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Abstract: The detection of contrast-enhancing lesions (CELs) is fundamental for the diagnosis and
monitoring of patients with multiple sclerosis (MS). This task is time-consuming and suffers from
high intra- and inter-rater variability in clinical practice. However, only a few studies proposed
automatic approaches for CEL detection. This study aimed to develop a deep learning model that
automatically detects and segments CELs in clinical Magnetic Resonance Imaging (MRI) scans. A 3D
UNet-based network was trained with clinical MRI from the Swiss Multiple Sclerosis Cohort. The
dataset comprised 372 scans from 280 MS patients: 162 showed at least one CEL, while 118 showed
no CELs. The input dataset consisted of T1-weighted before and after gadolinium injection, and
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FLuid Attenuated Inversion Recovery images. The sampling strategy was based on a white matter
lesion mask to confirm the existence of real contrast-enhancing lesions. To overcome the dataset
imbalance, a weighted loss function was implemented. The Dice Score Coefficient and True Positive
and False Positive Rates were 0.76, 0.93, and 0.02, respectively. Based on these results, the model
developed in this study might well be considered for clinical decision support.

Keywords: deep learning; multiple sclerosis; automatic segmentation; gadolinium contrast-enhancing
lesions

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disorder affecting the central ner-
vous system. It is characterized by the inflammatory infiltration of lymphocytes and
macrophages; activation of microglia; and degeneration of myelin, axons, oligodendrocytes,
and neurons [1,2]. In active lesions, the inflammatory process damages the blood–brain
barrier, leading to the extravasation of gadolinium into the brain tissue, which is identifiable
in post-contrast T1-weighted MR images [3]. Identifying these lesions is essential in the
diagnosis of multiple sclerosis [4] and in evaluating the efficacy of treatments [5–9].

The detection and segmentation of these lesions are time-consuming and suffer from
notable variability between different raters in various clinical settings [10]. Hence, the
development of an automated tool for these tasks holds significant promise for clinical
practice [11]. The automated tool should achieve an accurate identification/segmentation of
CELs, thereby minimizing the time clinicians need to spend on reviewing results. Creating
an automated tool for the detection of CELs involves various challenges, such as the small to
only point-like enhancement size of CELs, their random location, and their heterogeneous
shapes. While nodular shapes are more common, larger lesions may manifest as closed-
ring CELs [12]. Additionally, lesions situated near the ventricles or cortex might exhibit
open-ring enhancements in T1-weighted images with contrast agents [12].

Distinguishing CELs from physiological hyperintensities in post-contrast T1-weighted
images (for example, veins) can be challenging [13]. To confirm the existence of real
CELs and exclude False Positives, corresponding hyperintense areas in FLuid Attenuated
Inversion Recovery (FLAIR) images must be identified. Indeed, CELs represent the acute
inflammatory component within white matter lesions (WMLs) [12].

Deep learning architectures are extensively employed in various medical imaging ap-
plications due to their capability to learn and identify intricate patterns and features within
images [14]. A Convolutional Neural Network (CNN) is a deep learning model that can be
applied to process image data and is widely used for medical image segmentation [15].

Only a few studies have proposed automated tools for segmenting and detecting
CELs [16–18]. Coronado et al. [17] developed a 3D CNN to automatically segment CELs,
within a network trained to also segment white matter, gray matter, cerebrospinal fluid, and
T2 lesions. Gaj et al. [16], developed a 2D U-Net which performs the initial segmentation
followed by a postprocessing phase. It comprises a random forest classifier that integrates
the 3D spatial information and performs the prediction. Furthermore, Krishnan et al. [18]
developed a joint U-Net model to segment both T1 non-enhancing and CELs. These
studies attempted to address the previously mentioned challenges in identifying CELs by
expanding the input dataset with multiple contrast images [17] and implementing proba-
bility maps [16]. Moreover, these studies were performed in clinical trial datasets [17,18],
excluding lesions with low volume to increase the performance [16–18].

Furthermore, Schlager et al. [19] proposed a 3D CNN to perform an automatic detec-
tion of CELs using a clinical routine dataset.

