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Abstract: Deep learning (DL) has been applied to glioblastoma (GBM) magnetic resonance imaging
(MRI) assessment for tumor segmentation and inference of molecular, diagnostic, and prognostic
information. We comprehensively overviewed the currently available DL applications, critically ex-
amining the limitations that hinder their broader adoption in clinical practice and molecular research.
Technical limitations to the routine application of DL include the qualitative heterogeneity of MRI,
related to different machinery and protocols, and the absence of informative sequences, possibly com-
pensated by artificial image synthesis. Moreover, taking advantage from the available benchmarks
of MRI, algorithms should be trained on large amounts of data. Additionally, the segmentation of
postoperative imaging should be further addressed to limit the inaccuracies previously observed for
this task. Indeed, molecular information has been promisingly integrated in the most recent DL tools,
providing useful prognostic and therapeutic information. Finally, ethical concerns should be carefully
addressed and standardized to allow for data protection. DL has provided reliable results for GBM
assessment concerning MRI analysis and segmentation, but the routine clinical application is still
limited. The current limitations could be prospectively addressed, giving particular attention to data
collection, introducing new technical advancements, and carefully regulating ethical issues.

Keywords: artificial intelligence; deep learning; magnetic resonance imaging; glioblastoma; segmentation;
molecular data; clinical applicability

1. Introduction

Gliomas, and among them, glioblastoma multiforme (GBM), stands as the most com-
mon and deadliest form of primary brain tumor in adults, characterized by its aggressive
growth and poor prognosis. According to the Central Brain Tumor Registry of the United
States, GBM accounts for 14.6% of all primary brain tumors and an alarming 48.6% of
primary malignant brain tumors, with a median survival rate of approximately 15 months
post-diagnosis [1]. The complexity of GBM’s treatment lies in its highly heterogeneous
nature, both genetically and in its response to treatment, necessitating personalized ther-
apeutic approaches [2–4]. In this context, magnetic resonance imaging (MRI) emerges
as a cornerstone in the diagnosis, treatment planning, and follow-up of GBM, providing
detailed insights into the tumor’s location, size, and interaction with surrounding brain
structures. The segmentation of GBM from MRI scans, a critical step in delineating the
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tumor boundaries, is traditionally performed manually by expert radiologists. This process,
however, is not only time-intensive but also prone to variability, underlining the urgent
need for more efficient and standardized approaches [5].

Recent advances in artificial intelligence (AI), particularly deep learning, have shown
promising potential to address these challenges [6]. Deep learning models, trained on vast
datasets of annotated MRI scans, can automate the segmentation process, offering not just
speed and efficiency but also the promise of reducing human error [7]. This technological
leap could revolutionize the clinical management of GBM, from enhancing diagnostic
accuracy to informing the surgical strategy and assessing treatment response. Yet, the
path to integrating deep learning into clinical practice is fraught with obstacles. These
range from technical challenges, such as the need for large, diverse training datasets and
the management of imaging variability, to broader concerns around algorithm validation,
integration into clinical workflows, and ethical considerations.

Taking these considerations as a premise, in this article, we intend to provide a com-
prehensive overview of the current state of deep learning applications in MRI segmentation
and molecular subtyping for glioblastoma, critically examining the limitations that hin-
der their broader adoption in clinical practice and molecular research. Considering the
breadth of topics covered, we introduce Table 1 to summarize the various points and
facilitate readability.

Table 1. Summary of the presented concerns regarding AI application for glioblastoma MRI segmen-
tation. Each limitation is accompanied by the domain of pertinence, the definition of the problem,
and the proposed solution(s).

Section Limitation Domain Definition Possible
Solution(s)

2.1 imaging heterogeneity technical scanner-dependent variation
in image signal intensity intensity standardization

rescanning data

2.2 missing MRI sequences technical unavaiable modality/ies (T1,
T2, FLAIR, T1CE)

inter-modality
translation

knowledge distillation

2.3 deployment issues technical
limited computational
resources and memory

constraints
tiling

quantization

2.4 performance
evaluation technical subjective reference

standards cross-validation

unsupervised training

3.1 limited number of
patients application low number of data publicly

avaiable transfer learning

3.2 data quality application suboptimal quality of data
(non-volumetric scans) pre-processing

inclusion of complex
scenarios

3.3 data selection application selection bias and reduced
applicability inclusive database

