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Abstract: Uveal melanoma (UM) is the most common intraocular malignancy in adults. Recent
advances highlight the role of tumor-derived extracellular vesicles (TEV) and circulating hybrid
cells (CHC) in UM tumorigenesis. Bridged with liquid biopsies, a novel technology that has shown
incredible performance in detecting cancer cells or products derived from tumors in bodily fluids, it
can significantly impact disease management and outcome. The aim of this comprehensive literature
review is to provide a summary of current knowledge and ongoing advances in posterior UM
pathophysiology, diagnosis, and treatment. The first section of the manuscript discusses the complex
and intricate role of TEVs and CHCs. The second part of this review delves into the epidemiology,
etiology and risk factors, clinical presentation, and prognosis of UM. Third, current diagnostic
methods, ensued by novel diagnostic tools for the early detection of UM, such as liquid biopsies
and artificial intelligence-based technologies, are of paramount importance in this review. The
fundamental principles, limits, and challenges associated with these diagnostic tools, as well as their
potential as a tracker for disease progression, are discussed. Finally, a summary of current treatment
modalities is provided, followed by an overview of ongoing preclinical and clinical research studies
to provide further insights on potential biomolecular pathway alterations and therapeutic targets for
the management of UM. This review is thus an important resource for all healthcare professionals,
clinicians, and researchers working in the field of ocular oncology.

Keywords: uveal melanoma; circulating hybrid cells; liquid biopsies; artificial intelligence

1. Introduction

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults,
with an incidence of nearly 5 cases per million individuals in the United States [1,2].
Mortality from metastatic UM was shown to be of 30% at 5 years in a Swedish cohort [3].
Furthermore, 40% fatality rates in UM were shown in patients 10 to 15 years following
primary diagnosis [4–6]. Colorectal and liver metastasis are the leading causes of death
in UM patients [3]. Furthermore, UM comes with a psychosocial burden on affected
patients, with a great impact on their quality of life [7,8]. Although numerous advances
in the treatment of UM have been made over the past few years, such as the development
of tebentafusp—an immune system regulator—the prognosis of UM remains poor [9–11].
Current beliefs are in favor of the presence of micrometastatic disease at the time of
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diagnosis, as a result of the hematogenous spread of cancer cells. Delays in diagnosis
and treatment are suggested to be major contributors to metastatic disease as well [12].
Therefore, there is an urgent need to identify novel therapeutic targets in combination with
highly sensitive and specific diagnostic tools.

UM originates from the pigmented melanocytes of the uveal tissues, which consist of
the iris, ciliary body, and choroid [13]. Frequent mutations in the BAP1 (i.e., BRCA-1 associ-
ated protein 1), EIF1AX (i.e., eukaryotic translation initiation factor 1A X-linked), GNA11
(i.e., guanosine nucleotide-binding protein alpha-11), GNAQ (i.e., guanosine nucleotide-
binding protein Q), and SF3B1 (i.e., splicing factor 3b subunit 1) genes were shown to occur
in the majority of UM cases, as well as contribute on different levels to the metastatic
risk [14,15]. Mutations in the GNAQ and GNA11 signaling pathways are known to
drive neoplastic growth and proliferation through RAS and PI3K molecular signaling
networks [16,17]. Furthermore, recent studies have underscored the importance of cir-
culating neoplastic-immune hybrid cells (CHCs) in the blood—corresponding to dual
nature hybrid cells (DNCs) in the primary tumor—and tumor-derived extracellular vesicles
(TEVs) in the pathogenesis of metastatic UM [18–23]. CHCs, generated by cell fusion, are
neoplastic cells that express combined neoplastic and immune cell features, which makes
their identification possible through co-expression of tumor and leukocyte cell-surface
markers [20,21,24]. Their presence in the bloodstream of affected patients can be used to
assess metastatic UM risk. The emergence of novel diagnostic modalities, such as liquid
biopsies, which consist of obtaining from the peripheral blood circulating tumor cells and
other derived molecules, has opened doors to better patient care and disease outcome [25].
Herein, we will review the pathogenesis of UM, with an emphasis on novel molecular
targets for diagnosis and treatment, as well as its clinical presentation, prognostic factors,
and current diagnostic modalities. The contribution of liquid biopsies within the evolving
field of artificial intelligence will further be discussed. Overall, this review will bridge the
fundamental concepts underlying the tumorigenesis of UM with its clinical presentation
and management, hence being a valuable tool for researchers and clinicians within the
field.

2. Pathophysiology

UM arises from oncogenic mutations within the melanocytes of the iris (2% of cases),
ciliary body (7% of cases), or choroid (90% of cases)—all representing distinct uveal tissues
(Figure 1) [26]. The genomic instability ensuing this phenomenon promotes tumor growth
and proliferation and subsequent hematogenous spread. In the ensuing section, risk factors
of UM, the genetic landscape, an overview of current pathophysiology of UM, and the role
of TEVs and CHCs will be discussed.

2.1. Risk Factors

Unlike skin melanoma, UM is not directly associated with sun exposure. Additional
common risk factors for UM are the presence of an atypical cutaneous nevi, occupational
exposure to irritants (e.g., cooking, welding), fair skin color, light eye color, iris nevi, nevus
of Ota, periorbital dermis, and cutaneous freckles [27,28].
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Figure 1. Schematic representation of uveal melanoma locations. Uveal melanomas arise mainly 
from the choroid (90%), followed by the ciliary body (7%), and finally from the iris (2%). The figure 
was created with BioRender.com. 
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2.2. Genetic Landscape

The genetic landscape of UM has been thoroughly studied over the past years. Onco-
genic mutations of GNAQ and GNA11 were shown to be involved in the vast majority of
UM cases [29,30]. These genes are involved in the transcription of the alpha subunit of
heterotrimeric proteins (e.g., G proteins, Gq, and G11) [15]. Dysregulations in G-protein-
mediated signaling pathways alter biomolecular networks involved in cell metabolism,
cell proliferation, and tumor growth, which are mainly under the regulation of MAPK,
PI3K, and mTOR signaling [31]. Inactivating somatic mutations of the BAP1 gene were also
shown to be involved in the majority of metastatic tumor cells and were shown to be the
second leading oncogenic mutation following the GNAQ/GNA11 genes [32,33]. BAP1—a
member of the deubiquitinase superfamily of enzymes—regulates maturation and turnover
of ubiquitin. Defects in BAP1 disrupt DNA replication, DNA repair, calcium homeosta-
sis, cell proliferation and differentiation, and cell metabolism [34]. Finally, EIF1AX and
SF3B, other commonly found oncogenic mutations, account for less than 25% of known
cases [35,36]. A recent comprehensive literature review has thoroughly discussed the ge-
netic and epigenetic features of UM, which we suggest as a reference for further details [37],
in conjunction with additional high-quality reviews [17,38–40].

