
Citation: Janyasupab, P.; Singhanat,

K.; Warnnissorn, M.; Thuwajit, P.;

Suratanee, A.; Plaimas, K.; Thuwajit,

C. Identification of Tumor

Budding-Associated Genes in Breast

Cancer through Transcriptomic

Profiling and Network Diffusion

Analysis. Biomolecules 2024, 14, 896.

https://doi.org/10.3390/

biom14080896

Academic Editor: Da-Tian Bau

Received: 25 June 2024

Revised: 23 July 2024

Accepted: 23 July 2024

Published: 24 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Identification of Tumor Budding-Associated Genes in
Breast Cancer through Transcriptomic Profiling
and Network Diffusion Analysis
Panisa Janyasupab 1, Kodchanan Singhanat 2, Malee Warnnissorn 3, Peti Thuwajit 2, Apichat Suratanee 4,5 ,
Kitiporn Plaimas 1,* and Chanitra Thuwajit 2,*

1 Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and
Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
panisa.janyasupab@gmail.com

2 Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University,
Bangkok 10700, Thailand; ksinghanat23@gmail.com (K.S.); peti.thu@mahidol.edu (P.T.)

3 Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
maleewarn@yahoo.com

4 Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North
Bangkok, Bangkok 10800, Thailand; apichat.s@sci.kmutnb.ac.th

5 Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute,
King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

* Correspondence: kitiporn.p@chula.ac.th (K.P.); chanitra.thu@mahidol.ac.th (C.T.)

Abstract: Breast cancer has the highest diagnosis rate among all cancers. Tumor budding (TB) is
recognized as a recent prognostic marker. Identifying genes specific to high-TB samples is crucial for
hindering tumor progression and metastasis. In this study, we utilized an RNA sequencing technique,
called TempO-Seq, to profile transcriptomic data from breast cancer samples, aiming to identify
biomarkers for high-TB cases. Through differential expression analysis and mutual information,
we identified seven genes (NOL4, STAR, C8G, NEIL1, SLC46A3, FRMD6, and SCARF2) that are
potential biomarkers in breast cancer. To gain more relevant proteins, further investigation based on a
protein–protein interaction network and the network diffusion technique revealed enrichment in the
Hippo signaling and Wnt signaling pathways, promoting tumor initiation, invasion, and metastasis
in several cancer types. In conclusion, these novel genes, recognized as overexpressed in high-TB
samples, along with their associated pathways, offer promising therapeutic targets, thus advancing
treatment and diagnosis for breast cancer.

Keywords: breast cancer; differential expression analysis; mutual information; network diffusion;
tumor budding

1. Introduction

Breast cancer is the most commonly diagnosed cancer, with an estimated 2.3 million
estimated new cases and 684,996 deaths in 2020 [1]. Tumor budding (TB), defined as an iso-
lated single cell or a cluster of up to four cancer cells located at the invasive tumor front [2],
has been identified as having prognostic significance in breast cancer [3]. Identifying genes
differentially expressed between high and low TB levels can be proposed as theragnostic
markers for better management of breast cancer.

Nowadays, gene expression datasets have proliferated greatly due to technological
advancements. There are several techniques for obtaining gene expression data, such as
microarray and RNA sequencing. Recently, Templated Oligo-Sequencing (TempO-Seq)
has been introduced as a new transcriptomic platform that combines the advantages of
microarray and RNA sequencing technology [4]. TempO-Seq is a high-throughput method
for profiling gene expression directly from tissue sample lysates, including FFPE tissues,
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without needing RNA extraction [5,6]. Its advantage lies in its ability to provide quanti-
tative measurements of gene expression with high sensitivity and precision [7]. TempO-
Seq provides count data for individual genes and is employed for comprehensive whole
transcriptome profiling, primarily focusing on toxicogenomic research [7]. The standard
pipeline for differential expression analysis, especially DESeq2, is well suited to TempO-Seq
as well. The effectiveness of different normalization methods was evaluated when compar-
ing two classes of TempO-Seq data, revealing that DESeq2 can provide relatively accurate
results for absolute fold change levels of 2.0 or greater [8]. However, clinical data extracted
from breast cancer are normally limited, with small numbers of cases found. A small and
imbalanced set of samples can be problematic when analyzing differential gene expression
because it limits the statistical power and robustness of the analysis. In the context of
small sample sizes, mutual information may be more robust than traditional statistical
tests because it does not rely on assumptions about the underlying distribution of the data
and can handle non-linear relationships effectively. This makes it particularly useful for
identifying subtle but informative features or genes that may be missed using methods
based solely on mean differences or variance [9]. Despite having been a classical method for
a long time, mutual information has demonstrated robustness [10] and effectiveness in han-
dling imbalanced data [11,12], making it applicable across various domains. For instance,
mutual information was employed alongside an improved Lasso method to filter unrelated
genes and eliminate redundant ones, thus selecting informative genes from microarray
gene expression data [13]. The large dimensionality of microarray data is reduced through
combining mutual information and the Bayes theorem [14]. Additionally, biomarkers for
stomach adenocarcinoma have been successfully identified through a combination of the
“limma” method and joint mutual information [15].