3.4 focus on preoperative
scenario application logistical and technical issues

for postop. MRIs
multi-modality and

multi-institutional data

4 exclusion of molecular
data molecular limited consideration of

IDH—1p/19q—MGMT new coder architecture

large-scale data-sharing

5.1 lack of standard
guidelines ethical scientific integrity not

definable checklist

5.2 lack of transparency ethical limited understanding of the
results interpretability methods

interdisciplinary
collaboration

5.3 privacy and data
protection ethical difficulty to obtain complete

anonimization skull-stripping
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2. Technical Challenges
2.1. MRI Imaging Heterogeneity

Unlike the CT scanner, MRI is characterized by scanner-dependent variation in image
signal intensity related to variability in time points, vendors, magnetic field strengths,
and acquisition settings [8–10]. Radiomic features are highly sensitive to the level of the
signal intensity in the image and, thus, non-biological alterations should be removed [11].
Therefore, to obtain reproducible results in radiomic analysis, MRI signal intensity must
be standardized. The standardization should obtain an adequate range and distribution
of voxel intensity in the different MRIs [12]. Nowadays, there is no general consensus
concerning the most reliable standardization approach to adopt.

AI in the field of medical imaging faces unique challenges due to the innate complexity
and diversity of medical data [11]. AI models are intrinsically designed to discern and
learn from patterns within their training data. However, these patterns may not purely
reflect the biological and pathological information of interest, but also the methodological
biases present in the data acquisition process.

When training datasets are predominantly composed of MRI scans from a single
medical center, the AI model may inadvertently prioritize the specific characteristics of
that center’s imaging protocol over the more crucial pathological features of the tumor
itself. This situation leads to an overfitting, where the model performs exceptionally well
on the training data due to its familiarity with the protocol-specific nuances but fails to
generalize this performance to new, unseen data from other centers with different imaging
protocols. This issue is exacerbated in the context of gliomas, a highly heterogeneous group
of brain tumors, both biologically and morphologically. The heterogeneity is an essential
aspect of the disease that AI models must capture to generalize effectively across different
patient populations. Therefore, to develop AI models that are robust and generalizable, it is
essential to train them on diverse, multi-center datasets that encompass the broad spectrum
of imaging techniques and the varied appearances of glioblastoma [13].

For such a reason, for MRI radiomics analysis, a key challenge is to ensure repeatability
and reproducibility of the results in the removal of scanner-dependent signal intensity
changes [12]. In fact, intensity standardization helps in making the evaluations agnostic
to acquisition specifications and allows us to create more reliable models. An interesting
tool for MRI harmonization is ComBat, a statistical normalization method for batch-effect
correction in genomics that shows promising results in removing scanner-dependent
information from extracted features when applied to radiomics [9,10]. Marzi et al. [14]
further extended this idea by proposing a harmonizer transformer, an implementation of
ComBat allowing its encapsulation as a preprocessing step of a machine learning pipeline,
sensitively reducing site effects.

Yet, implementing harmonization in an operative procedure based on the informa-
tion provided has been shown to have a serious effect on the level of repeatability and
redundancy of features [15]. For such a reason, several studies suggest that rescanning data
provides the opportunity to assess radiomic feature reproducibility on images from the
same patient acquired within a short time delay, despite the minimal modification that a
tumor can present within several days [10,15].

2.2. Missing MRI Sequences

In clinical practice, obtaining multiple sequences is time-consuming and expensive [16].
Moreover, MRI examinations may vary among institutions because of different acquisition
protocols and/or different hardware with unequal resolution capabilities [17].

Nevertheless, for brain tumor segmentation, multi-contrast MRI modalities such as T1,
T2, Fluid-Attenuated Inversion Recovery (FLAIR), and T1 Contrast-Enhanced (T1CE) play
an essential role in collecting the informative features [18,19]. Utilizing multimodal data
through concatenating multiple MR images as inputs for any machine learning method has
demonstrated a proficiency in enhancing the semantic segmentation performances of brain
tumors [20,21]. More specifically, each imaging modality enables the deep learning convolu-
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tional networks to extract and learn reciprocal knowledge to segment different subregions
of glioblastoma. For example, peritumoral edema appears as a hyperintensity area in T2
and FLAIR images, while enhancing tumor is highlighted with hyperintensity in T1CE
image [22]. Unfortunately, it is usually required to have the complete four image modalities
as inputs (i.e., T1, T2, FLAIR, and T1CE). Thus, the problem of missing modalities from
MRI examinations leads to challenges for the segmentation task [23,24]. The complexity
increases even more with postoperative segmentation, where the standard sequences listed
above should be supplemented with diffusion/ADC maps to better characterize residual
areas, which can often be confused with normal postoperative barrier damage, edema
changes, or possible vascular alteration.