2.3. Current Knowledge on Uveal Melanoma Tumorigenesis

The majority (90%) of UMs arise from the choroid of the uveal tract [41]. The eye
is in fact an immune privileged site; ocular immune privilege is defined by the presence
of local and systemic mechanisms to limit local inflammation [42]. Dysregulations of
the immune system are directly associated with the development of malignancies. In
contrast to other solid tumors, where acute inflammation is known to induce cancer cell
death [43], the inflammatory cascade in UM favors tumorigenesis. The inflammatory
phenotype of UM, which is defined as a lymphocytic inflammatory process, is known to
be associated with a poor prognosis [44–48]. Lymphocytic infiltration is marked by an
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increase in lymphocytes, macrophages, and HLA class I and II expression. The nuclear
factor-κB (NFκB) is a known regulator of the innate and adaptative immune system, with
a significant role in inflammation homeostasis [49]. Activation of the NFκB pathway
was found to occur in primary and metastatic UM, subsequently upregulating UM cell
proliferation and inhibiting apoptosis [50]. Furthermore, it was shown that the metastatic
potential of UM cells was acquired through transendothelial migration [50]. It was recently
demonstrated that the oncogenic mutations activating Gαq/11 induced the activation of
the guanine nucleotide exchange factor, TRIO [51]. Numerous cytokines, chemokines, and
the role of tumor-associated macrophages were previously thoroughly covered by Amaro
et al. [52], which will not be covered again within this manuscript. However, the role of
the microenvironment, TEVs, and CHCs—novel concepts in the pathogenesis of UM—are
discussed within the ensuing section (Figure 2).
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Figure 2. Schematic representation of choroidal melanoma tumor microenvironment, tumor-derived
extracellular vesicles, and circulating hybrid cells on pathogenesis. Choroidal melanomas are charac-
terized by central angiogenesis and peripheral tumor cell growth. They secrete LAG-3, galectin-3,
and tumor-derived extracellular vesicles (TEVs). LAG-3 and galectin-3 inhibit T cell activation and
cancer cell apoptosis respectively. TEVs promote choroidal melanoma proliferation, migration, and
invasion. The figure was created with BioRender.com.

2.4. The Role of Tumor-Derived Extracellular Vesicles and Circulating Hybrid Cells: Novel
Advances

The tumor microenvironment (TME) possesses complex roles and is mainly involved
in cell communication and tumoral support. It encompasses various cellular and non-
cellular components, such as soluble mediators (e.g., cytokines, chemokines, and growth
factors), various stromal cells (e.g., endothelial cells, fibroblasts, and immune cells), and
biomolecular markers [53]. There exists a connected interplay between the tumoral cells
and the TME; as cancer cells influence the composition of the TME, the latter further
influences the growth, progression, and metastasis of cancer cells [54]. A recent study
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aiming to better characterize the TME of UM has shown that tumor cells grow with
a specific configuration: angiogenesis occurs in the central part of the tumor, whereas
immune cells are disturbed along the outer parts [55]. Secondly, a high expression of
lymphocyte activating gene-3 (LAG-3) and galectin-3 was found in the enucleated eyes of
patients with UM following immunohistochemistry [55]. LAG-3 is an immune checkpoint
regulator shown to be highly expressed on exhausted T cells in the TME’s [56]. It is
involved in inhibitory signal transmission to T cells, which subsequently renders these
cells non-functional [56]. It was shown that LAG-3 binds the T cell receptor (TCR)-CD3
complex on CD4+ and CD8+ T cells and further inhibits the interaction of the TCR-CD3
complex with Lck, a member of the Src kinase family, by lowering the local pH [57].
Similarly, galectin-3 is also involved in immunosuppression within the TME [58]. In human
bladder carcinoma cells, overexpression of galectin-3 was shown to inhibit TRAIL-induced
apoptosis through the upregulation in constitutive expression of Akt and subsequent
inhibition of BID cleavage [59].

A major constituent of the TME are TEVs, which are known to bridge the communica-
tion between tumor cells and their microenvironment. TEVs favor tumorigenesis through
the transfer of their material to neighboring cells [60]. They are cell-secreted vesicles that
encompass various bioactive substances, such as nucleic acids (e.g., DNA and RNA), lipids,
proteins, and metabolites [61]. Studies have shown that the concentration of UM-derived
EVs in the blood is comparable to that found in the aqueous humor and vitreous humor [62].
Therefore, given their abundance in peripheral blood and subsequent ease in obtaining
samples for testing, they have thus become an exciting avenue as a diagnostic tool. The
oncogenic potential of TEVs in metastatic disease has been proposed as a mechanism for
UM dissemination. Tsering et al. have shown that in vitro exposure of Fibro-BKO (i.e.,
BRCA1-deficient fibroblasts) cells to UM-derived EVs significantly increased tumor cell pro-
liferation, migration, and invasion [23]. Similar results were obtained in an in vivo model:
subcutaneous injection of Fibro-BKO cells exposed to UM-derived EVs in SOD/SCID mice
induced tumor growth [23]. Analysis of TEV components demonstrated that UM-derived
EVs encompassed proteins involved in cell–cell adhesion, leukocyte transendothelial migra-
tion, cell division and migration, cell signaling pathways (e.g., MAPK, vascular endothelial
growth factor receptor (VEGFR), and Wnt), and in metastatic niche formation (e.g., integrin
αV, GNAQ, and GNA11). In vitro UM-derived EV uptake in hepatocytes was further
shown to enhance the phosphorylation of MET, ERK, AKT, and STAT3 in a dose-dependent
manner [63]. The expressions of chaperone molecules (HSPB1), alpha-enolase (ENO1), and
chemo-attractants were also upregulated [23]. UM-derived EVs were shown to upregulate
the expression of interleukin (IL)-β, IL-8, and growth factors (i.e., fibroblast growth factor 1
(FGF1), VEGF, and tumor growth factor (TGF) β) [63]. Similarly, UM-derived EVs were
shown to induce hepatic remodeling through hepatic stellate cell activation—demonstrated
by an increase in their proliferation and metabolism—increased capillary-like networks
in endothelial cells, and hepatic fibrosis, which are considered hallmarks in hepatic pre-
metastatic niche formation [64,65]. Fibronectin 1 (FN1), a widely known marker involved
in pre-metastatic niche [66], was shown to be upregulated in hepatocytes with UM-derived
EV uptake [63].

CHCs are a novel tumor cell population found within the TME recently identified in
the blood of patients with UM [20]. They highly express the markers gp100 (a melanocytic
marker), HTR2b (a cell surface serotonin receptor), and CD45 (a leukocyte common anti-
gen) [18]. They result from the fusion of tumor cells with leucocytes and form the backbone
of tumor heterogeneity [21,67–71]. It was shown in other cancers that the fusion of tumor
cells with macrophages induces a hybrid that exhibits a mixed phenotype and differential
response to the TME [21]. To demonstrate the role of CHCs in tumor progression, Dietz
and colleagues harvested CHCs from a murine mammary tumor model, dissociated the
cells in vitro, and subsequently injected the single-cell suspension into the mammary fat
pad [20]. It was shown that the single-cell suspension generated from CHCs supported
neoplastic growth [20]. CHCs could be used as a novel tool to stratify prognostic risk, as
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they were shown to be present in the peripheral blood of all patients with stage 1 to stage 3
UMs [18]. Their relatively high prevalence, cost-effective quantification, and less invasive
sampling through liquid biopsies provide an exciting venue for research.

3. Epidemiology of Uveal Melanoma
3.1. Classification Systems

There are numerous classification schemes for UM, with the most used being the Amer-
ican Joint Committee on Cancer (AJCC) TNM system and the clinical classification of the
collaborative ocular melanoma study (COMS) [72–74]. However, additional classification
methods include systems based on genetic testing (i.e., The Cancer Genome Atlas (TCGA)
classification) [75,76], histopathological features (i.e., modified Callender’s classification
system) [77,78], and gene expression profile classification [79].

