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Abstract: This study aimed to investigate whether plaque characteristics derived from intravascular
optical coherence tomography (IVOCT) could predict a long-term cardiovascular (CV) death. This
study was a single-center, retrospective study on 104 patients who had undergone IVOCT-guided
percutaneous coronary intervention. Plaque characterization was performed using Optical Coher-
ence TOmography PlaqUe and Stent (OCTOPUS) software developed by our group. A total of
31 plaque features, including lesion length, lumen, calcium, fibrous cap (FC), and vulnerable plaque
features (e.g., microchannel), were computed from the baseline IVOCT images. The discriminatory
power for predicting CV death was determined using univariate/multivariate logistic regressions. Of
104 patients, CV death was identified in 24 patients (23.1%). Univariate logistic regression revealed
that lesion length, calcium angle, calcium thickness, FC angle, FC area, and FC surface area were
significantly associated with CV death (p < 0.05). In the multivariate logistic analysis, only the FC
surface area (OR 2.38, CI 0.98–5.83, p < 0.05) was identified as a significant determinant for CV death,
highlighting the importance of the 3D lesion analysis. The AUC of FC surface area for predicting
CV death was 0.851 (95% CI 0.800–0.927, p < 0.05). Patients with CV death had distinct plaque
characteristics (i.e., large FC surface area) in IVOCT. Studies such as this one might someday lead to
recommendations for pharmaceutical and interventional approaches.

Keywords: intravascular optical coherence tomography; cardiovascular death; plaque characteristics;
fibrous cap surface area; OCTOPUS

1. Introduction

Coronary artery disease (CAD) remains a significant cause of morbidity and mor-
tality worldwide [1]. Due to the widespread prevalence of atherosclerosis [2], there is
an increasing interest in accurately assessing disease aggressiveness by predicting major
adverse cardiovascular events (MACE) through medical imaging. Various imaging modali-
ties, such as coronary computed tomography (CCTA) and intravascular optical coherence
tomography (IVOCT), have been utilized to visualize plaques in coronary vessels and
characterize CAD. In CCTA images, several high-risk features, such as positive remodeling,
low-attenuation plaque, napkin-ring sign, and spotty calcification, have been identified,
with their association with MACE serving as a key determinant [3–6]. Recent research has
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also emphasized the assessment of pericoronary fat in CCTA images, including radiomic
evaluations, which again leverage their association with MACE to support their clinical
relevance [5,7–12]. Using CT calcium score images, MACE can be predicted using the
Agatston score derived from calcifications [13–15].

None of the currently available non-invasive imaging modalities can match the excep-
tional resolution and contrast achieved with IVOCT images [16]. Notably, IVOCT provides
superior resolution (axial: 10 µm, lateral: 20–40 µm), allowing for the precise identification
of thin cap fibroatheroma (TCFA). Through IVOCT imaging, microscopic characteristics
of plaque, including TCFA, macrophage infiltration, cholesterol crystal presence, and mi-
crochannels, can be quantitatively assessed, as validated by histological studies [17–36].
Histopathological investigations have also shown a strong association between the patho-
genesis of most acute coronary events (such as plaque rupture and myocardial infarction)
and the presence of microcalcification, TCFA, and large lipid-rich necrotic cores [37–39].
These plaques are also often characterized by intraplaque hemorrhage and inflammation,
both of which are strongly associated with plaque progression [40]. Extensive ex vivo and
in vitro studies have further supported the correlation between macrophage infiltration
and vulnerable plaque characteristics through histopathological evidence [37,38,41–43]. As
IVOCT provides a promising, unique perspective on coronary plaque, there is a strong
rationale to relate IVOCT findings to long-term cardiovascular risk, specifically in terms of
predicting future adverse events.