To tackle this problem, the artificial synthesis of missing target modalities from one
or more available modalities has recently attracted increasing attention [25]. However,
it remains challenging to achieve accurate segmentation results from the synthesized
images [16]. In fact, there is a gap between the synthesized and real target modalities, thus
causing the segmentation based on synthesized images to perform worse [26]. Moreover,
the model becomes more complex and much deeper than the original independent model
and it has a higher risk of overfitting [16]. This issue requires to be addressed with more
effective regularization methods to maintain the performance during testing. However, the
regularization of these models has rarely been explored in existing works.

Eijgelaar et al. [24] introduced a training method that uses sparsity to enhance model
outcomes when working with partial clinical datasets. However, even with these modifi-
cations, the highest performance levels were attainable only with the full complement of
sequences. In fact, each diagnostic modality, whether it is a variant of MRI, CT, or another
type of scan, inherently provides unique information. Consequently, any method that tries
to compensate for missing information is essentially attempting to mitigate the impact on
the algorithm’s effectiveness [26].

Due to the rise in deep learning, image synthesis within the same modality (such as in-
tramodalities: e.g., from MRI to CT) and across modalities (intermodality: e.g., from FLAIR
MRI to T1ce MRI), which entails artificially reconstructing missing sequences from available
ones, has attracted considerable attention. This area is emerging as a vibrant and promising
research domain. In Figure 1, the IMT model proposed by Osman et al. [27], which was
able to generate an accurate synthesis result by generating the missing modalities, is shown.

Various network architectures have been proposed for such tasks in medical imag-
ing within the last few years, but three main backbone models achieved the best re-
sults: autoencoder, U-Net, and GAN, with the first starting to lose pace compared to
the others [26]. Some studies specifically tackled the problem of brain MRI intramodal-
ity synthesis. Yang et al. [28] proposed a method to perform image modality translation
(IMT) by leveraging conditional generative adversarial networks (cGANs), whose genera-
tor follows the U-Net shape by adding skip connections between mirrored layers in the
encoder–decoder network and whose discriminator is derived from a PatchGAN classi-
fier. Osman and Tamam [27] instead implemented a U-Net model aimed at learning the
non-linear mapping between a source image contrast to a target image contrast.

Generative adversarial networks (GANs) [29,30] are a relatively new type of DL
model that have received much attention because of their ability to generate synthetic
images. GANs are trained using two neural networks—a generator and a discriminator.
The generator learns to create data that resemble examples contained within the training
dataset, and the discriminator learns to distinguish real examples from the ones created by
the generator [17]. The two networks are trained together until the generated examples are
indistinguishable from the real examples. For such reason, from their conception, GANs
have found many applications in medical imaging [31,32].

Another interesting example comes from the Tumor Image Synthesis and Segmentation
Network (TISS-Net), a dual-task architecture for end-to-end training and inference, where
the synthesis and segmentation models are learned synergistically with several novel high-
level regularization strategies [16]. TISS-Net leverages not only a GAN-like architecture
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comprising a dual-task generator and a dual-task segmentor, but exploits specific domain
knowledge while structuring the learning phase, leading to what is known as segmentation-
aware target modality image synthesis, where a coarse segmentation is used as an auxiliary
task to regularize the synthesis task, and a tumor-aware synthesis loss with perceptibility
regularization is introduced to generate segmentation-friendly images in the missing
modality. This allows for the improvement and further refinement of the image quality
around the tumor region and to reduce the high-level domain gap between synthesized
and real target modality images [16].
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Another promising approach to overcome the limitation of potential missing sequences
is knowledge distillation (KD), which utilizes a teacher–student model to compress model
architecture from a cumbersome network to a compact one [18]. In medical image analysis
domain, especially in brain tumor segmentation, the KD is used to transfer complete
multimodal information from the teacher network to a unimodal student network [33].
However, this is a two-stage approach which requires a training phase for the teacher
network with full image modalities. Afterwards, the information is transferred to the
student network that utilizes limited modalities. This results in additional training costs
and extra time to generate the pre-trained model. Moreover, the teacher might need to be
updated or fine-tuned during the training of the student [34]. Choi et al. [18] generated
a single-stage-learning knowledge distillation algorithm for brain tumor segmentation.
In this case, both models are trained simultaneously using a single-stage knowledge
distillation algorithm.