The AJCC TNM system for UM staging further encompasses prognostication [80,81].
The extent of the primary tumor (T) is determined based on the tumor’s largest basal
diameter, thickness, the presence of ciliary body involvement, and extraocular extension.
The N and M staging refers to regional lymph node involvement and the presence or not
of distant metastasis, with subsequent metastatic tumor dimension, respectively [80,81].
However, it is to be noted that UM dissemination mainly occurs through the hematogenous
route, given the absence of lymphatics within the eye. Extension to surrounding structures,
such as the conjunctiva, can allow for lymphatic dissemination [82].

3.2. Clinical Presentation

The clinical presentation of UM varies according to tumor size and location. In many
cases, UM detection and diagnosis is an incidental finding during routine ocular exams,
given that most patients are asymptomatic at presentation [83,84]. However, in the presence
of visual symptoms, UM can be missed by clinicians in up to 23% of cases [83]. The most
common visual symptoms reported by patients include blurry vision, photopsia, visual
field defects, floaters, and rarely, eye pain and metamorphopsia [84,85].

3.3. Prognostic Factors

Survival rate for UM depends on a variety of factors, ranging from clinical, molecular,
histopathological, and genetic characteristics (Table 1). Tumor location influences prognosis,
with tumors located within 1 mm of the optic nerve head (juxtapapillary) or having any
tumor portion located in the ciliary body being associated with a low survival rate [86,87].
Tumor location is also known to influence time of disease detection; iris melanomas are
typically diagnosed one to two decades earlier, which may contribute to lower metastasis
rates and greater prognosis [88–90]. Another important feature to consider during prognos-
tication is somatic mutations. Risk of UM metastasis has been shown to be linked to few
somatic mutations in the presence of chromosome 3 monosomy or partial monosomy [91].
Increased risk of metastasis was shown in tumors harboring 6p loss, 6q loss, 8p loss, and
8q gain, whereas the risk of metastasis was decreased in tumors with 6p gains [91].

Donald Gass was the first to identify certain clinical and multimodal imaging charac-
teristics of indeterminate nevi that could pose a risk to grow and undergo malignant trans-
formation [92]. Further studies delved into these characteristics in their landmark study
of indeterminate nevi [74,93]. More recently, Shields et al. have suggested a mnemonic
(i.e., To Find Small Ocular Melanoma-Using Helpful Hints Daily (TFSOM-UHHD)) to help
differentiate choroidal nevus from UM (Table 2) [94]. The presence of 3 or more factors is
most likely associated with UM.
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Table 1. Summary of prognostic factors of uveal melanoma based on phenotypic presentation,
molecular and genetic testing, and histopathological features a.

Survival Rate Low Medium High

Clinical

LBD > 16 mm
Thickness > 3 mm

Juxtapapillary
Ciliochoroidal

Extrascleral extension

LBD 6–16 mm
Thickness 1–3 mm

LBD < 6 mm
Thickness < 1 mm

Iris

Molecular b Loss of 6p, 6q, and 8p; 8q gain N/A 6p gain

Histopathological
Epithelioid-cell type,

infiltrating lymphocytes,
increased mitotic activity

Mixed-cell type Spindle-cell type

Genetic Class 2, PRAME mutation Class 1B Class 1A
a Abbreviations: LBD; large basal diameter, mm; millimetre, PRAME; PReferentially expressed Antigen in
Melanoma, N/A; not applicable. b Molecular associations occurring in chromosome 3 monosomy tumors.

Table 2. Summary of clinical and multimodal imaging characteristics of indeterminate nevi with risk
of malignant transformation.

Variable Clinical Feature Growth Correlation

T Thickness > 2 mm Positive

F Fluid (subretinal) Positive

S Symptoms Positive

O Orange pigment Positive

M Margin > 3 mm to disc Positive

UH Ultrasound hollow Positive

H Halo absent Positive

D Drusen absent Negative

4. Diagnosis
4.1. Ocular Findings

Posterior UMs typically present as an elevated choroidal mass on fundus examination,
with a varied degree of subretinal fluid and orange pigment (Figure 3). When the tumor
invades and penetrates Bruch’s membrane, the typical mushroom-shaped appearance can
be observed [95].

4.2. Optical Coherence Tomography

Optical coherence tomography (OCT) is a non-invasive, radiation-free imaging modal-
ity that provides high spatial resolution and allows detailed imaging of the retina by
creating a cross-sectional map of the retinal layers [96]. On OCT, posterior UM can be asso-
ciated with photoreceptor or ellipsoid zone (EZ) loss, RPE loss or hyperplasia, intraretinal
or subretinal fluid, retinoschisis, retinal thinning, outer plexiform layer (OPL) splitting,
bacillary layer detachment, or subretinal hyperreflective material [97].
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4.3. Ultrasonography

Ocular ultrasonography is the most useful ancillary test to diagnose, differentiate,
and follow the progression of UM (Figure 4). Its two modalities, A-scan (amplitude) and
B-scan (brightness), offer useful information and allow for the measurement of internal
reflectivity, largest basal diameter (LBD), and apical height/thickness. On a standardized
A-scan, the tumor shows low-to-medium internal reflectivity in a decrescendo fashion,
with internal vascularity seen as fast movement of internal spikes. On a B-scan, the tumor
is usually dome shaped, or if it has broken through Bruch’s membrane, it appears as a
mushroom-shaped tumor with an adjacent localized exudative retinal detachment. Other
features include acoustic hollowness and choroidal excavation [98].
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4.4. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-invasive technology that generates tridi-
mensional images. MRI can be a useful tool for the diagnosis and monitoring of choroidal
UM [99]. Key features of choroidal UM that can be detected on MRI include evidence of a
nodular-like lesion, which can be associated with retinal detachment [100]. Posterior UM
appears hyperintense on T1-weighted images and hypointense on T2-weighted images,
with additional diffusion restriction features [100].
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4.5. Histopathology

In 1931, Callender established the histopathological classification for UM, dividing
it into five categories according to cell type: spindle A, spindle B, mixed, fascicular, and
epithelioid [101]. The modified Callender classification grouped these categories into three,
consisting of spindle-cell melanoma (>90% spindle cells), mixed-cell melanoma (mixture of
spindle and epithelioid cells), and epithelioid-cell melanoma (>90% epithelioid cells) [77].
Cell type has one of the highest associations with survival, along with the genetic profile.
Spindle-cell melanomas have the greatest chance of survival past 5 years, whereas mostly
epithelioid-cell melanomas have a low survival rate and are characterized by a greater-sized
nuclei and an absence of overall cohesiveness [77,102]. Other histopathological features
that were shown to be associated with poor outcome are size, the presence of vascular loops,
mitotic figures, extraocular involvement, and lymphocytic infiltration (Figure 5) [103,104].
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Figure 5. Histopathological features of uveal melanoma. Panel (A) depicts the histopathological
differences of spindle cells (red star) and epithelioid cells (black star). Epithelioid cells are associated
with a poor prognosis. Additional histopathological features that were shown to be associated with a
poor prognosis are the presence of vascular loops (red arrowhead) (B), mitotic figures (red arrowhead)
(C), extraocular involvement (red arrowhead) (D), and lymphocytic infiltration (red arrowhead) (E).