There have been relatively few studies analyzing IVOCT images to predict adverse
events [44–48]. In a landmark study involving 1474 patients, Xing et al. focused on
the role of lipid-rich plaque within the non-culprit region of target vessels in predicting
MACE [44]. Using conditional logistic regression, they found a significant correlation
between the presence of lipid-rich plaques and increased MACE risk (risk ratio: 2.1, 95%
CI: 1.1–4.0, p = 0.036). Individuals who experienced MACE had longer lipid lengths
(p < 0.002) and broader maximal lipid arcs (p = 0.023) compared to those without MACE.
Prati et al. investigated the predictive power of various high-risk plaque attributes cap-
tured in IVOCT images as predictors of future adverse events [45]. Their 1-year follow-up
findings indicated that a minimum lumen area < 3.5 mm2 (hazard ratio [HR] 2.1, 95%
confidence interval [CI] 1.1–4.0), fibrous cap (FC) thickness (HR 4.7, 95% CI 2.4–9.0), circum-
ferential lipid arc > 180◦ (HR 2.4, 95% 1.2–4.8), and the presence of macrophages (HR 2.7,
95% CI 1.2–6.1) significantly elevated the risk of future adverse events. Montone et al.
examined the relationship between macrophage infiltration at the culprit site with plaque
erosion and MACE incidence [46]. They found a significantly higher occurrence of MACE
among patients with plaque erosion and macrophage infiltration compared to patients
without macrophage infiltration (21.6% vs. 5.9%, p = 0.008). Zhao et al. assessed the prog-
nostic value of plaque characteristics and residual syntax score for predicting MACE [47].
Their results revealed a significant association between the presence of TCFA and higher
residual syntax scores with the occurrence of MACE. In another study, Kim et al. analyzed
post-stenting IVOCT findings to identify predictors of adverse outcomes [48]. They re-
ported that a smaller minimal stent area and malapposition with a total malapposition
volume ≥ 7.0 mm3 were found to be independent predictors of device-oriented clinical
endpoints and major safety events, respectively.

Despite these promising findings, there is a lack of comprehensive analysis of plaque
characteristics, particularly the FC, derived from IVOCT imaging as predictors of future
adverse events. We hypothesize that plaque characteristics derived from IVOCT are related
to the presence of cardiovascular (CV) death. Specifically, we aim to identify relevant
features in pre-stent IVOCT images that exhibit an association with CV death. This analysis
will not only reveal high-risk features extracted from IVOCT but will also enable subsequent
correlative investigations with CCTA to identify novel high-risk CCTA features based on
their association with IVOCT findings. In this context, we have identified a correlation
between specific radiomic features of pericoronary fat in CCTA images and microscopic
IVOCT characteristics, including TCFA and microchannels [49]. It is important to note that
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high-risk features identified through their association with MACE may differ from those
associated with risk in a specific lesion, as identified solely by CCTA.

In this study, we investigated the association between plaque characteristics observed
in IVOCT imaging and the occurrence of CV death. Using Optical Coherence TOmography
PlaqUe and Stent (OCTOPUS) software [50] on IVOCT images, we segmented plaques into
constituent parts (e.g., calcium and FC), extracted IVOCT plaque features (e.g., calcium
thickness, calcium angle, and FC surface area), and determined their discriminatory power
for predicting CV death. Notably, this analysis specifically focused on microscopic features
that are exclusively visible through IVOCT, such as FC and microchannel components.

2. Materials and Methods
2.1. Study Population

We retrospectively reviewed 805 patients and enrolled 104 patients with coronary
artery disease who had undergone clinically indicated invasive coronary X-ray angiogra-
phy and IVOCT-guided percutaneous coronary intervention (PCI) at University Hospi-
tals Cleveland Medical Center in Cleveland, Ohio, USA, between 8 February 2013, and
30 November 2019. These patients were primarily selected for another study [51], which
required paired pre- and post-stenting IVOCT pullbacks, leading to the exclusion of a large
number of patients. We included patients who had a culprit lesion identified through coro-
nary X-ray angiography. The exclusion criteria included poor-quality images, ostial lesions,
inability to cross the lesions with the OCT catheter due to the tortuosity and/or occluding
thrombus, bypass graft stenosis, in-stent restenosis, and chronic total occlusions. Data col-
lection occurred from September 2019 to May 2021, and the study data were subsequently
analyzed in 2022 and 2023. This study was conducted in compliance with the Declaration of
Helsinki and received approval from the Institutional Review Board of University Hospitals
Cleveland Medical Center, Cleveland, Ohio, USA (STUDY20190821). The requirement
for individual informed consent was waived as all data were fully anonymized, with no
identifiable personal health information.

2.2. IVOCT Imaging and Plaque Characterization

Invasive coronary angiography was performed using 6–7 Fr catheters via radial or
femoral access, following the administration of 250 µg of intracoronary nitroglycerine. The
resulting coronary angiogram was analyzed using QAngio® software (v7.3, Medis, Leiden,
The Netherlands). IVOCT-guided PCI was conducted employing conventional techniques.
During the procedure, the interventional cardiologist exercised discretion in selecting
stenting variables such as stent length and diameter. Only drug-eluting stents were utilized
in this study. IVOCT images were acquired using the C7XR FD-OCT imaging system
(Abbott Vascular, Santa Clara, CA, USA) following the administration of nitroglycerin
(100–200 g). To reach the lesion of interest, a 2.7-Fr OCT catheter (Dragonfly OPTIS, Abbott
Vascular, Santa Clara, CA, USA) was advanced over a conventional guidewire, with the
catheter position verified through invasive coronary angiography. Non-diluted iodine
contrast (ISOVUE-370, iopamidol injection, 370 mg iodine/mL; Bracco Diagnostics Inc.,
Princeton, NJ, USA) was used to achieve blood clearance. Imaging pullback was then
performed at a frame rate of 180 fps, a pullback speed of 36 mm/s, and an axial resolution
of approximately 20 µm. The acquired images were de-identified and forwarded to the
Cardiovascular Imaging Core Laboratory for independent offline analysis.