The transfer learning approach [20] presents a novel solution to address the limited
dataset, which is due to the rarity of MS pathology, the sparse presence of CELs, and the
difficulty in obtaining a manually segmented ground truth.
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S.G. Wahlig et al. [21] employed a pretrained 3D Unet model on other pathologies to
segment and detect MS lesions. The model was trained to identify enhancing brain lesions
in the context of intracranial metastases. This model was then fine-tuned with the MS
dataset, resulting in improved performance compared to a model trained solely on the MS
dataset. This improvement is attributed to the statistical similarities between enhancing
MS lesions and enhancing metastases.

Lan Huang et al. [22] utilized a 2.5D Fully Convolutional with Attention DenseNet
(FCA-DenseNet) network to segment contrast-enhancing lesions (CELs) in contrast-
enhancing T1-weighted images. The dataset comprises patients diagnosed with multiple
sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). To address the chal-
lenges posed by the limited dataset and sparse lesions, they proposed a transfer learning
approach. The 2.5D slicing strategy was employed to reduce model complexity, improve
the training dataset, increase data features, and enhance segmentation performance.

This project aims to develop a deep learning model intended as a supportive tool for
clinicians engaging in the correct identification of CELs. The model is designed to work
with conventional clinical MRI images. To ensure clinical applicability, we developed the
model utilizing clinical MRI scans collected as part of the Swiss Multiple Sclerosis Cohort
(SMSC) study [23], in a multicentric dataset including multiple time points both with and
without CELs. A specific objective of the model was to ensure the segmentation of lesions
with a small volume (as low as three voxels, equivalent to 3 mm3), a challenging aspect in
clinical settings requiring manual intervention.

2. Materials and Methods
2.1. Dataset

The dataset was collected using 1.5- and 3-Tesla MRI systems across 7 centers affiliated
with the SMSC study [23]. MRI acquisitions included T1-weighted (T1w) magnetization
prepared rapid gradient echo (MPRAGE) before and after the administration of gadolinium,
and FLAIR images. MRI acquisition protocols are detailed in Appendix A, Table A1.

The automatic detection and segmentation of WML were conducted with a deep
learning-based approach [24], followed by manual correction. The resulting WML masks
were then incorporated into the input dataset. CELs were manually segmented by 2 experts
(one neurologist and one radiologist) by consensus. The dataset encompassed 372 scans
from 280 patients with MS, categorized into scans with and without CELs (Table 1). The
inclusion of patients without CELs was motivated by the aim of creating a method ensuring
good performance in real-world clinical scenarios, where only a minority of patients exhibit
CELs [25].

Table 1. Composition of the dataset in terms of number of scans and patients with and without
contrast-enhancing lesions (CELs).

Number of
Patients with MS

Number of MRI
Scans

Number of
CELs

Mean Number of
CELs per Scan

Mean Volume of
CELs (mm3)

Data with CELs 162 208 654 3 136

Data without
CELs(control cases) 118 164 0 0 -

Total 280 372 654 1.7

The demographic and clinical characteristics of the cohort are described in Table 2.
Sixty-two patients underwent more than one MRI scan. Each scan from multiple visits

of a patient was treated independently and incorporated into the same dataset for training,
validation, or testing.

The different MRI contrasts from the same time point were co-registered using the
Elastix toolbox 4.9 [26] and resampled to 1 × 1 × 1 mm3.

Skull-stripping was performed using HD-BET [27] to eliminate non-brain tissue.
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Table 2. Demographic and clinical characteristics of the cohort.

Demographic and Clinical Data n = 372 MRI Scans

Female, No. (%) 264 (71)

Male, No. (%) 108 (29)

Age at closest visit, mean (SD), y 41.6 (11.5)

Disease duration at closest visit, mean (SD), y 11.8 (9.4)

EDSS at closest visit, median (IQR) 2.0 (1.5, 3.5)

CIS, No. (%) 7 (1.9)

PPMS, No. (%) 7 (1.9)

RRMS, No. (%) 336 (91.1)

SPMS, No. (%) 19 (5.1)
Abbreviations: EDSS, Expanded Disability Status Scale; CIS, clinically isolated syndrome; PPMS, Primary
Progressive Multiple Sclerosis; RRMS, Relapsing-Remitting Multiple Sclerosis; SPMS, Secondary Progressive
Multiple Sclerosis.