5. Liquid Biopsies as a Novel Diagnostic Tool

Conventional methods of biopsies for UM, such as fine needle aspiration biopsies,
have posed significant challenges. Given the intraocular and subretinal localization of
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the tumor, there is an inherent risk of rhegmatogenous retinal detachments and persistent
vitreous hemorrhage [105]. Furthermore, direct biopsy of the tumor may result in extra-
ocular extension or seeding through the needle [106]. As with all operations in the eye
tissue, biopsies of UMs are also associated with endophthalmitis and have even been shown
to be associated with worsening visual acuity in 13% of patients [107–110]. Furthermore,
the prognostic yield of these biopsies is often limited, especially if the tumor is small or
posteriorly located [109].

Given the inherent risks and low efficacy of standard biopsies, significant interest
was dedicated to liquid biopsies. The majority of the focus in the field of liquid biopsies
has been towards blood and serum-based analysis; however, urine, cerebrospinal fluid,
ascites, saliva, and even aqueous and vitreous humor have also garnered attention [25].
Liquid-based biopsies are simple to conduct and pose a lower risk than conventional biopsy
methods of the primary tumor [111]. Furthermore, biopsies of the primary tumor may fail
to recognize secondary or metastatic disease or capture the heterogeneous nature of the
tumor [25]. Tumor markers identified in liquid biopsies include CTCs, DNA, RNA, and
proteins [25,111] (Table 3).

Table 3. Summary of uveal melanoma markers used in liquid biopsy.

Marker Type Findings References

Circulating tumor cells (CTCs)
Used for disease prognostication

Increased concentrations are associated with worse prognosis
Used for discrimination between uveal melanoma and nevi

[112–116]

Circulating tumor DNA (ctDNA)

Monitoring predicts disease response and metastatic uveal
melanoma progression

Positively correlates with metastatic hepatic disease
Association with CTCs and progression-free survival

[117,118]

Circulating micro-RNA (miRNA) Increased plasma miRNA-618 and decreased vitreous miRNA
Differential regulation in metastatic versus non-metastatic disease [119,120]

Melanoma-specific gp100 Upregulated [121,122]

Cathepsin Upregulated [121,122]

Heat shock protein 27 Differentiate between metastatic and non-metastatic UM post
treatment [123]

Osteopontin Differentiate between metastatic and non-metastatic UM post
treatment [123]

S-100 protein Upregulated in both the vitreous and aqueous humor [124]

CTCs have been identified in multiple malignant conditions such as breast cancer,
prostate cancer, and UM, which have provided clinicians with pertinent prognostic data
on disease metastasis [112,113]. It is believed that these CTCs may represent the seed-
ing of tumors before metastatic disease [125], as described in previous sections. Since
CTCs in UM patients are rare, isolation methods are required [111]. The most common
way to isolate and capture CTCs is through immunomagnetic and filtration-based enrich-
ment. Immunomagnetic enrichment takes advantage of tumor protein expression, whereas
filtration-based enrichment relies on size and compressibility differences between CTCs
and blood cells [126,127]. There is a statistically significant difference in UM basal diame-
ter, tumor height, progression-free survival, and overall survival between patients with
more than 10 CTCs/10 mL of blood compared to those with lower CTC concentrations
in non-metastatic patients [114]. Immunomagnetic isolation has become the preferred
methodology of isolating CTCs with multiple different antibody-bound magnetic particles
available on the market [111]. Although variations exist among the different antibodies
available, the one consistency is that increasing CTC counts are associated with worsening
prognosis [111]. There is also evidence that suggests that copy number variants in the
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primary tumor and CTCs have similar chromosomal aberrations (i.e., somatic chromoso-
mal copy number alterations (SCNAs)) [115]. Comparative analysis of SCNAs in CTCs
isolated from the peripheral blood of a patient with metastatic UM or in peripheral blood
mononuclear cells (PBMCs) demonstrated the importance of tumor-associated chromo-
somal aberrations; primary UM tumors and CTCs had showcased various chromosomal
gains and losses, whereas PBMC lacked SNACs [115]. Therefore, evaluation of these chro-
mosomal aberrations in primary tumors and CTCs can significantly contribute to disease
prognostication. Importantly, distinguishing between UM and nevi has been a challenging
task, and as demonstrated by Bande et al., 50% of patients with UM had more than 1 CTC
compared to none in patients with nevi [121]. Mazzini et al. found that more than half
of patients with UM have CTCs, whereas patients with choroidal nevi had none [114].
Callejo et al. found that in 30 patients diagnosed with UM, all had detectable CTCs [113].
However, it should be noted that the half-life of CTCs is low, with it being between 1 and
2.5 h [128,129]. With improvements in CTC isolation and standard genomic techniques such
as shallow whole genome sequencing (sWGS) and fluorescence in situ hybridization (FISH),
it is likely that CTC genomics will play a role in prognosticating UMs [115,116]. It should
be noted that the prevalence of CTCs in UM patients in the literature may vary depending
on the methodology by which CTCs are isolated. These variations can include, but are not
limited to, sampling from arterial or venous blood and the antibodies employed [25].

Circulating tumor DNA (ctDNA) is DNA that has either been actively secreted from a
tumor cell or released through cell necrosis or apoptosis [111,130]. Pathological markers
in the primary tumor have been identified in the ctDNA of patients with prostate cancer,
as well as other malignancies [111,131]. Similar findings have been demonstrated in UM,
where ctDNA monitoring predicted disease response and metastatic UM progression,
and the use of next generation sequencing of ctDNA helped to predict the response to
protein kinase inhibitor therapy [117]. In addition, ctDNA in UM has been used to predict
treatment response to checkpoint inhibitors [118] and in animal models, ctDNA from UM
preceded clinical detection of the disease [132]. Bidard et al. demonstrated that 22 out
of 26 patients with UM had ctDNA and that higher ctDNA levels were correlated with
hepatic miliary metastases and tumor volume [133]. Interestingly, it was also demonstrated
that ctDNA was correlated with CTCs and progression-free survival [133]. It should be
noted that isolating ctDNA can be challenging as circulating free DNA from physiologic
processes is more abundant [25]. GNAQ and GNA11 have been evaluated in detail as they
can be used to differentiate ctDNA from circulating free DNA [25,134]. Methodologies for
isolating ctDNA will likely improve their clinical yield in liquid biopsies.

Other than circulating DNA, circulating micro-RNA (miRNA) has also been shown to
have clinical potential in managing UM. Circulating miRNA was used initially in breast
cancer, as isolating these CTCs was challenging and certain miRNA were found to be
upregulated [135]. The clinical advantage of miRNA is its long half-life, ease of accessibility,
as well as high specificity and sensitivity [25,111]. Increased plasma miRNA-618 and
decreased vitreous miRNA were identified in patients with UM when compared to healthy
controls [119]. It is also noted that miRNA regulation differs in patients with metastatic vs
non-metastatic disease [120].