Plaque and vessel analysis was conducted semi-automatically using the OCTOPUS
software, which was previously developed and validated by our research group [50]. Briefly,
OCTOPUS automatically segmented the lumen, lipid, calcification, and microchannels
using a modified version of DeepLab v3+ deep-learning model [52]. In cases of detected
lipidic plaque, the FC plaque regions were identified using dynamic programming, as
previously proposed by our group [53]. Additionally, the presence of vulnerable plaques,
including macrophage infiltration, cholesterol crystals, layered plaques, and calcium nod-
ules, was manually assessed using the OCTOPUS software. If necessary, manual editing
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of the results was performed with an interactive editing tool following the definitions
provided in the “consensus document” [54]. Detailed algorithm descriptions, extensive
assessment, and promising results are provided elsewhere [55–59].

2.3. IVOCT Feature Selection

We analyzed 31 IVOCT features from baseline IVOCT images taken prior to stenting
to predict the occurrence of CV death. The features were automatically computed using
OCTOPUS software [50], with the exception of the vulnerable plaque features. Lesion length
was defined as the length of the vessel segment where the stent was deployed. Lumen
features included minimum and average lumen area, as well as minimum and average
lumen diameter. Calcium features included maximum and minimum calcium angle,
thickness, and depth. As shown in Figure 1, FC features were evaluated across four levels of
FC thickness (1: thickness ≤ 65 µm, 2: 65 µm < thickness < 150 µm, 3: thickness ≥ 150 µm,
and T: total) and included maximum and minimum FC angle, thickness, area, surface area,
and burden. For example, FC surface area-1 represented the surface area of FC regions
with a thickness ≤ 65 µm, while FC surface area-T represented the total surface area of
FC regions, regardless of thickness. FC angle, thickness, and area were calculated from
each IVOCT image frame, while FC surface area and burden were computed for the entire
lesion. FC surface area was defined as the total area covered by the FC on the surface of
the vessel lumen, as visualized in the en face view (θ,z), while FC burden was calculated
as the ratio of FC area to the surface area of the vessel lumen. The angles of calcified
and FC plaques were determined based on the extent of plaques relative to the center of
mass of the lumen. Vulnerable plaque features included the presence of microchannels,
macrophage infiltration, cholesterol crystals, layered plaque, or calcium nodules within
the lesion. Plaque characterization was performed for each IVOCT image frame. Table 1
provides a summary of the IVOCT features used in this study for predicting CV death.
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Figure 1. Representative IVOCT case with varying FC thicknesses (FC-1: T ≤ 65 µm, FC-2:
65 µm < T < 150 µm, and FC-3: T ≥ 65 µm). Panels include (A) Cartesian (x,y) IVOCT image and
(B) IVOCT image overlaid with three FC classes. The lumen is represented in yellow, FC-1 in green,
FC-2 in light blue, and FC-3 in red.
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Table 1. IVOCT plaque features, including lesion length and feature groupings (4 lumen, 6 calcium,
15 FC, and 5 vulnerable plaque features). FC refers to the fibrous cap, and VP represents vulnerable plaque.

N Features

1 Lesion length (mm)

2

Lumen

Minimum lumen area (mm2)

3 Average lumen area (mm2)

4 Minimum lumen diameter (mm)

5 Average lumen diameter (mm)

6

Calcium

Maximum calcium angle (◦)

7 Minimum calcium angle (◦)

8 Maximum calcium thickness (mm)

9 Minimum calcium thickness (mm)

10 Maximum calcium depth (mm)

11 Minimum calcium depth (mm)

12

FC

Maximum FC angle (◦)

13 Minimum FC angle (◦)

14 Minimum FC thickness (mm)

15 Maximum FC area-1 (mm2)

16 Maximum FC area-2 (mm2)

17 Maximum FC area-3 (mm2)

18 Maximum FC area-T (mm2)

19 FC Surface area-1 (mm2)

20 FC Surface area-2 (mm2)

21 FC Surface area-3 (mm2)

22 FC Surface area-T (mm2)

23 FC burden-1

24 FC burden-2

25 FC burden-3

26 FC burden-T

27

VP

Microchannel

28 Macrophage Infiltration

29 Cholesterol Crystal

30 Layered Plaque

31 Calcium Nodule

2.4. Clinical Endpoint

Details regarding the occurrence of CV death were collected from the electronic
medical records of University Hospitals Cleveland Medical Center in Cleveland, OH, USA.
CV death was defined as death resulting from acute myocardial infarction, heart failure,
cardiac shock, or other cardiovascular causes.