2.3. Deployment Issues

Deep learning (DL) recently provided promising results in medical imaging segmen-
tation [35,36]. Nevertheless, the deployment of the available models poses a substantial
challenge, mainly related to their computational footprint. In fact, most DL-enabled stud-
ies are highly demanding in terms of both energetical and computational resources and
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such complexities make them very difficult to deploy, especially in tightly controlled
clinical scenarios [37].

Moreover, memory constraints in deep learning accelerator cards have often limited
training on large 2D and 3D images due to the size of the activation maps held for the
backward pass during gradient descent [38]. Two methods are commonly used to manage
these memory limitations: the downsampling of images to a lower resolution and/or the
breaking of images into smaller tiles [39,40]. Tiling is often applied in the case of large
images to compensate the memory limitations of the hardware [41]. In particular, fully
convolutional networks can be taught to be translation-invariant and are a natural fit for
tiling methods as they can be trained on images of one size and perform inference on images
of a larger size by splitting them into smaller sections and thus performing on the smaller
tiles [42]. Nevertheless, tiling methods are used primarily to limit the impact of insufficient
memory but they usually do not improve the predictive power of the system [38].

The process of quantization is essential to reduce the memory burden during the time
of inference [37]. After the process of quantization, a high precision model is reduced
to a lower-bit-resolution model (low-precision floating-point or integer quantization are
common choices), thus reducing the size of the model and exploiting SIMD or MIMD
computations to make inference faster [43].

In the literature, some models of quantization have been created to reduce compu-
tational requirements while keeping the segmentation performance stable, like the one
by Thakur et al. [37]. In this light, both quantization-aware training and post-training
optimizations present themselves as promising approaches for enabling the execution of
advanced DL systems on plain commercial-grade GPUs. Therefore, they contribute to the
possible spread of DL-based segmenting applications in clinical environments despite the
frequent lack of advanced technological support.

Certainly, an increased access to memory remains essential to make a further step in
this direction [43]. This should include both improvements in hardware and computing
techniques, such as model parallelism [44] and data parallelism [45].

2.4. Performance Evaluation

AI segmentation performance is gauged against a reference known as the ground-
truth, which, in clinical contexts, is often established via manual segmentation by one or
more professional radiologists. Various studies have highlighted the subjective nature of
reference standards based on radiologists’ assessments, noting that model performance can
fluctuate when trained on different ground-truths [46].

Due to the intrinsic nature of the medical segmentation task, it is hard to consider dif-
ferent ground-truth strategies other than the manually performed labeling. For such reason,
common measuring approaches leverage human error subjectivity mitigation trough the
averaging of multiple manual segmentations. Annotation averaging is usually performed
through tools such as STAPLE, which is based on expectation–maximization and proba-
bilistically corrects noise elements such as outliers or false positives. Usually, this approach
is similarly performed for the AI model, exploiting what is known as cross-validation.

Leveraging multiple trained models to aggregate inferences through STAPLE enhances
the robustness of AI predictions. Figure 2 shows that STAPLE was able to correct a misclas-
sification case of the resection cavity. Metrics like the Dice Score and Hausdorff distance
percentiles are then used to assess the AI model’s true capabilities comprehensively.

Nonetheless, while the significance of human annotations has been widely recognized,
the actual process of annotation has received less scrutiny. For instance, Zając et al. [47]
highlighted the inherent limitations present in the creation of human-labeled annotations
for medical datasets. Sylolypavan et al. [48] also discussed how inherent biases, judgments,
and errors from experts could influence AI-driven decision-making in clinical settings.

With the goal of trying to overcome these limitations, some proposals to shift from
supervised segmentation tasks to unsupervised ones in the medical environment have
been presented. Aganj et al. [49] suggested a whole segmentation approach based on the
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local center of mass by grouping pixels iteratively in 3D MRIs, which achieved interesting
results. Instead, Kiyasseh et al. [50] tackled the problem from an even wider perspective,
proposing a novel framework for evaluating clinical AI systems in the absence of ground-
truth annotations theoretically capable of identifying unreliable predictions and of assessing
algorithmic biases. A recent study from Yale University introduced a whole framework
for unsupervised segmentation [51], which exploits image-specific embedding maps and
hierarchical dynamic partitioning at different levels of granularity. These demonstrate an
improvement ranging from 10% to 200% on Dice coefficient and Hausdorff distance with
respect to previous unsupervised proposals.
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Even though the performances achieved do not reach the results from supervised
training, there is an undeniable surge in proposals targeting the principal challenges of data
labeling in recent years. This trend is paving the way for novel approaches in AI-based
model design, specifically tailored for clinical application.