Blood-based proteomic data have demonstrated potential clinical value in the prognos-
tication of UM. Melanoma-specific gp100 and cathepsin have been elevated in patients with
UM in comparison to healthy controls [121,122]. Proteins involved in extracellular matrix
remodeling as well as cancer migration and invasion have been shown to be upregulated in
patients with high risk for UM [121]. Both heat shock protein 27 and osteopontin assays can
differentiate between metastatic and non-metastatic UM post-treatment [123]. Multiplexed
analysis of protein abundance of a multitude of suspected proteins demonstrated an area
under the curve (AUC) of 91% in the detection of metastatic disease [136]. Analysis of
hepatic biomarkers has also been suggested to identify metastatic incidence to the liver,
although this has limited clinical value in early prediction of metastatic potential [111].
Furthermore, it has been hypothesized that TEVs can also be employed to evaluate UM.
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However, there is limited clinical evidence of their effectiveness currently, with most studies
representing small trials or being performed on non-human samples.

Blood is not the only fluid that has been evaluated for liquid biopsy in UM. Aqueous
and vitreous samples have also been studied [119,137,138]. These methods have a higher
inherent risk and are more invasive. It is likely for this reason that they have not been the
subject of extensive research. However, Im et al. demonstrated that SCNAs were identified
in patients with UM from aqueous humor samples and showed high concordance with
copy number variations within the matched tumor [139]. Elevated levels of miRNA have
also been identified in the vitreous of patients with UM [119]. VEGF has been shown to
be elevated in the aqueous humor of affected patients with positive correlations between
tumor height and diameter [137,138], and S-100 protein has been shown to be elevated in
both the vitreous and aqueous humor of patients with UM [124].

Liquid biopsies may provide a non-invasive, easily available, quantifiable metric for
monitoring and prognosticating patients with UM. It is likely that further studies in this field
will provide available clinical tools to guide patient care. However, limitations exist, making
their near-future clinical application difficult. In early clinical presentation, the sensitivity
for ctDNA detection is poor given low concentrations in peripheral blood. Furthermore,
the isolation of TEVs requires an analysis platform, such as ELISA, fluorescence-activated
cell sorting (FACS), or nanoparticle tracking analysis (NTA) [140]. However, FACS analysis
can be costly and was shown to exhibit inconsistency in exosome detection [141], whereas
NTA requires a significant processing time, making its translation to clinical practice much
more difficult [142].

6. Bridging Artificial Intelligence with Diagnostic Tools for Uveal Melanoma

In the management of malignant diseases, diagnosis and prognostication has always
been the primary step. However, this has been a challenge for certain malignant dis-
eases, particularly in the eye. Fortunately, advancements in computer power and novel
approaches to machine learning have allowed for the development of clinical decision-
making tools based on large data collections.

As the most common primary intraocular malignancy of the eye in adults with multi-
ple available imaging modalities, UM has been an interest of study for machine learning
applications. Of particular interest, differentiating between a benign choroidal nevus and
malignant choroidal melanoma has been a clinically difficult task, for which machine learn-
ing applications have been applied [143]. In 2022, Zabor et al. evaluated 123 patients with
small choroidal melanocytic tumors and trained a model using lasso logistic regression to
predict malignant growth [144]. Clinical features included gender, tumor height, subretinal
fluid, orange pigmentation, and distance from the optic nerve [144]. The initial model
demonstrated an AUC of 0.880, and when tested against an external data set of 240 patients,
the AUC was 0.861, demonstrating minimal overfitting [144].

Histopathological findings in UM have been used to prognosticate survival and
metastatic potential. By leveraging machine learning applications in histopathology, at-
tempts have been made to improve these predictions [143]. In one pilot study of 20 patients,
the genetic expression profile of a tumor was identified from the digital cytopathology
images with a 75% accuracy [145]. In a follow-up study employing dual-attention fea-
ture extraction of 82 patients, the presented model had a 91.7% accuracy, sensitivity, and
specificity for predicting the genetic expression profile from cytopathology images [146].

Beyond diagnosis, machine learning applications have been applied for predicting
metastatic potential and long-term survival [143]. In 2022, Chen et al. leveraged random
forest to develop two classifier models [147]. The first model was aimed at predicting long-
term survival in UM patients, demonstrating an AUC of 0.882, and the second predicted
metastasis with an AUC of 0.846 [147]. Conversely, Luo et al. also employed random
forest models to predict survival and risk of metastasis in UM patients who had undergone
plaque brachytherapy, primarily using clinical measures [148]. This model had an AUC
of 0.880, with a total accuracy of 83% for predicting survival and an AUC of 0.850 with a
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total accuracy of 79.5% in metastasis [148]. Studies that incorporate both histopathological
findings and clinical findings appear to have even more promising results. Damato et al.
developed a neural network to predict time to patient death based on coronal tumor
location, sagittal tumor location, anterior tumor margin, largest basal tumor diameter,
and cell type in 2543 patients [149]. The network error in predicting death was 3.8 years
compared to the error of 4.3 years in the clinician group [149]. Using back propagation,
Kaiserman et al. were able to develop a neural network capable of predicting five-year
survival rates of UM patients treated with brachytherapy with an 84% accuracy [150].
Using histopathological images alone, deep learning methodologies have been applied
to predict the prognosis of patients with over 90% accuracy for subsets of data [151]. It
should be noted that attempts have been made to incorporate data from liquid biopsies.
Song et al. used logistic regression to analyze serum biomarkers for the diagnosis of UM
and for the prediction of metastasis [123]. They identified that heat shock protein 27 and
osteopontin in a two-maker panel had an AUC of 0.98 in diagnosing UM and an AUC of
0.78 in predicting metastatic disease [123].

Although some evaluated features were associated with the target outcomes, there
has been limited research into feature importance [147]. Feature importance has allowed
computer scientists to evaluate which features are most important to a neural network
in predicting the target outcome [152]. This information may help guide physicians in
identifying new features for prognosticating UM. In addition, most neural networks have
relied on clinical or histopathological data. Few studies have evaluated fundus photog-
raphy or radiographic imaging, whereas most computer vision studies have focused on
histopathological images [143,153]. Incorporating clinical imaging into machine learning
studies will likely improve the functionality of these networks when incorporated with
histopathological data. Finally, it should be noted that there have been very few deep
learning trials, which will likely have improved functionality over the employed classical
machine learning and regression models [143,151,153]. The majority of studies have small
sample sizes with a few exceptions [143,149,153]. This is likely due to the rare nature of
this disease. Despite this, it is still promising, as the small sample sizes have shown relative
success in diagnosing the disease and predicting clinically significant outcomes. Large
multicentered datasets will hopefully provide more promising results in producing clinical
decision-making tools.

7. Current Treatment Methods

The current therapeutic landscape for UM primarily revolves around surgical inter-
ventions (i.e., tumor resection, enucleation, or exenteration), radiation therapy, photocoagu-
lation, and transpupillary thermotherapy (TTT) (Table 4) [154].