2.2. Preprocessing and Sampling Strategy

The model’s input comprised patches extracted from preprocessed images to which
data augmentation [28] was applied to mitigate overfitting [29]. Preprocessing steps
included the image intensity z-score normalization and cropping of 32 patches (64 × 64 ×
64 mm3) from each image. The cropping strategy varied based on the presence of CELs in
the scans.

- For scans with CELs: 32 patches of 64 × 64 × 64 mm3 were randomly cropped, with
one out of every three patches centered on CELs (positive patches) and the remaining
two centered on WMLs (negative patches).

- For scans without CELs: 32 patches of 64 × 64 × 64 mm3 were randomly cropped, all
centered on WMLs.

Subsequently, the obtained patches underwent a second cropping with a random
center, resulting in a final size of 48 × 48 × 48 mm3. Additionally, patches went through
random flipping, rotation by 90 degrees, and intensity shifting by 0.25. Additionally, a
random affine transformation was applied to the patches.

To maintain consistency between the training and the validation process to ensure a
more reliable performance assessment and better generalization to new data, WML sam-
pling was used during validation after intensity normalization, replacing sliding window
inference. Sliding window inference involves cropping patches across the entire image,
presenting a distinct technique compared to the training process. To maintain alignment
with the training sampling strategy, patches were cropped specifically from areas where
WMLs were detected and subsequently utilized as input for the model inference.

The predicted patches were mapped back from where they were extracted so that we
could compute the DSC in the whole image. Overlapping voxel predictions were summed,
and values exceeding 1 were converted to 1, resulting in a fully reconstructed prediction
image. Hence, the validation strategy paralleled the training one, with all potential regions
where CELs might be present given as input to the model (refer to Figure 1).

2.3. Network Architecture

In this work, a 3D patch-based U-Net-based network originally developed for the
segmentation of cortical lesions [24] composed of (32, 64, 64, 128, 128) convolutional filters
in the encoder and (256, 128, 128, 64, 64, 1) filters in the decoder was expanded. This
strategy was motivated by the presence of similarities between cortical lesions and CELs in
terms of rarity and small volume. The proposed neural network consists of 5 convolutional
layers of (32, 64, 128, 256, 512) filters in the encoder and (512, 256, 128, 64, 32) in the decoder.



Bioengineering 2024, 11, 858 5 of 13

The stride parameter is settled to two, and the activation function is PReLu. The neural
network was implemented in Python 3.8.5 using the MONAI library 0.5.2 [30].
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2.4. Metrics

The True Positive Rate (TPR) and False Positive Rate (FPR), defined as follows, were
utilized to evaluate the detection performance of the model.

True positive rate =
n true positive lesions

n true positive lesions + n f alse negative lesions
(1)

False positive rate =
n f alse positive lesions

n true positive lesions + n f alse positive lesions
(2)

where n True Positive lesions, n False Positive lesions, and n False Negative lesions are the
number of True Positive, False Positive, and False Negative lesions, respectively.

The Dice Score Coefficient was utilized to measure the segmentation performance of
the network, and it measures the voxel similarity between the ground truth and the model
output mask.

Dice score coe f f icient =
2 × n true positive voxels

2 × n true positive voxels + n f alse negative voxels + n f alse positive voxels
(3)

The best model was applied in the training both with the starting loss function and
with the proposed weighted loss function.

The DSC was calculated both as the mean value across all patches and as the mean
value across the entire images.

The patches were considered only if a TP lesion was present and lesions that did not
overlap with the WML masks were deleted. During this procedure, we did not apply the
minimum threshold of 3 voxels, because the patch could include only a portion of CELs.

These portions, when combined with other patches, contribute to forming the entire
lesion.

For the whole images, lesions outside the WML and lesions with a volume lower than
3 voxels were deleted. The Dice Score Coefficient in whole images was calculated only for
images with at least one TP lesion.

To mitigate potential ambiguity arising from scans lacking CELs, the Dice Score
Coefficient was individually calculated for each True Positive CEL. Furthermore, the DSC
was stratified based on the ground truth lesion dimensions, enabling the assessment of the
network’s performance across various lesion volume categories.
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2.5. Training Pipeline

The loss function in La Rosa et al., 2022 [31,32], starting loss function, was a linear
combination of the dice loss function and the focal loss function with a gamma parameter
of 2.