Currently, it is evident that to enhance our comprehension of the functional pathways
associated with biomarkers of interest, the utilization of network diffusion methods has
proven effective in the discovery of additional relevant genes related to these biomark-
ers [16–19]. Consequently, this approach yields a more confident set of genes pertinent
to biomarkers, thereby facilitating more robust pathway enrichment analyses that yield
biologically meaningful results. Therefore, we then employed TempO-Seq technology to
extract the transcriptomic data and to identify biomarkers associated with TB levels in
breast cancer. Both differential expression analysis and mutual information were utilized
to screen for novel biomarkers of high TB. Functional pathways relevant to the markers
obtained were also retrieved. Literature support and evidence for further investigation into
the diagnosis and prognosis for breast cancer were then discussed.

2. Materials and Methods
2.1. The Study Workflow

The workflow of our experiment and gene expression analysis is summarized in
Figure 1. Initially, the transcriptomic data were processed using TempO-Seq, including
preprocessing, correction, and normalization, until read counts were obtained for all genes.
Subsequently, DESeq2 identified differentially expressed genes (DEGs) between high- and
low-TB samples. Additionally, mutual information was employed to select genes with
clearly distinguishable expression levels for high or low budding levels. The overlapping
genes from these methods were identified as potential biomarkers for high-TB cases. Fur-
thermore, a protein–protein interaction network and a network diffusion technique were
applied to searching for more relevant proteins associated with TB progression, using
these biomarkers as seeds. Finally, biological pathway enrichment was conducted to gain
insights into the mechanisms underlying these biomarkers and their interactions within
the protein–protein interaction network.
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Figure 1. The workflow for identifying potential biomarkers of high-TB breast cancer and their 
related functional pathways. 

2.2. Breast Cancer Sample Collection, Transcriptomic Data Preparation, and Tumor Budding 
Evaluation 

Fifteen formalin-fixed paraffin-embedded (FFPE) breast cancer tissues from breast 
cancer patients who underwent surgery at Faculty of Medicine Siriraj Hospital, Mahidol 
University, between 2004 and 2017 were utilized for the study. Clinicopathological data, 
including patient age at diagnosis, histological subtype, tumor size, lymph node status, 
tumor staging, and survival status (measured by overall survival, OS), were collected (see 
Table 1). The protocol for collecting the samples and the clinicopathological data collection 
was approved by the Siriraj Institution Review Board according to human ethics 
standards (COA no. si542/2022). The cancer cell areas in the FFPE samples were labeled 
by a pathologist and sent for transcriptomic analysis using Templated Oligo-Sequencing 
(TempO-Seq) analysis (BioClavis, Glasgow, UK). Briefly, the FFPE tissues were 
deparaffinized and then digested. The tissue lysate was incubated with detector oligos 
annealing to the targeted RNA template [7]. Amplification of the ligated oligos was 
performed using a unique primer set for each sample, introducing a sample-specific 
barcode and Illumina adaptors. The samples were then sequenced on an Illumina HiSeq 
2500 High Output v4 flow cell and analyzed using BCL2FASTQ software v2.20 (Illumina, 
San Diego, CA, USA). The obtained FASTQ files were aligned with the Human Whole 
Transcriptome v2.0 panel, consisting of 22,537 probes, using STAR [20]. The gene 
expression profile contains 15 cases, including 12 high- and 3 low-TB samples. Our gene 
expression dataset and its associated FASTQ files can be found in the NCBI Gene 
Expression Omnibus [21], with accession number GSE262825. Initially, the maximum 
mean gene expression was selected in case of duplication, resulting in a reduction in the 
total 22,537 probes to 19,703 genes. 