Surgical resection involves the complete or partial removal of the tumor based on its
size and location, with either the transscleral resection or the exo-resection approach [155].
This method is usually reserved for smaller tumors in the ciliary body or iris. Enucleation
(i.e., removal of the globe) and exenteration (i.e., removal of the globe and its surrounding
structures, such as the muscles, fat, nerves, and eyelid) are surgical approaches that are
indicated in cases that present with large tumor size or extraocular involvement [156–158].
However, few studies have reported malignancy recurrence in cases treated with both
approaches, which was subsequently associated with poor prognosis [157,159,160]. Radia-
tion therapy entails both plaque brachytherapy and proton beam radiotherapy, which is
a preferred alternative to surgical resection due to their precision in targeting the tumor
while sparing surrounding tissue [161,162]. However, tumor thickness is a limiting factor
for radiation therapy, given the increased risk of complications in tumors thicker than
6 mm [162]. Photocoagulation is a laser treatment technique used broadly in ophthalmol-
ogy and is employed primarily for smaller tumors. Finally, TTT uses a 3 mm diode laser
beam with infrared radiation to heat and destroy tumor cells through the pupils.
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Table 4. Overview of current therapeutic approaches for uveal melanoma.

Therapeutic
Approach Method Indication Disadvantages References

Surgical resection
Complete or partial removal

depending on tumor size and
location

Localized tumors [155]

Enucleation Complete removal of the globe

Thickness > 12 mm
Basal diameter >18 mm
Tumor seeding into the
trabecular meshwork

Extraocular involvement
Melanoma-related glaucoma

Poor prognosis in case of tumor
recurrence [156,159,160]

Exenteration

Removal of the globe and its
surrounding structures, such

as the muscles, fat, nerves, and
eyelid

Thickness > 12 mm
Basal diameter >18 mm

Multifocal or recurrent disease
Painful eye

Extraocular involvement

Poor prognosis in case of tumor
recurrence [157,158]

Radiation therapy

Plaque brachytherapy:
Localized application of

internal radiation through
plaque (containing radioctive
source) suturing on episclera.

Small and medium sized tumors

Associated with
radiation-induced complications,
such as:

- Poor visual outcome
- Radiation-induced

cataracts
- Vitreous hemorrhage
- Neovascular glaucoma
- Secondary glaucoma
- Retinal detachment
- Radiation retinopathy,

maculopathy
- Optic neuropathy

Contraindicated in tumors < 2
mm from the optic disc and large
tumors

Limited adaptability of the
applicator to the area, leading to
increased radiation exposure

[161,162]

Proton beam radiotherapy:
Tantalum marker (beam)

placement within the tumor
for direct radiation for 4 days

Tumor height > 5 mm
Narrow base

Tumors close to optic nerve
Ciliary body involvement

greater than one clock hour
Extraocular involvement

Iris and ciliary body melanomas

Associated with
radiation-induced complications

(as mentioned above)

Limited availability

[161–167]

Photocoagulation Laser used to burn and
destroy tumor cells Small, peripheral tumors

Increased risk of recurrence

Increased risk of extension
through Buch’s membrane
Associated with increased risk
for:

- Choroidal
neovascularization

- Macular edema
- Retinal detachment
- Vitreous hemorrhage

[154,168]

Transpupillary
thermotherapy Near-infrared diode laser Small, accessible tumors

Associated with risks of:

- Retinal vascular
occlusions

- Macular edema
- Vitreous hemorrhage
- Retinal detachment
- Optic disc atrophy

[154,169]
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8. Novel Therapeutic Approaches

The therapeutic treatment of UM has been a complex challenge in oncology, with
limited treatment options and the possibility for UM to progress to metastasis. However,
there has been significant progress over the last few years in both preclinical and clinical
research, offering promising ways to improve patient outcomes.

8.1. Immunotherapy

Immunotherapy is a promising approach for UM treatment, which makes use of the
body’s immune system to target cancer cells. Recent preclinical studies have focused on
understanding the immunogenicity of UM and developing immunotherapeutic strategies
to overcome immune evasion mechanisms (Table 5).

Table 5. Summary of most recent advances in immunotherapy for the management of uveal
melanoma.

Agent Study Type Main Findings References

Checkpoint Inhibitors

Ipilimumab N/A

At 3 mg/kg, overall response rates (ORR) were of 0 to 4.8%.

Higher doses (10 mg/kg) provided longer median overall survival
rates, but similar overall response rates compared to lower doses.

[170–175]

Pembrolizumab
Nivolumab
Ipilimumab

Retrospective cohort study

Clinical trials (NCT02626962.P1)

Less effective in UM than cutaneous melanoma due to lower
mutational burden.

Checkpoint inhibitors show limited effectiveness in UM due to a lower
number of neoantigens.

Combined nivolumab and ipilimumab showed a median OS of
12.7 months.

Systemic therapies showed a median OS of 9.3 months.

[176–183]

Tebentafusp
Previously untreated

HLA-A*0201-positive patients
with metastatic uveal melanoma

Demonstrated overall survival benefit in metastatic UM but limited to
patients who are HLA-A*0201 positive. [10]

Dual checkpoint
inhibitors Meta-analysis Dual checkpoint inhibitors are more effective than single agents for

metastatic UM. [184]

Oncolytic viruses

T-VEC
In vitro UM cell lines

Clinical trials (NCT02509507)

Showed potential with local control and durable systemic response.

Alters tumor microenvironment to enhance immune attack.
[185,186]

ECHO-7
Coxsackieviruses

HF-10
In vitro UM cell lines These viruses are being explored for efficacy in UM, with promising

results in initial studies. [186,187]

HSV-EGFP
VSV-IFNβ-

TYRP1

In vitro UM cell lines

Clinical trials

Demonstrated effectiveness in vitro and in vivo.

VSV-IFNβ-TYRP1 is safe in patients with metastatic UM.

Combination with checkpoint inhibitors enhances immune response in
patients with metastatic UM (coxsackie (CAVATAK) combined with

Ipilimumab).

[188–190]

Adoptive T Cell therapy

TIL therapy

TILs from primary UM

NOD/SCID IL2 receptor gamma
(NOG) knockout mouse strain

Induced significant tumor regression in a subset of patients, suggesting
manipulation of tumor microenvironment can enhance anti-tumor

responses.

TILs show potential as an adjuvant treatment for UM with high
metastatic risk.

CAR-T cells effective in vitro and in vivo against UM cells and resistant
tumors in specific mouse models.

[191–193]
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8.1.1. Checkpoint Inhibitors

Checkpoint inhibitors function by acting on specific immune checkpoints. Pro-
grammed death-ligand 1 (PD-L1) is expressed in UM cells and interacts with PD-1 re-
ceptors on T cells, which subsequently inactivates T cell function, allowing tumor cells
to escape the immune response. Another checkpoint protein is CTLA-4. It functions by
downregulating the immune response by competing with CD80 and CD86 to bind to the
stimulating receptor on antigen-presenting cells, thereby inhibiting T cell activation at the
initial stage [194].

Ipilimumab (an anti-CTLA-4 monoclonal inhibitor) has been investigated at various
dosages across prospective studies and retrospective analysis [195]. At 3 mg/kg body
weight, the overall response rates (ORR), defined as the ratio of patients treated with
the drug of interest who observed a change in tumor size on the patients who did not
exhibit a change in tumor size following drug administration, was shown to range from 0
to 4.8% [170–173]. Higher doses of ipilimumab (i.e., 10 mg/kg) have been explored and
showed higher prolonged median overall survival, but similar ORR compared to lower
dosages [173–175]. However, higher doses of ipilimumab were shown to be associated
with an increased risk of immune-induced colitis [196].