2.5. Statistical Analysis

We conducted various analyses on the IVOCT plaque features. Continuous features
were presented as mean ± standard deviation, while categorical features were reported
as frequencies. Statistical comparisons between the CV death and no-CV death groups
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were performed using a student t-test for continuous variables and the Chi-Square test
for categorical variables. To assess the inter-correlations of IVOCT features, a heatmap
analysis was conducted using the non-parametric Spearman’s rank correlation coefficient
and hierarchical clustering. For the prediction of CV death, both univariate and multivariate
logistic regressions were employed, with 95% confidence intervals (CI) calculated. In the
multivariate logistic regression, features that showed significance (p < 0.05) in the univariate
analysis were included. The discriminatory power of the models for predicting CV death
was evaluated using the area under the receiver operating characteristic curve (AUC). The
optimal cutoff values on the receiver operating characteristic (ROC) curve were determined
based on the maximum sum of sensitivity and specificity. Statistical significance was
defined as a p-value less than 0.05. All analyses were performed using R Studio software
(version 1.4.1717, R Foundation for Statistical Computing, Vienna, Austria).

3. Results

This study included 104 patients with coronary artery disease who underwent IVOCT-
guided PCI. No patients were excluded based on clinical characteristics. Among the
104 patients, the mean age was 67.1 ± 12.0 years, with 74 males (71.2%). During an average
follow-up period of 19 months, CV death occurred in 24 patients (23.1%). Among the study
population, 99 patients (95.2%) had hypertension, 53 patients (51.0%) were current smokers,
and 56 patients (53.8%) had diabetes mellitus. The baseline characteristics of the study
population are presented in Table 2.

Table 2. Baseline characteristics of the study population.

Characteristics All (n = 104) CV Death (n = 24) No-CV Death (n = 80) p-Value

Age (years) 67.1 ± 12.0 75.0 ± 8.5 72.0 ± 12.8 0.37

Male 74/104 (71.15%) 19/24 (79.2%) 52/80 (65.0%) 0.19

Physical Measurement

Height (cm) 171.8 ± 9.8 173.6 ± 5.6 172.3 ± 12.3 0.67

Weight (kg) 93.7 ± 25.3 102.1 ± 36.4 91.1 ± 20.0 0.17

BMI (kg/m2) 31.73 ± 8.1 33.8 ± 12.0 30.8 ± 5.8 0.23

Medical History

Hypertension 99/104 (95.2%) 24/24 (100.0%) 75/80 (93.8%) 0.21

Diabetes Mellitus 56/104 (53.8%) 13/24 (54.2%) 43/80 (53.8%) 0.97

Hyperlipidemia 90/104 (86.5%) 20/24 (83.3%) 70/80 (87.5%) 0.60

Previous PCI 8/104 (7.7%) 3/24 (12.5%) 5/80 (6.3%) 0.31

Previous Myocardial Infarction 60/104 (57.7%) 17/24 (70.8%) 43/80 (53.8%) 0.14

Heart Failure, LVEF < 30% 58/104 (55.8%) 16/24 (66.7%) 42/80 (52.5%) 0.22

Previous CABG 8/104 (7.7%) 2/24 (8.3%) 6/80 (7.5%) 0.89

Current Smoker (≤6 Months) 53/104 (51.0%) 15/24 (62.5%) 38/80 (47.5%) 0.20

Renal Dysfunction
(Serum Creatinine > 2.0) 53/104 (51.0%) 16/24 (66.7%) 37/80 (46.3%) 0.08