3. Application to a Real-Word Scenario
3.1. Limited Number of Patients

One of the major limitations in the successful translation of AI algorithms into com-
mon practice is the limited number of patients included in each study, with a mean of
148.6 patients for each study and a median of 60.5 [52]. Moreover, clinical translation has
been significantly hampered due to limited available annotated datasets and decreased
performance of algorithms on geographically distinct validation datasets [53,54]. This issue
remains in an essential step to obtain an effective training of the algorithm and to lower the
risk of overfitting [52].

Paradoxically, the application of complex and sophisticated DL algorithms for segmen-
tation underperforms older ML methods when small datasets are used (n ≤ 15 patients) [55].

As a first step, the creation of single-center datasets is more suitable to the clinical
imaging protocols of the hospital and the patient cohort on site [52]. Nevertheless, the most
appealing perspectives are data sharing agreements, the development of image databank
consortiums (MIDRC, TCIA, BraTS), and federated learning [56,57].

Since 2012, the Brain Tumor Segmentation (BraTS) challenge has implemented and
increased the role of ML in glioma MRI evaluation. The focus has been centered on the
evaluation of state-of-the art methods for tumor segmentation, the classification of the
lesion and, more recently, the prediction of prognosis [58,59].

Additionally, some informatic tools can be applied to limit the impact of data scarcity
on the algorithm performance. Among these tools, the application of transfer learning (TL)
has been previously explored and applied [46]. TL derives from the cognitive conception
that humans can solve similar tasks by exploiting previously learned knowledge, with such
knowledge being therefore transferred across similar tasks to improve performances on a
new one. Current transfer learning techniques in medical imaging implement knowledge
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transfer from natural imaging. Overall, two main paths to apply transfer learning have
historically been delineated: feature extractor and fine-tuning. The main difference lies in
the fact that the first freezes the convolutional layers whereas the latter updates parameters
during model fitting. Nonetheless, even if some progress is achieved, the knowledge
transferred between the two areas can either be insufficient for achieving promising results
in the medical task or make the transfer process quite unpredictable [60]. A recent study by
Bianconi et al. [46] applied transfer learning from the preoperative brain tumor segmen-
tation task to postoperative segmentation by fine-tuning the model, showing interesting
results and promising multi-site generalization leveraging their structural closeness in the
knowledge domain.

3.2. Data Quality

A significant obstacle to the efficient growth of AI application in clinical practice is
data quality. AI models require large amounts of high-quality images to obtain reliable
results, whereas medical data frequently present suboptimal qualities for this task [61].
In fact, suboptimal quality of data is very common in clinical practice, including non-
volumetric scans, missing sequences, and artifacts [62]. Low quality may negatively impact
the performance because real inter-image variability results are hardly distinguishable
from artifacts. In Figure 3, the non-volumetric image negatively affected the result of the
segmentation from a DL-based algorithm [47].
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Thus, problems such as bias, improper curation, and low reliability could be in-
troduced [63]. Bias might occur when the AI models are trained on data that are not
representative of the target patient population. In particular, DL algorithms are often
trained on cured and standardized datasets that do not represent clinical data heterogeneity
and quality. Although this selection bias makes the training process easier, it makes the
results not as easily transferable to real-world clinical practice [61].

Idealistically, the elimination of non-volumetric scans and low-quality imaging from
clinical practice would have the greatest impact for the future clinical application of AI
technologies. Nevertheless, at present, it is essential to train the models to perform ad-
equately despite the heterogeneity and the complexity of the cases. Recent efforts from
BraTS are aimed at including imaging acquired with lower technologies, such as MRIs
from Sub-Saharan Africa [64]. This choice pushes the efforts towards advanced image
preprocessing to enhance the resolution and other tools able to support the most accurate
segmentation, even in complex scenarios [65].
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3.3. Data Selection