PD-1 inhibitors (pembrolizumab, nivolumab) have been investigated within clinical
trials [176–183]. However, they have shown relative lower effectiveness as compared to
when utilized in cutaneous melanoma. This may be attributed to the lower mutational
burden in UM, which translates to a lower number of neoantigens recognizable by the
immune system. The efficacy of pembrolizumab, ipilimumab, and a combined therapy with
ipilimumab and nivolumab was compared in a retrospective population-based study [179].
None of the 24 patients who received ipilimumab responded to the therapy with a median
progression free survival of 3.0 months [179]. Conversely, the PUMMA meta-analysis
showed systemic therapy had a median OS of 9.3 months [197]. Another study combining
nivolumab and ipilimumab had a median OS of 12.7 months [198]. The objective response
rate of nivolumab and pembrolizumab varied widely among different trials. Thus, it is
difficult to draw conclusions with regards to the efficacy of PD-1 blocking antibodies [199],
but overall results demonstrate a better safety profile and median OS compared to CTLA-4
inhibitors. Overall, immune check-point inhibitors are not as effective for UM as compared
to cutaneous melanoma, as evidenced by a poor long-term prognosis with isolated hepatic
metastasis in metastatic uveal melanoma [200]. Tebentafusp is one of the most recent
innovations for metastatic UM, which is an immune-mobilizing monoclonal T cell receptor
(TCR) against cancer (ImmTAC; immune-mobilizing monoclonal TCRs against cancer)
targeting HLA-A*0201.gp100280-288 and CD3 [10]. It is a first-in-class ImmTAC that
has demonstrated greater overall survival benefits compared to other immune therapy
treatments [10]. However, most patients with metastatic UM do not qualify as they are
HLA-A*0201 negative.

A recent systematic review of checkpoint inhibitors on metastatic UM suggested that
dual immune check-point inhibitors are more effective than single-agent therapies and
could be a potential for future immune therapies [184]. Further research is investigating the
combination of immune therapy with epigenetics, immune therapy with oncolytic viruses,
and immune therapy with targeted genetic therapy [201]. Current trials investigating
immune therapy combined with targeted therapy include pembrolizumab with olaparib
(i.e., a PARP (poly (ADP-ribose) polymerase) inhibitor), pembrolizumab with LNS8801
(i.e., a G protein-coupled estrogen receptor (GPER) agonist), atezolizumab with IN10018
(i.e., a PD-L1 inhibitor with an FAK (focal adhesion kinase) inhibitor), and pembrolizumab
with APG115 (i.e., an MDM2 inhibitor). Although combined immune checkpoint inhibitors
demonstrate greater efficacy, it may prompt a higher number of adverse events. Thus,
further research involving combinations of immune therapy will require a personalized
approach.
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8.1.2. Oncolytic Viruses

Oncolytic viruses are engineered viruses, which specifically infect and kill cancer
cells. These viruses can directly destroy tumor cells by inducing tumor lysis via a systemic
immune response. An example is T-VEC (i.e., talimogene laherparepvec), a modified
herpes simplex virus and FDA-approved oncolytic virus for cutaneous melanoma, which
is modified to express GM-CSF and therefore increases dendritic cell function, which subse-
quently leads to a more effective T cell-mediated response against cancer cells [202]. Early
clinical trials with T-VEC are investigating its use in treating metastatic UM for potential
local control, as well as inducing a durable systemic response [203]. Current research is
exploring how these oncogenic viruses can alter the tumor microenvironment to make it
more susceptible to immune attack [204]. In addition to T-VED, other oncolytic viruses,
such as coxsackieviruses and HF-10, are being explored for potential use in cutaneous
melanoma and could potentially be applied to UM [186,187]. Recently, the successful
cytotoxic effects of the oncolytic ECHO-7 virus strain were demonstrated in UM cell lines
(i.e., MP41, 92-1, and Mel-202 cell lines) [185].

Oncolytic virus HSV-EGFP was shown to exhibit sensitivity and cytotoxicity towards
the 92-1, MUM2B, and MP41 UM cell lines, and additional results suggested that the
oncolytic HSV-1 is effective in treating UM in vitro and in vivo [188]. Ongoing investi-
gations of other oncolytic viruses include a phase I clinical trial at Mayo Clinic, which
is exploring vesicular stomatitis virus (VSV) vectors expressing interferon (IFN) β and
tyrosinase-related protein 1 (TYRP1) in previously treated patients with metastatic UM
via intratumoral and intravenous administration [189]. The study demonstrated clinical
safety of VSV-IFNβ-TYRP1 in the target population and a dose-response immunogenicity
to TYRP1 [189]. A significant area of interest is the combination of oncolytic viruses with
checkpoint inhibitors [190]. This aims to enhance the overall immune response against UM
by providing both the initial activation of the immune system through viral infection and
the sustained activation by checkpoint blockade. Despite the limited number of current
clinical trials, oncolytic viruses represent a novel therapeutic strategy for patients with
metastatic UM.

More recently, virus-like drug conjugates (VDCs) have demonstrated great potential for
selective delivery of drugs to tumor cells. A clinical example for the treatment of choroidal
UM is belzupacap sarotalocan (AU-011) VDCs, which consist of a light-activated drug and
VDCs that bind heparan sulfate proteoglycans on tumor cells, thereby inducing tumor
cell necrosis following light activation and immune-mediated tumor cell killing [205–207].
Currently in phase 3 clinical trials, AU-011 (from Aura Biosciences) has shown an adequate
safety profile following suprachoroidal administration [206]. Multiple clinical applications
of AU-011 are proposed, such as tumor control [208] and better vision preservation in small
tumors with a greater risk of vision loss with radiotherapy [209].

8.1.3. Adoptive T Cell Therapy

Adoptive cell therapy (ACT) is a technique that extracts T cells from patients, which
are then subsequently genetically modified and re-infused into patients to enhance the
tumor-targeting characteristics [210]. Specifically for UM, this therapy revolves around the
use of tumor-infiltrating lymphocytes (TILs) as well as genetically engineered T cells [192].
TILs are extracted from resected tumor tissues. The lymphocytes are primed for recognition
of tumor-associated antigens, cultured in vitro in the presence of IL-2, and re-introduced
into the patient [211]. They are then able to recognize cancer cells and subsequently destroy
them. When TILs are removed from their tumor microenvironment, they have shown
successful expansion along with UM-reactive T cells, which suggests T cell therapy can be
utilized as an adjuvant treatment in UM with high risk of metastasis [191]. Recent trials
have explored the efficacy of TIL therapy in metastatic UM. A phase II trial has shown
that significant tumor regression can be induced in a subset of patients with TIL therapy,
which suggests that the tumor microenvironment of UM can be manipulated to enhance T
cell-mediated anti-tumor responses [192]. CAR T cell therapy involves chimeric antigen
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receptors (CAR), which natively transmit signals similar to those from activated T cell
receptors [212]. They are subsequently genetically engineered to destroy cancer cells. A
novel humanized mouse model demonstrated that CAR T cells can eliminate UM cells both
in vitro and in vivo within xenografts grown in a NOD/SCID IL2 receptor gamma (NOG)
knockout mouse strain transgenic for human IL2 [193]. It was also shown to be able to
destroy melanoma cells resistant to ACT of autologous TILs, suggesting a viable option of
therapy when UMs do not respond to standard therapy [193].