Loss f unction = 0.5 × (LossDice) + Loss f ocal (4)

The focal loss function [33] can be considered a variation in the cross-entropy loss [34]
that works well for high-imbalance datasets by emphasizing more challenging samples.
Meanwhile, the dice loss function [35] is employed to assess the similarity between the two
binary images. Considering the dataset’s imbalance, there is a higher count of negative
patches compared to positive ones (rateunbalance = 2

9 ).
An important point to emphasize is that the dice loss attains a value of 1 within

negative patches when there is a nonzero count of False Positive (FP) voxels. As a con-
sequence, the learning process gives low importance to the decrease in the dice loss in
the positive patches (Loss_Dicepositive), but concentrates more on lowering in the dice loss
in the negative patches (Loss_Dicenegative). Therefore, we defined a new loss function to
reduce the weight of Loss_Dicenegative, multiplying it with the rate of patches’ imbalance to
focus more on the segmentation of CELs in the positive patches:

Loss f unction = mean
(

rateimbalance ∗ LossDicenegative + LossDicepositive

)
+ mean

(
Loss f ocalnegative

+ Loss f ocalpositive

)
(5)

The trends of the training and validation loss function during the training phase are
reported in the Supplementary Materials, Figure S1.

Adam with an initial learning rate of 0.00005 was used as an optimizer [36].
Cross-validation was carried out by randomly dividing the multicenter dataset into

11 subgroups at the patient level. One subgroup was defined as a test dataset, and at
each iteration, one subgroup was designated as the validation set while the remaining 9
subgroups were employed for training purposes.

An example of the training pipeline is reported in Figure 2.
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ground truth masks. The patches are the input of the U-Net model that creates the probability and
CEL mask.
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To determine the optimal model, the Dice Score Coefficient was computed over the
entire image during the validation process, and the highest value was employed.

The model’s predictions were filtered to exclude output lesions situated beyond the
WML mask. If the predicted CEL overlapped less than 10% of the WML, it was excluded.

3. Results
3.1. Comparative Analysis of Loss Functions

The results for each category are reported in Table 3. The weighted loss function
exhibited higher performance both in the validation and test datasets. Indeed, the weighted
loss function increased the weights of Loss_Dicepositive, thereby improving the DSC in
positive patches. The DSC in whole images was also higher.

Table 3. Comparison of the best model, defined by the highest DSC in the whole image, using the
starting and the weighted loss function. The metrics are calculated using the model predictions for
both the validation dataset and test dataset, which is highlighted in blue.

Dataset Loss Function DSC in Patches DSC in Whole
Images

Number of TP
Lesions

Number of FN
Lesions

Number of FP
Lesions

Validation Starting 0.78 0.80 39 8 5

Validation Weighted 0.78 0.82 40 7 6
Test Starting 0.67 0.72 50 10 3
Test Weighted 0.72 0.76 56 4 1

3.2. Model Performance

Table 4 shows that the highest concentration of incorrect detections occurred for low-
volume CELs, with the highest number of False Negative lesions displaying a volume
lower than 10 mm3. In terms of the overall segmentation performance, although the DSC
varied across all lesion volume groups, the variation was not substantial. The average DSC
for all the True Positive (TP) lesions was 0.76. The model resulted in a True Positive Rate
and a False Positive Rate of 0.93 and 0.02.

Table 4. Performance of the model in the test dataset subdivided by lesion volume. The DSC
coefficient is the mean of the DSC for each lesion in the volume range. Regarding TP and FN lesions,
the subdivision was performed considering the ground truth lesion volume. On the other hand, the
FPs are classified based on their volume.

Lesion Volume (mm3)
Number of TP

Lesions
Number of FN

Lesions
Number of FP

Lesions
Dice Score
Coefficient

3–10 6 3 1 0.88

10–20 5 1 0 0.56

20–30 6 0 0 0.73

30–40 4 0 0 0.82

40–50 3 0 0 0.61

50–100 16 0 0 0.79

100–200 11 0 0 0.82

200–300 1 0 0 0.85

>300 4 0 0 0.83

All 56 4 1 0.76

4. Discussion

In this study, we developed a deep learning model to automatically detect and segment
CELs in clinical MRI images of people with MS. The model achieved a True Positive Rate of
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0.93 and a False Positive Rate of 0.02, rendering this method an attractive clinical decision
support tool in the clinical care of MS patients.