The results obtained from most of the algorithms are not easily reproducible in the
real world context since they are frequently trained on curated and standardized datasets
that do not include suboptimal-quality images. Although this selection bias makes the
training process easier, it is not as easily transferable to real-world clinical practice. In fact,
suboptimal quality of data is very common in clinical practice, including non-volumetric
scans, missing sequences, and artifacts [66]. Moreover, the current literature often presents
strong criteria for the inclusion/exclusion of MRI scans in the final datasets. For example,
regarding postoperative brain tumor segmentation, criteria generally concern the exclusive
inclusion of newly diagnosed GBM, the availability of all imaging modalities, or the defined
presence of the resection cavity on visual inspection. An additional selection bias for studies
concerning DL methods for the segmentation of glioma MRIs concerns the diffused use
of publicly available benchmarks, such as BraTS and TCIA databases for the training
phase [52]. On the one hand, their use has a positive role in the development of DL systems,
but there is a substantial risk of overfitting. This could explain the high accuracy and
reproducibility obtained by different reported algorithms [52].

In a recent study, a DL algorithm was trained on an MRI database that is representative
of the real-world scenario, thus including heterogeneous and incomplete data [46]. In
this study, inclusion criteria were not restrictive concerning the quality of the available
data to avoid selection bias. So, low-quality images (e.g., non-volumetric imaging) and
incomplete cases (with missing sequences) were also included. Notably, there is not a
benefit in performance from incorporating non-volumetric imaging since its inclusion in
the dataset creates a difficult scenario for the algorithm to be correctly classified. Indeed, the
benefits resulting from the incorporation of these data are related to clinical applicability
of the algorithm. Moreover, an increased heterogeneity of data would derive from a
multi-institutional cooperation to create a real clinical database. In fact, having images
acquired with different protocols, resolution, and contrast (1.5 T or 3 T) would make the
learning process more complex but would probably result in increased adaptability of the
algorithm to different clinical scenarios. It is necessary to point out that the positive role of
heterogeneity of data for the training phase depend on the final purpose of the algorithm.
In case the application concerns a specific scenario with defined features required for the
dataset, heterogeneity may not have a positive impact.

Concerning machine learning algorithms which can identify gliomas in datasets contain-
ing non-glioma images, some studies have recently been performed in this regard but the
algorithms should be further developed to allow for integration into clinical workflow [67].

3.4. Focus on Preoperative Scenario

Notably, most algorithms in the current literature are based on preoperative tumor
imaging, whereas most clinical imaging techniques for brain tumors are used after treat-
ment to assess response or to monitor progression [52]. Limitations in postoperative
MRI evaluation are partly due to artifacts, caused by blood and air in the resection cav-
ity (RC), and logistical issues in collecting data regularly from the same patient during
follow-up [68,69]. Particularly, the RC is frequently a source of artifacts in the MRI because
of blood residuals and air bubbles [58,70]. In addition to this, brain anatomy may be
partly altered because of the surgical act, the post-surgical edema, and the tumor itself [70].
These problems lower the accuracy of available algorithms in obtaining a postoperative
evaluation of MRI. Figure 4 shows an example of the misclassification of postoperative
MRI obtained by a reliable DL tool for MRI pre- and postoperative segmentation [46].

Moreover, postoperative images have different acquisition times given the time-course
of the disease and the treatment schedule. This means that the postoperative MRI database
contains images from different points in time: immediate postoperative, before and after
adjuvant treatment, and regular follow-up. Recently, some studies reported good accuracy
in postoperative segmentation of MRI, though it is still far from the level of accuracy
achieved in preoperative evaluation [66,71]. Moreover, the absence of a wide dataset
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like BraTS requires researchers to deploy their model on small private collections, hence
reducing comparability and generalizability.
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Figure 4. DL-based postoperative segmentation (STAPLE seg.) still obtains non-accurate results in
some cases, as the one presented above [46]. In this example, the DL result completely diverged from
the manual segmentation.

The future perspective includes the creation of multi-institutional databases including
postoperative MRIs. Still, due to the complex nature of such a task, some studies have
tried to mimic postoperative MRIs by exploiting generative adversarial network (GAN)
capabilities in synthesizing fake-yet-plausible MRIs starting from real scans. A recent
study from the State Key Laboratory of Oncology in South China [72] proposed CoCosNet,
a neural network showing interesting results in artificially synthesizing postoperative
weighted-T1 MRIs from the corresponding preoperative ones and postoperative CTs.

Considering the data-intensive nature of deep DL solutions, the predominant recom-
mendation continues to be the collection of multimodality and multi-institutional MRI data.
This strategy aims to normalize and synchronize the postoperative scenario in a manner
analogous to how the BraTS challenge has standardized the preoperative phase.