Hemodialysis or Renal Transplant 12/104 (11.5%) 5/24 (20.8%) 7/80 (8.8%) 0.10

Pre-procedure Presentation

STEMI/Cardiogenic shock 10/104 (9.6%) 2/24 (8.3%) 8/80 (10.0%) 0.81

NSTEMI/Unstable Angina 35/104 (33.7%) 5/24 (20.8%) 30/80 (37.5%) 0.13

Stable Angina 57/104 (54.8%) 13/24 (54.2%) 44/80 (55.0%) 0.94

Aortic stenosis 1/104 (1.0%) 1/24 (4.2%) 0/80 (0%) 0.07
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We conducted a comparative analysis of plaque features between the CV death and
no-CV death groups. The CV death group exhibited significantly larger lesion length,
maximum calcium angle, and maximum calcium thickness compared to the no-CV death
group (p < 0.05 for all) (Table 3). Similarly, there was a significant association between
the occurrence of CV death and increasing FC features, including maximum FC angle,
maximum FC area, FC surface area, and FC burden, compared to the no-CV death group.
Notably, maximum FC area-T and FC surface area-T demonstrated the smallest p-values
(p < 0.000001). However, quantitative features related to lumen, calcium depth, and
minimum FC thickness did not show significant differences between the CV death and
no-CV death groups. Furthermore, all vulnerable plaque features, such as microchannel
and cholesterol crystal, were more frequently observed in the CV death group compared to
the no-CV death group. Table 3 provides a comprehensive comparison of IVOCT plaque
features using a Student’s t-test.

Table 3. Comparison of IVOCT plaque features between CV death and no-CV death groups.

Features CV Death (n = 24) No-CV Death (n = 80) p-Value

Lesion length (mm) 37.15 ± 14.15 28.56 ± 11.51 0.02

Maximum calcium angle (◦) 245.19 ± 83.08 162.60 ± 71.08 0.0004

Minimum calcium angle (◦) 20.31 ± 12.22 15.86 ± 5.24 0.06

Maximum calcium thickness (mm) 1.52 ± 0.24 1.24 ± 0.29 0.0007

Minimum calcium thickness (mm) 0.30 ± 0.10 0.27 ± 0.06 0.28

Maximum calcium depth (mm) 0.52 ± 0.18 0.50 ± 0.19 0.81

Minimum calcium depth (mm) 0.008 ± 0.010 0.014 ± 0.014 0.22

Minimum lumen area (mm2) 2.03 ± 1.04 2.07 ± 1.25 0.91

Average lumen area (mm2) 5.60 ± 2.37 5.87 ± 2.60 0.72

Minimum lumen diameter (mm) 0.96 ± 0.28 1.00 ± 0.37 0.75

Average lumen diameter (mm) 2.57 ± 0.56 2.62 ± 0.56 0.75

Maximum FC angle (◦) 142.00 ± 51.21 61.40 ± 53.63 0.000003

Minimum FC angle (◦) 29.81 ± 11.75 28.29 ± 27.06 0.83

Minimum FC thickness (mm) 0.0228 ± 0.0095 0.0409 ± 0.0567 0.21

Maximum FC area-1 (mm2) 0.48 ± 0.29 0.14 ± 0.21 0.000006

Maximum FC area-2 (mm2) 1.73 ± 0.75 0.62 ± 0.67 0.000001

Maximum FC area-3 (mm2) 1.38 ± 0.64 0.60 ± 0.65 0.0001

Maximum FC area-T (mm2) 3.60 ± 1.30 1.35 ± 1.23 0.00000009

FC Surface area-1 (mm2) 0.51 ± 0.49 0.07 ± 0.13 0.000002

FC Surface area-2 (mm2) 5.36 ± 5.53 0.72 ± 1.08 0.000002

FC Surface area-3 (mm2) 3.77 ± 3.76 0.58 ± 1.09 0.000006

FC Surface area-T (mm2) 9.63 ± 8.73 1.37 ± 1.81 0.0000002

FC burden-1 42.30 ± 42.10 5.56 ± 9.81 0.000002

FC burden-2 496.35 ± 796.34 53.59 ± 78.55 0.0007

FC burden-3 369.09 ± 570.24 40.31 ± 63.43 0.0004

FC burden-T 907.75 ± 1368.83 99.46 ± 121.49 0.0003
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Table 3. Cont.

Features CV Death (n = 24) No-CV Death (n = 80) p-Value

Microchannel 9 (37.5%) 11 (13.8%) 0.01

Macrophage Infiltration 21 (87.5%) 50 (62.5%) 0.02

Cholesterol Crystal 17 (70.8%) 12 (15.0%) 0.0000001

Layered Plaque 8 (33.3%) 3 (3.8%) 0.00004

Calcium Nodule 8 (33.3%) 8 (10.0%) 0.005

To address the issue of correlated features, we conducted a hierarchical clustering
analysis of IVOCT plaque features using the non-parametric Spearman’s rank correlation
coefficient (Figure 2). Among all the IVOCT plaque features, we identified 12 features
(minimum lumen diameter, average lumen diameter, maximum FC area 1/2/3, FC surface
area 1/2/3, and FC burden 1/2/3/T) with Spearman’s correlation coefficients exceeding 0.9.
Consequently, we reduced the total number of features extracted from the IVOCT images
from 31 to 14, focusing only on features with a rho-value greater than 0.9. Notably, within
the heatmap, the FC features exhibited the smallest p-values, indicating their potential
significance in relation to CV death prediction.