In the initial phase, we constructed a UNet-based network integrating a loss function
that comprised a linear combination of focal and dice loss. We introduced the sampling
strategy which played a crucial role in reducing FP predictions and achieving stable
performance metrics, such as the DSC and loss function, during the training process.

Furthermore, we modified the loss function to account for the dataset imbalance. This
adjustment was made to reduce the impact of the dice loss on negative patches, i.e., patches
sampled on non-CELs, given that negative patches are more numerous than positive ones,
i.e., patches sampled on CELs. The purpose of this change is to better accommodate the
specific characteristics of our dataset. The weighted loss function employed in this study
contributed to high performance on validation and test datasets.

The dataset we used to validate this method belongs to the SMSC and, after the
preprocessing stage, exhibits a high imbalance between patches containing CELs and
those without. The input images for our tool included T1-weighted, T1-weighted with
gadolinium contrast, FLAIR, and the WML mask. A few other published methods for CEL
detection/segmentation did not require WML masks; however, the tools developed by
Coronado et al. [17] and Gaj et al. [16] required additional MRI contrasts (T2-weighted and
Proton Density-weighted) compared to the dataset in this study.

In this study, the model operated with an imbalanced dataset, mimicking real clinical
scenarios—a methodology that was also followed by Krishnan et al. [18] and Coronado
et al. [17]—in order to enhance the model’s ability to generalize and effectively distinguish
between the two classes.

However, unlike what we did, Gaj et al. [16] trained the model only on patients
exhibiting at least one CEL and assessed the model performance in patients without CELs
only in the test dataset.

The objective of our work was to create a deep learning model intended for integration
into clinical practice. Consequently, the dataset utilized in this study comprised routine
clinical MRI data, similar to the datasets used in the studies conducted by Gaj et al. [16]
and Schlaeger et al. [19]. In contrast, the studies conducted by Krishnan et al. [18] and
Coronado et al. [17] incorporated datasets from clinical trials.

Overcoming some of the limitations of previous studies, our method ensures the
detection of small CELs, which is crucial in clinical practice, both for diagnostic procedures
and therapeutic follow-up. Notably, the network proposed in this study considered lower-
volume lesions (3 mm3) compared to other investigations (2.5–32.5, 20, 9 mm3) [16–18].

However, it is important to acknowledge that we used a cohort for training and
validation (340 MRI scans) that was smaller than the one used in some previous studies
(Coronado et al. [17], Krishnan et al. [18], and Schlaeger et al. [19]—805, 2971, 1488 MRI
scans), although our work yielded comparable results.

In terms of segmentation performance, the Dice Score Coefficient achieved in our
study (0.76) was higher compared to Gaj et al. [16] (0.698) and comparable to those obtained
by Coronado et al. [17] (0.77) and Krishnan et al. [18] (0.77). Yet, our study demonstrated
improved detection performance in terms of the True Positive Rate and False Positive Rate
(0.93/0.02) compared to Gaj et al. [16] (0.844, 0.307), Krishnan et al. [18] (0.88, 0.04), and
Coronado et al. [17] (0.90, 0.23); Schlaeger et al. [19] report 73 True Positive lesions, 91 False
Negative lesions, and 22 False Positive lesions (True Positive Rate of 0.44 and False Positive
Rate of 0.23).

When discussing the performance achieved in different studies, it is crucial to note that
CELs typically exhibit low volumes [12]. Consequently, a low number of voxel variations
between the ground truth mask and the prediction leads to a high decrease in the Dice
Score Coefficient. Figure 3 illustrates three examples of predicted lesion masks compared
to the ground truth when applied to the input images. The discrepancy between the two
masks, delineated by green for False Positive voxels and red for False Negative voxels,
primarily occurs at the lesion border.
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One limitation of this study is the relatively small size of the dataset. To address this
challenge, we augmented the input dataset to provide outcomes that are more generalizable
and potentially diminish the count of False Negative lesions. In future work, we will
consider applying the tool to a larger dataset.