4. Molecular Subtyping

Many recent research articles have reported remarkable success in the use of artificial
intelligence to predict the status of 1p19q codeletion, IDH1 mutation, and MGMT promoters.
These molecular features acquired an increasing interest as they are related to the prognosis
and to the identification of the best treatment options for each singular patient [73]. Also,
the BraTS challenge recently gave more relevance to these features. In fact, the second
task of BraTS 2021 consisted of the evaluation of methods to predict the MGMT promoter
methylation status.

4.1. IDH Mutation

Having IDH1 or IDH2 mutations is associated with improved survival [74,75] as these
gliomas respond better to temozolomide therapy [76]. IDH-mutant gliomas demonstrate
lower regional cerebral blood volume and flow on MR perfusion, higher apparent diffu-
sion coefficients on diffusion MR imaging, and improved survival [77,78]. In a study by
Beiko et al. [79], the resection of non-enhancing gliomas correlated with improvements
in PFS in HGG with mutated IDH gliomas as opposed to IDH wild-type tumors. Thus,
the knowledge of IDH mutation status before surgical resection may be important. The
features that mattered most to predict IDH mutation status include absent or minimal
enhancement, central areas with low T1 and FLAIR signal and well-defined tumor margins
according to Liang et al. [80]. Their study was performed using the publicly available BraTS
2017 database and finally achieved 84.6% accuracy [77]. More recently, the studies from
Chang et al. [81] obtained accuracy levels higher than 90% for the prediction.

4.2. P/19q Codeletion

Indeed, there are a paucity of manuscripts using CNNs to predict 1p19q codeletion.
In one of the most successful studies, Chang et al. [81] succeeded in predicting 1p19q
codeletion status with an accuracy of 92%. They employed the component analysis to
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define the features that were mostly related to the codeletion. According to their analysis,
the 1p19q codeletion status is related to frontal lobe location, ill-defined tumor borders,
and larger amounts of contrast.

4.3. MGMT Methylation

The hypermethylation of the MGMT promoter is strongly associated with better re-
sponse to temozolomide chemotherapy and improved prognosis [82,83]. Nevertheless, the
prediction of MGMT mutation status from preoperative MRI using AI has achieved modest
results by now [84]. More recent studies from Korfiatis et al. [85] and Chang et al. [86]
obtained accuracies higher than 80% for the prediction of MGMT status. Again, in this
paper, the use of principal component analysis for dimensionality reduction determined
that the most important imaging features for the prediction of MGMT status included
heterogeneous and nodular enhancement, the presence of eccentric cysts, more mass-like
T2/FLAIR signal with cortical involvement, and frontal/temporal lobe locations [86]. These
findings confirm the results from prior MR genomics studies [85,87].

In summary, molecular features such as IDH mutation, 1p19q codeletion, and MGMT
promoter status are successfully predicted by AI applied to MRI. Moreover, algorithms
obtaining accuracies of prediction exceeding 80% to 90% may probably already be superior
to human-level performance. This expanding field could have a further impulse and
improvement in performance with new coder architecture, large-scale data sharing, and
integration of clinical data.

5. Ethical Concerns
5.1. Lack of Standard Guidelines for Clinical Studies

The advent of deep neural networks has engendered many applications in medical
imaging [88]. Currently, the field of radiomics lacks standardized evaluation concerning
both scientific integrity and clinical relevance of the published radiomics investigations [89].
Rigorous evaluation criteria and reporting guidelines need to soon be established and
rigorously respected to obtain clinical applicability [90].

To guarantee a high standard of research and to obtain reproducible results, radiomic
investigations should respect the well-defined criteria of reliability and reproducibility
concerning both the presented results and the applied methods. Numerous checklists have
recently been proposed and came into widespread use [52]. Those checklists include the
Standards for Reporting of Diagnostic Accuracy Studies (STARD) [91,92], Strengthening
the Reporting of Observational studies in Epidemiology (STROBE) [93], and Consolidated
Standards of Reporting Trials (CONSORT) [94,95]. The most recent STARD list was released
in 2015 and included 30 items identified by an international group of methodologists,
researchers, and editors. Those items were identified so that, when they reported, readers
can judge the potential bias in the study, appraise the applicability of the study findings and
the validity of the conclusions. Indeed, the Checklist for AI in Medical Imaging (CLAIM)
is modeled after the STARD guideline, but it has been extended to address applications
in classification, image reconstruction, text analysis, and workflow optimization. These
elements are considered as “best practice” elements that should guide authors in presenting
their research [96].