To assess the discriminatory ability of the features in predicting CV death events,
we performed univariate and multivariate logistic regression analyses. In the univariate
regression analysis, several features, including lesion length, maximum calcium angle,
maximum calcium thickness, maximum FC angle, maximum FC area-T, FC surface area-
T, cholesterol crystal, and layered plaque, demonstrated significant associations with CV
death (Table 4). On the other hand, minimum/average lumen area and FC thickness did not
independently predict CV death. In the multivariate regression analysis, only FC surface
area-T (OR 2.38, CI 0.98–5.83, p = 0.03) exhibited a strong association with the occurrence of
CV death (Table 4). The IVOCT plaque features that showed significant associations with
CV death in both univariate and multivariate logistic regression analyses are summarized
in Table 4.

Table 4. Univariate/multivariate logistic regression for predicting CV death. Eight IVOCT plaque
features showed significant correlation with CV death in the univariate logistic regression analysis.
In the multivariate logistic regression analysis, only the FC surface area-T demonstrated a strong
association with a higher prevalence of CV death (p < 0.05).

Features

Univariate Logistic Regression Multivariate Logistic Regression

p-Value Odd
Ratio

Lower
95%

Upper
95% p-Value Odd

Ratio
Lower
95%

Upper
95%

Lesion length (mm) 0.03 1.05 1.01 1.11 0.90 0.99 0.89 1.11

Maximum calcium angle (◦) 0.002 1.00 1.01 1.01 0.29 1.01 0.99 1.02

Minimum calcium angle (◦) 0.09 1.07 0.99 1.16

Maximum calcium thickness (mm) 0.003 48.48 3.82 614.87 0.06 190.55 0.73 4993.57

Minimum calcium thickness (mm) 0.29 62.40 0.03 1224.3

Maximum calcium depth (mm) 0.81 1.46 0.07 31.17

Minimum calcium depth (mm) 0.07 0.02 0.00 1.30

Minimum lumen area (mm2) 0.90 0.97 0.59 1.59

Average lumen area (mm2) 0.71 0.96 0.75 1.21

Maximum FC angle (◦) 0.002 1.03 1.01 1.05 0.10 1.05 0.99 1.12

Minimum FC angle (◦) 0.83 1.00 0.98 1.03

Minimum FC thickness (mm) 0.23 0.00 0.00 920.14
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Table 4. Cont.

