined. TP53 mutations are predominantly found in Cluster_3
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and Cluster_4, in accordance with their dMMR characteristics. The proportion of EGFR
and ERBB2 expression is significantly lower in Cluster_3 and Cluster_4 (Figure 2).

4. Discussion

The present research provides a similarity calculation method for tumor patients based
on one-hot encoding and unsupervised clustering. According to their clinical features, a
cohort of tumor patients was embedded in a high-dimensional space and then clustered
into several groups based on commonalities. We then assessed whether these different
groups of patients were clinically distinct. While death is the primary event of interest in
cancer patients, based on the OS of cancer patients, a correlation analysis of this clinical
endpoint was carried out on the clustered patients. The log-rank test assessed statistical
significance to examine whether the distribution of OS was distinguishable, which ensures
the clinical significance and practical value of the established PSN. For example, cancer
stage is conventionally used to stratify patients [30]. However, patients with different
stages were often clustered into the same subset in our model. Furthermore, patients in the
same subset tend to have similar survival prognoses, as well as potentially similar clinical
characteristics and responses to treatment.

Clinical data resources include electronic medical records, imaging examinations,
laboratory tests, and genetic and cellular analyses. Determining how to integrate highly
heterogeneous patient data is vital in patient similarity analysis. We adopted the “early
integration strategy”, which constructs a unified model for all types of data, in contrast to
the “late integration strategy”, which calculates distances for each data type and requires
searching for a corresponding appropriate model [31]. Note that the “early integration
strategy” ignores the correlation between parameters. The Mahalanobis distance calcula-
tion, which weights multivariate parameters using a covariance matrix, may compensate
for this shortcoming.

Data encoding was performed following the integration. We used the one-hot encoding
strategy as it is concise and robust in clinical data management. It can efficiently code any
clinical data, and the data processing ability is superior. As the parameters with clinical
meaning and data accessibility are limited, dimensionality does not need to be considered.
Although undesirable, missing data frequently occur in real-world healthcare scenarios
when the values of variables are not measured or are unavailable for a patient. The usual
practice is to fill in missing values with estimated values, which may underrepresent the
real state, thus rendering them unsuitable for further analysis. The present study regarded
missing values as independent one-hot coding types without filling in null values, which
may reduce value bias and avoid the classification error caused by filling methods.

Besides multi-modal medical data integration and encoding, data labeling in the field
of tumor patient similarity lacks standards. Doctors’ annotations often rely on limited
information and are usually based on heuristic judgements. These labeling processes are
subjective or otherwise uncertain. However, AI algorithms and machine learning usually
require a large amount of labeled data. This creates a great gap between the available
manual labeling and the accurate labeling required for training algorithms. Unsupervised
clustering, independent of any labeling data, efficiently classifies patients into subgroups.
Thus, machine learning can then be used to uncover clinical characteristics or data features
underlying the subgroups. Essentially, the constructed cPSN should authentically restore
the similarity of patients in the real world, linking to prognostic assessment, personal
treatment, and health management.

While a consensus on which machine learning algorithm performs better with spe-
cific data types in the context of precision medicine is still lacking [32], the present study
performed K-means unsupervised clustering and evaluated K using a statistical algorithm
to obtain the optimal K, and the whole process was unsupervised without human inter-
vention. The present study uniformly adopted one-hot encoding for multi-modal, highly
heterogeneous clinical data, which is flexibly compatible with clinical data evolvement and
changes in observation status caused by different medical institutions, doctors, and medical
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development stages. The data processing method provides an extensibility mechanism
for adding more parameters. In the future, when synthetic data are expected to replace
real data in medical big data analytics [33], machine learning algorithms can be used to
accelerate clinical trials, which is a subsequent mission of patient similarity analysis.

Our cPSN holds great clinical value in the context of cancer care management. This big
data analytics approach can elucidate subtle clinical conundrums, including the disparities
in prognosis between distal and proximal gastric cancer patients and the prognostic differ-
ences associated with ERBB2 expression in gastric cancer, as exemplified by our research
findings. To evaluate target a patient, the group of patients most similar to the target index
patient is identified in the cPSN using the K-nearest neighbor algorithm based on distance
calculation, and the range and fineness of similar patients are selected by adjusting the K
value. Then, therapeutic insights can be acquired from similar patients to help prognostic
evaluation. Thus, population-based clinical information obtained by searching similar
patient cases can be used to propose treatment and management strategies, which would
promote the development of big-data-based precision medicine.

Altogether, we developed an easy-to-perform, clinically interpretable, generalizable,
and universal method to conduct cancer patient similarity analysis. Our cPSN could
create paths from clinical data to insight, and from information to decision. With an
emphasis on clinical utility and usability, clinical investigators can use the cPSN to find
insights and conduct clinical research. Clinicians can use the cPSN to inform patient
stratification, recommend treatments, deliver personalized patient care, and improve
population health management.

This study has several limitations. Firstly, although one-hot encoding is a robust
method that can dispose of missing values, too many null values in the dataset affect
the accuracy of the results. It is better to apply as complete records as possible in future
studies. Secondly, the data we used were baseline data that depicted the patients’ features
before surgery, without considering treatment information. That may make sense because
a causal connection exists between baseline data and treatment programs. However, if
treatment data are available, we may be able to discover whether patient outcomes are
more influenced by baseline characteristics or treatment regimen/treatment sequence
through patient similarity analysis. Thirdly, our model ignored the correlations among
the parameters of selected features, leading to potential redundancy. We recognize that
parameter redundancy and non-weight matrices are limitations of the cPSN. These require
solutions, especially under the framework of unsupervised learning.

5. Conclusions

By integrating heterogeneous clinical data (e.g., histopathological data, molecular
and genetic data, laboratory data, diagnosis, and treatment), we constructed a cPSN for
gastric carcinoma patients that can recapitulate patient similarity in the real world. The
constructed model is scalable, generalizable, and performs well for various data types.
Moreover, our cPSN is associated with clinical implications, which could give researchers
insights into clinical issues. The constructed cPSN could be used to accurately “locate”
patients of interest, classify them into a disease subtype, support medical decision-making
with reference to past similar cases, and predict clinical outcomes. In the future, prospective
clinical trials are warranted to validate the clinical efficacy of the model.
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