5.2. Lack of Transparency

Interpretability of an AI program is defined as the human ability of understanding
the link between the initial features extracted by the program and the final prediction
obtained. As DL structures are typically complex and composed of numerous hidden
layers, this link is difficult to find. This concept is commonly referred to as the “black-
box problem” [97]. Nevertheless, the lack of transparency regarding AI techniques is a
significant concern. Any medical care system needs to be understandable and explicable
for physicians, administrators, and patients. It should ideally be able to fully explain the
reasoning behind a decision to all parties concerned [61].
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Interpretability methods are approaches designed to explicitly enhance the inter-
pretability of a machine learning algorithm, despite its complexity [97].

Interpretability techniques like guided backpropagation, gradient-weighted class acti-
vation mapping (Grad-CAM) [98], and regression concept vectors [99] are being applied to
medical images, illustrating the burgeoning interest in Explainable AI (XAI) and Neuro-
symbolic AI (NeSymAI). These fields are gaining traction as they provide crucial insights
into the reasoning behind AI models, particularly in the medical realm, making the in-
terpretation of predictions vital [100,101]. The repertoire of interpretability methods is
expanding to keep pace with the complexity of radiology practices, which increasingly
integrate different types of patient data, such as imaging, molecular pathways, and clinical
scores Hence, interpretability approaches capable of processing this diverse information
are seen as highly promising [102].

Also, interdisciplinary collaboration may limit the lack of transparency and, thus,
support the acceptance of AI in clinical practice [61]. Surgeons, radiologists, data scientists,
AI experts, and ethicists must collaborate to create robust guidelines and standards for
the ethical deployment of AI tools in patient care. Moreover, the relationship with the
patient plays an essential role in this process of acceptance [60]. In fact, the patients deserve
to understand how AI influences their medical care and outcomes. For this reason, a
careful and complete informed consent should not be underestimated for the perspective
introduction of AI into clinical practice.

5.3. Privacy and Data Protection

Until the past decade, medical imaging included 2D images. However, advances in
imaging methods have made high-resolution 3D imaging a reality through smoothing, in-
terpolation, and super-resolution methods, enabling accurate volume rendering [103]. With
advances in facial recognition, it is not difficult to match images generated from CT or MRI
scans to photographs of an individual. For this reason, in medical imaging research, it is
standard practice to modify images using defacing or skull-stripping algorithms to remove
facial features [61]. Additionally, this process reduces inter-patient physiological variability,
and the pathological aspects can emerge more relevantly. Unfortunately, such modifications
can negatively affect the generalizability of machine learning models developed using such
data [103]. Anyway, patient privacy is a major health system concern requiring multiple
legal quandaries to be addressed prior to uploading and diffusing data [37].

Moreover, when considering advanced healthcare imaging, it is difficult to obtain
a complete anonymization, despite the efforts in data protection. The basic task seems
straightforward: selectively remove or codify identifiers in the metadata header content of
images. Although nearly all radiologic data use a universal format, DICOM, there are a
growing number of exceptions, making it more difficult to standardize processes.

A balanced solution likely involves making information about AI systems and data
collection understandable for patients, creating relationships of trust between institutions
and their patients. At the same time, the aim should be to obtain more effective deiden-
tification models that reduce identifiability as complete anonymization does not seem
possibly obtainable in the near future. Current best practices for deidentification in radi-
ology include avoiding the placement of identifiable data in proprietary DICOM fields,
optimizing protocols of data management, using validated and tested protocols for dei-
dentification, and investigating safer means of data sharing, such as containerization and
blockchain [61]. There are calls for the formation of advisory committees to periodically
review the protocols concerning privacy issues and identifiability in imaging [103]. As an
example, skull-stripping—also known as brain extraction consisting of the act of removing
non-brain signal from MRI data—is usually performed not only to remove redundant
information, but especially to avoid facial reconstruction and identification.
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6. Conclusions

Deep learning has provided reliable results for GBM assessment concerning MRI
analysis and segmentation, including molecular, prognostic, and diagnostic information.
We extensively reviewed the issues currently limiting its routine clinical application. Nev-
ertheless, these limitations could be prospectively addressed in the near future. The most
important matters concern the introduction and development of new technical advance-
ments, an increased attention to data collection, and the careful addressing of healthcare
ethical issues.
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