8.2. Gene Therapy

Gene therapy represents a cutting-edge approach aimed at correcting genetic defects
that contribute to UM development. In the ensuing section, we will provide an overview of
current gene therapies for the treatment of UM (Table 6).

Table 6. Overview of gene therapy methods for the treatment of uveal melanoma.

Gene Therapy Model Used Main Findings References

Cytosine deaminase (CD)
gene therapy

Murine models with
genetically engineered CD

OCM-1 cells

Introduction of the CD gene makes tumors
sensitive to 5-FU. [213]

B7-H3 CAR T cells with iCas9 Human UM tissue samples
and cell lines

Created B7-H3 CAR T cells with an inducible
caspase-9 suicide gene demonstrated a durable

anti-tumor response.
[214]

yCD::UPRT gene therapy In vitro primary UM cells and
associated fibroblasts

Transduction with yCD::UPRT gene leads to
production of sEVs carrying the suicide gene,

showing potential for targeting UM cells.
Needs further validation in animal models.

[215]

RNA Interference (RNAi)

siRNAs and miRNAs
targeting VEGF and Bcl-2

Human UM cell line MP-38
(ATCC CRL-3296)

RNA molecules, such as siRNAs and miRNAs,
are utilized to target and silence genes critical for
cancer growth, particularly VEGF and Bcl-2 in

the context of UM.

[216]

HA-coated chitosan/siRNA
complexes targeting HIF-1α

Human UM cell line MP-38
(ATCC CRL-3296)

Demonstrated excellent cellular uptake and
lysosome escape, with low cytotoxicity,

effectively inhibiting the invasive potential of
UM by down-regulating VEGF and HIF-1α.

[216]

LncRNAs as therapeutic
agents (PAUPAR, NUMB) N/A

They have therapeutic potential in UM but face
in vivo drug delivery challenges and lack of

described interactions.
[217]

miR-181a Clinically defined UM
samples

Identified as solely downregulated miRNA
among three studies, showing significant
potential as a therapeutic target in UM.

[218–221]

VECTOR database
VECTOR (uVeal mElanoma

Correlation NeTwORk)
database

Published to predict RNA interactions in UM,
addressing the rarity of described

lncRNA–microRNA interactions and aiding in
the study of RNA based therapies.

[222]

siRNAs and miRNAs
targeting VEGF and Bcl-2

Human UM cell line MP-38
(ATCC CRL-3296)

RNA molecules, such as siRNAs and miRNAs,
are utilized to target and silence genes critical for
cancer growth, particularly VEGF and Bcl-2 in

the context of uveal melanoma.

[216]

8.2.1. Suicide Gene Therapy

Suicide gene therapy entails introducing genes into cancer cells to increase their
susceptibility to a pro-drug. It is specifically advantageous to selectively target tumor cells
while avoiding damage to normal tissues [223].
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The cytosine deaminase (CD) gene converts the antifungal drug 5-fluorocytosine (5-FC)
into the cytotoxic chemotherapeutic agent 5-fluorouracil (5-FU) [224]. A study by Liu et al.
showed that transfection of transcriptional suicide genes, such as CD, in the OCM-1 UM
cell line significantly decreases cell proliferation and increases cell sensitivity to 5-FU [213].
Another study extracted primary UM cells and UM-associated fibroblasts from patients,
cultivated them in vitro, followed by an infection with a retrovirus containing the suicide
gene-fused yeast cytosine deaminase::uracil phospho-ribosyl transferase (yCD::UPRT) [215].
Small EVs were continuously produced with mRNA of the suicide gene in an expanded
population of yCD::UPRT-UM cells with the integrated provirus. These sEVs were taken
up by the tumor cells and were involved in the conversion of the 5-FC prodrug to the
cytotoxic 5-FU. Another approach for suicide gene therapy is to target B7-H3, an immune
checkpoint protein that is highly expressed in cancel cells such as UM [225,226]. Using a
B7-H3 chimeric antigen receptor (CAR) with an inducible caspase-9 (iCas9) suicide gene,
effective cell death of the UM cell line was shown, as well as a significant decrease in
UM liver metastasis in murine models [214]. However, these results are limited to in vitro
settings and must be replicated in animal preclinical studies.

8.2.2. RNA Interference

RNA interference (RNAi) is a biological process in which RNA molecules inhibit
gene expression, typically by causing the destruction of specific mRNA molecules [227].
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are used to target and silence
genes that are critical for cancer growth and survival. In the context of UM, VEGF and
Bcl-2—an antiapoptotic protein—are frequent targets [216]. Several RNAi-based therapies
have shown potential in UM [228,229]. One study created hyaluronic acid (HA)-coated
chitosan (Chi)/siRNA ternary complexes and targeted hypoxia-inducible factor 1α (HIF-
1α), showing excellent cellular uptake and lysosome escape ability with low cytotoxicity,
while inhibiting the invasive potential of UM via VEGF and HIF-1α down-regulation [216].
LncRNAs (i.e., long non-coding RNAs) interact with multiple proteins as well as DNA,
often acting as scaffolds or guides [230]. Specific tumor suppressor lncRNAs, such as
lncRNA, Paupar, or Numb, could be harnessed as therapeutic models for UM treatment.
However, they are limited by both in vivo drug delivery and the lack of lncRNA-microRNA
interactions described in the literature [217]. Another miRNA with demonstrated therapeu-
tic potential in UM treatment is miR-181a, which was shown to be the solely downregulated
miRNA among three studies of miRNA expression [218–221]. Despite widespread lncRNA–
microRNA interactions in nature, very few have been described in UM. This is partially
attributed to the rare nature of the disease as well as the novelty of the field of research.
A database known as VECTOR (i.e., uVeal mElanoma Correlation NeTwORk) has been
published to predict RNA interactions in UM [222]. Overall, RNA-based therapies show
therapeutic potential but may present with more adverse effects due to their targeting of
multiple genes. Another drawback is their low stability, endocytosis, and immunotoxicity,
and they are rapidly degraded by nucleases [229].

9. Limits and Challenges in the Management of Uveal Melanoma

Managing UM presents numerous challenges. Firstly, the high metastatic potential
of UM presents a challenge as it commonly metastasizes to the liver, often occurring
despite successful local control of the primary tumor. New strategies for detecting and
treating micrometastatic disease are critically needed. Furthermore, there are currently
limited treatment options given the rarity of UM. Its unique features limit the availability
of targeted treatments and the feasibility of large-scale clinical trials. The future of UM
treatment lies in the integration of local control measures with systemic therapies, including
immunotherapy and gene therapy, tailored based on genetic and molecular profiling of
tumors. Early detection and management of metastatic disease are crucial for improving
patient outcomes. Collaborative research and increased funding will be essential to address
these challenges and develop more effective therapies for UM.
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10. Conclusions

In conclusion, while current therapies provide effective local control, the high metastatic
nature of UM and its resistance to conventional therapies highlight the urgent need for
innovative treatment approaches. Further research needs to be performed to investigate
the crucial role of CHCs in metastatic UM and niche formation. Furthermore, with the
advances in liquid biopsies, continuous efforts need to be deployed for additional tumor
marker identification for early disease diagnosis and disease progression. Immunotherapy
and gene therapy represent promising frontiers but require further development and clini-
cal validation to enhance their efficacy in the treatment of UM. The ongoing research and
development in these areas hold significant potential to improve survival and quality of
life for UM patients.
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