Features

Univariate Logistic Regression Multivariate Logistic Regression

p-Value Odd
Ratio

Lower
95%

Upper
95% p-Value Odd

Ratio
Lower
95%

Upper
95%

Maximum FC area-T (mm2) 0.0009 5.65 2.03 15.69 0.16 0.14 0.01 2.13

FC Surface area-T (mm2) 0.0002 2.08 1.42 3.04 0.03 2.38 0.98 5.83

Microchannel 0.10 3.00 0.82 10.98

Macrophage infiltration 0.44 1.91 0.36 9.99

Cholesterol crystal 0.0008 9.35 2.53 34.58 0.42 3.22 0.19 54.85

Layered plaque 0.01 9.09 1.55 53.39 0.48 5.18 0.06 489.67

Calcium nodule 0.09 3.36 0.82 13.78
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Figure 2. Correlation plot of IVOCT plaque features, illustrating hierarchical clustering and distinct
clusters of feature correlation. The correlation coefficient (R) values are plotted against each other.
The color key represents the explained variances: R values < 0.5 are shown in black, while greater
values are depicted in green or red with increasing intensity. Using a Spearman correlation coefficient
threshold of 0.9, a total of 12 features, including minimum/mean lumen diameter, maximum FC
area-1/2/3, FC surface area-1/2/3, and FC burden-1/2/3/T, were excluded from further analysis.
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Using the single best feature, identified as FC surface area-T from the multivariate
regression analysis, we constructed an ROC curve to assess the predictive capability of
the IVOCT plaque feature for CV death (Figure 3). FC surface area-1 made the smallest
contribution, while FC surface area-2 (65 µm < T < 150 µm) contributed the most to CV
death prediction. The combined AUC for FC surface area-T was 0.851 (95% CI 0.800–0.927,
p = 0.0002). A significant difference in FC surface area-T was observed using a box-plot
analysis (Figure 4). Additionally, Figure 5 presents a 3D visualization of high-risk and
low-risk lesions in representative IVOCT pullbacks. The high-risk lesion exhibited thicker
calcification (1.32 mm) and a larger FC surface area (39.10 mm2), whereas the low-risk
lesion had thinner calcium (0.72 mm) and a smaller FC surface area (1.63 mm2).
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Figure 3. ROC curve analysis of the most significant IVOCT plaque feature, FC surface area-T,
determined by multivariate logistic regression for predicting CV death. ROC curves of FC surface
area 1–3 are also displayed. The FC area with T < 65 µm contributed the least (AUC: 0.815, 95% CI:
0.737–0.908, p = 0.001), while the FC area with 65 µm < T < 150 µm contributed the most (AUC: 0.831,
95% CI: 0.754–0.907, p = 0.0009) in predicting CV death. When combined, FC surface area-T had an
AUC of 0.851 (95% CI 0.800–0.927, p = 0.0002).
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Figure 5. Three-dimensional (3D) visualization of high-risk and low-risk lesions on representative
IVOCT pullbacks. The top panel (A) depicts a high-risk lesion with a maximum calcium thickness of
1.32 mm and an FC surface area of 39.10 mm2. The bottom panel (B) illustrates a low-risk lesion with
a maximum calcium thickness of 0.72 mm and an FC surface area of 1.63 mm2. Subsequently, the high-
risk case experienced a CV death, while the low-risk case remained event-free. The corresponding
IVOCT image frames are displayed alongside the 3D vessel maps (indicated by yellow arrows). The
corresponding longitudinal IVOCT maps are provided below each case, with white arrows indicating
the location of the lesion where the stent was implanted. The lumen is represented in red, the FC in
green, and the calcium in white.
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4. Discussion

Building upon our previous research utilizing IVOCT imaging [50,53,55–59], we aimed
to establish correlations between IVOCT plaque features and the occurrence of CV death.
This study offers several noteworthy contributions. First, we employed our interactive
OCTOPUS software to automatically compute plaque features such as FC thickness and
FC surface area. Second, our analysis of features associated with CV death revealed the
presence of high-risk features, including FC surface area, as well as unexpectedly low-risk
features, such as TCFA thickness, when assessed in the context of stent-treated lesions.
Third, preliminary ROC analysis indicates that features observed in IVOCT images hold
the potential for predicting future adverse events, offering valuable insights into patient-
management strategies.

The predictive power of FC surface area surpassed that of FC thickness, which has
been commonly studied as a risk factor for lesion rupture in previous reports [41,60,61]. Our
findings highlight that lesion area plays a more critical role in predicting CV death. This may
be partially attributed to temporal trends in plaque pathogenesis. Typically, the formation of
a plaque is preceded by the accumulation of lipid-laden macrophages, which later undergo
apoptosis, resulting in the development of a necrotic lipid-rich core. Subsequently, fibrous
tissue forms in the intima, leading to the formation of the FC. Thinning of the FC typically
occurs after plaque enlargement [62]. Therefore, the “3D” lesion size may serve as an earlier
indicator of plaque instability compared to the later appearance of a localized thin FC.
Considering the diffuse inflammatory nature of atherosclerosis, it is crucial to analyze the
entire 3D lesion, specifically focusing on the FC surface area. For this reason, the FC surface
area was selected as a significant predictor for CV death, as it encompasses all relevant
FC information, even though both FC area and FC angle were significant in univariate
analysis. In another study, we also observed that FC surface area was a strong indicator
for predicting the development of neo-atherosclerosis [63]. In contrast, assessments of the
thin cap were not strong predictors of CV death. Specifically, neither minimum thickness
nor FC surface area-1 was highly predictive. Nevertheless, it is important to note that the
significance of FC thickness should not be overlooked. In our analysis, FC thickness was
measured from a lesion that was subsequently treated with a stent, providing additional
protection to the lesion. CV death is unlikely to be associated with the treated lesion,
although in-stent thrombosis and restenosis are possible. It is likely that our assessments
are associated with the extent of the disease. An important consideration is that our datasets
show relatively high rates of stent under-expansion, which may explain the relatively high
rates of cardiovascular death (23.1%). While a thin FC may signify local plaque instability,
a larger surface area may indicate a more widespread burden of atherosclerotic disease.
This could potentially translate into acute events occurring in regions outside the imaged
plaque, perhaps even in another vessel.