Additionally, a limitation arises from incorporating WML masks in the input dataset,
necessitating both automated and subsequent manual correction. These masks are typically
integrated into the datasets due to their clinical relevance, encompassing clinical informa-
tion. Therefore, the necessity of these masks should not pose a constraint in most scenarios.
However, their usage in the sampling methodology relies on the segmentation of WML
masks. In the future, it will be interesting to evaluate the model’s performance using only
fully automated lesion masks.

To further improve model performance, self-supervised learning [37] can be employed
to address the limitations posed by the small amount of manually segmented data. Addi-
tionally, integrating feature-preserving mesh networks [38] could help identify and preserve
structural features of contrast-enhanced lesions (CELs).
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Figure 3. Model lesion segmentation mask and MRI input images. Each row reports distinct patients
(A–C) exhibiting varied lesions characterized by differences in shape, volume, and spatial positioning.
The blue areas represent voxels classified as True Positives, the green areas denote False Positive
voxels, and the red regions indicate False Negative detections.

5. Conclusions

In conclusion, the strategies implemented in our UNet-based network permit the
detection and segmentation of low-volume and sparse CELs in MRI images.

The procedure has the potential to assist clinicians in the identification of CELs in
clinical practice. This procedure holds fundamental importance in clinical practice because
it enables the diagnosis and monitoring of treatment in patients with multiple sclerosis.
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Remarkably, we showed a good performance of the tool in a real-world multicentric
clinical scenario. The sampling strategy and the weighted loss function were introduced to
overcome the scarcity and the heterogeneity of CELs.

Consequently, the model demonstrated comparable segmentation performance and
exhibited enhanced identification capabilities when compared to previous studies. These
results support the network’s potential suitability for clinical application.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/bioengineering11080858/s1, Figure S1: Training and validation
loss functions throughout the training process.
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Appendix A

Swiss Multiple Sclerosis Magnetic Resonance Imagining protocols for the dataset.

Table A1. Swiss Multiple Sclerosis (SMSC) Magnetic Resonance Imaging (MRI) protocols for the
dataset.

Center MRI Scanner Model Number of
Scans Sequence Resolution

(mm3)
Flip Angle

(degree)
Repetition
Time (ms)

Echo Time
(ms)

Inversion
Time (ms)

FLAIR 1 × 1 × 1 120 5000 398 1800

Lausanne SIEMENS Skyra 3T 51 T1n 1 × 1 × 1.2 9 2300 2.9 900

T1ce 1 × 1 × 1 9 2000 2.03 1100

FLAIR 1 × 1 × 1 120 5000 395 1600

Geneva SIEMENS Skyra 3T 16 T1n 1 × 1 × 1 9 2000 2.03 1100

T1ce 1 × 1 × 1 9 2000 2.03 1100

FLAIR 1 × 1 × 1 120 5000 335 1800

Bern SIEMENS Skyra 3T 26 T1n 1 × 1 × 1 15 1790 2.58 1100

T1ce 1 × 1 × 1 15 2060 53 1100

FLAIR 1 × 1 × 1 120 5000 280 1600

Basel SIEMENS Skyra 3T 245 T1n 1 × 1 × 1 9 2300 1.96 900

T1ce 1 × 1 × 3 30 30 11 0

FLAIR 1 × 1 × 1.3 120 7500 317 3000

Aarau SIEMENS Skyra 3T 14 T1n 1 × 1 × 1 15 1970 3.14 1100

T1ce 1 × 1 × 1 9 2100 4.78 1800

FLAIR 1 × 1 × 1 120 5000 373 900

Lugano SIEMENS Skyra 3T 7 T1n 1 × 1 × 1 9 2300 2.98 950

T1ce 1 × 1 × 1 120 600 11 0

FLAIR 1 × 1 × 1 120 6000 355 1850

St. Gallen SIEMENS Avanto 1.5T 13 T1n 1 × 1 × 1 8 2700 2.96 950

T1ce 1 × 1 × 1 8 2700 2.96 950

FLAIR: FLuid Attenuated Inversion Recovery; T1n: T1-weighted; T1ce: T1-weighted with gadolinium contrast
agent.
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