Interestingly, luminal stenosis (minimum lumen area) was not a strong predictor of
the risk of CV death. That is, the severity of a treated, flow-limiting stenosis is not a reliable
indicator of future adverse events. Based on the arguments presented above, it does not
appear to be a predictor of CV death-related disease in the rest of the heart. This is expected,
as a more comprehensive 3D analysis of the vessel provides a more reliable assessment for
CV death, considering numerous variable interactions, unlike a single measurement like the
minimum lumen area. This finding aligns with a study conducted by Kim et al. [48], which
found no significant differences in minimal lumen diameter and percentage of stenosis
between lesions with and without adverse clinical outcomes in patients who underwent
IVOCT-guided PCI, further supporting our results.

Long-term outcome-prediction studies have predominantly utilized CCTA and car-
diac magnetic resonance angiography (CMRA). These studies have focused on clinical
characteristics and high-risk plaque features such as spotty calcification, low-attenuation
plaque, positive remodeling, and the napkin-ring sign [64,65]. Recently, there has been a
growing number of studies aiming to predict long-term outcomes using radiomic features
in CCTA [5,7–12]. For instance, Oikonomou et al. calculated a total of 843 radiomic features
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(including shape-related, first-order, and texture features) in CCTA images and correlated
them with the occurrence of MACE within 5 years of the CCTA scan [9]. They discovered a
high-risk radiomic profile of pericoronary fat that may be associated with an elevated car-
diac risk. Similarly, Kolossváry et al. analyzed 935 radiomic features, including first-order
and textural features with different bin sizes, to identify invasive and radionuclide imaging
markers of plaque vulnerability [5]. Their results demonstrated that the most informative
radiomic features were able to identify attenuated plaque as observed by intravascular
ultrasound (IVUS), TCFA as observed by IVOCT, and NaF18-positivity. However, non-
invasive imaging modalities such as CCTA and CMRA only have a moderate correlation
with the gold-standard intravascular imaging techniques (e.g., IVOCT) and provide limited
information about the artery wall and microscopic features of atherosclerosis. IVOCT, with
its nearly histological resolution (axial: 10 µm, lateral: 20–40 µm) and optical contrast,
offers a comprehensive assessment of coronary arteries [16]. Specifically, it enables a unique
evaluation of microscopic plaque components such as FC, macrophages, cholesterol crys-
tals, and microchannels, in addition to macroscopic plaques including fibrous and calcified
plaques. Although IVOCT provides a better representation of the state of atherosclerosis
compared to non-invasive imaging modalities, no studies have quantitatively analyzed
IVOCT plaque characteristics for predicting future adverse outcomes. In this study, we
utilized OCTOPUS [50] to perform plaque characterization in IVOCT images and, for the
first time, identified FC surface area as a significant determinant of long-term CV death
outcomes. Our results are promising and have the potential to optimize treatment strategies
and improve short- and long-term outcomes.

Improved and automated characterization of atherosclerosis in IVOCT holds the poten-
tial to enable personalized treatments. The advancements in preventive and cardioprotective
therapeutics over the past decade, including P2Y12 antagonists, direct oral anticoagulants,
proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors, icosapent ethyl, glucagon-
like peptide 1 (GLP-1) agonists, and others, highlight the need for personalized medicine
approaches that ensure appropriate treatment for individual patients in a cost-effective
manner. The automated identification of high-risk vessels would provide an opportunity
to guide the implementation of intensive therapies in clinical practice and enhance patient
cohorts for testing the effectiveness of emerging novel therapeutics. Furthermore, accurate
identification of high-risk lesions could inform potential revascularization strategies. For
instance, in addition to treating stenosis, an extra stent could be added to seal a high-risk
lesion. The assessment of plaque changes with precise registration has the potential to
facilitate mechanistic studies in drug development [66]. Additionally, the identification of
high-risk IVOCT characteristics could offer insights into other imaging modalities.

This study has some limitations that should be acknowledged. First, it was a retrospec-
tive study conducted at a single center, and the sample size was relatively small. This may
limit the generalizability of the findings to a larger population. Particularly, the number
of features used in the multivariate logistic analysis was relatively large compared to the
number of events, which may not accurately represent the underlying associations. Second,
the study focused specifically on patients undergoing PCI with available IVOCT data. It
remains unclear whether the identified features would be applicable and relevant to a more
diverse and broader population. Third, despite the promising segmentation performance,
the OCTOPUS software still requires manual editing.

In conclusion, our study demonstrates that patients with CV death have distinct plaque
characteristics in IVOCT images compared to those without CV death. Particularly, FC
surface area showed a strong predictive value, while features related to cap thickness were
less predictive despite their emphasis in the literature regarding lesion vulnerability. These
findings have potential implications for patient management, allowing the identification of
individuals at higher risk for future events. Furthermore, correlating the features identified
in our study with those observed in other imaging modalities, such as CCTA, through
multi-modality imaging studies could provide valuable insights.
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