For tumor budding evaluation, the FFPE slides were sent to the Department of 
Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, for cytokeratin 
staining using routine services. Briefly, 4-µm-thickness FFPE sections were incubated 
overnight at 4 °C in a humidified chamber with a 1:350 dilution of anti-pan-cytokeratin 
(AE1/AE3, Dako). Subsequently, the sections were processed using the K8002 detection 

Figure 1. The workflow for identifying potential biomarkers of high-TB breast cancer and their
related functional pathways.

2.2. Breast Cancer Sample Collection, Transcriptomic Data Preparation, and Tumor Budding Evaluation

Fifteen formalin-fixed paraffin-embedded (FFPE) breast cancer tissues from breast
cancer patients who underwent surgery at Faculty of Medicine Siriraj Hospital, Mahi-
dol University, between 2004 and 2017 were utilized for the study. Clinicopathological
data, including patient age at diagnosis, histological subtype, tumor size, lymph node
status, tumor staging, and survival status (measured by overall survival, OS), were col-
lected (see Table 1). The protocol for collecting the samples and the clinicopathological
data collection was approved by the Siriraj Institution Review Board according to hu-
man ethics standards (COA no. si542/2022). The cancer cell areas in the FFPE samples
were labeled by a pathologist and sent for transcriptomic analysis using Templated Oligo-
Sequencing (TempO-Seq) analysis (BioClavis, Glasgow, UK). Briefly, the FFPE tissues were
deparaffinized and then digested. The tissue lysate was incubated with detector oligos
annealing to the targeted RNA template [7]. Amplification of the ligated oligos was per-
formed using a unique primer set for each sample, introducing a sample-specific barcode
and Illumina adaptors. The samples were then sequenced on an Illumina HiSeq 2500
High Output v4 flow cell and analyzed using BCL2FASTQ software v2.20 (Illumina, San
Diego, CA, USA). The obtained FASTQ files were aligned with the Human Whole Tran-
scriptome v2.0 panel, consisting of 22,537 probes, using STAR [20]. The gene expression
profile contains 15 cases, including 12 high- and 3 low-TB samples. Our gene expression
dataset and its associated FASTQ files can be found in the NCBI Gene Expression Om-
nibus [21], with accession number GSE262825. Initially, the maximum mean gene expres-
sion was selected in case of duplication, resulting in a reduction in the total 22,537 probes to
19,703 genes.
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Table 1. Demographic data, tumor budding level, and clinicopathological factors of patients.

BCA Case Age (y) Tumor Size (cm) OS (y) DFS (y) Tumor Staging Pathological Differentiation TB Level

B168 33 7.3 11.3 11.3 IIIB PD low
TNBC-G06 67 4.5 5.3 5.1 IIA PD low

B041 26 5.2 5.9 2.3 IIIA PD high
B031 50 3 4 4.1 IIIC PD high
B166 55 4 6.6 1.5 IIIA PD high

TNBC-G01 67 2.4 5.6 5.3 IIIA MD high
TNBC-G03 61 4 0.6 0.6 IIA MD high
TNBC-G19 51 4.3 5.1 5.1 IIIB PD high
TNBC-P04 54 3.5 3.2 3.2 IIA PD high
TNBC-P06 50 3 5.2 4 IIIC MD high
PC-B-099 50 6.5 2 1.3 IIIA PD high
PC-B-130 44 6 0.8 0.6 IIIC PD high

TNBC-P09 59 2.5 2.5 1.2 IIA PD high
B165 49 4 11.5 1.8 III PD low

IBC-11B 60 4.5 15.1 15.1 III PD high

OS: overall survival; y: year; DFS: disease-free survival; PD: poorly differentiated; MD: moderately differentiated.

For tumor budding evaluation, the FFPE slides were sent to the Department of Pathol-
ogy, Faculty of Medicine Siriraj Hospital, Mahidol University, for cytokeratin staining
using routine services. Briefly, 4-µm-thickness FFPE sections were incubated overnight
at 4 ◦C in a humidified chamber with a 1:350 dilution of anti-pan-cytokeratin (AE1/AE3,
Dako). Subsequently, the sections were processed using the K8002 detection kit, which
includes an anti-mouse EnVision+ System HRP-labeled polymer (K4001), a substrate
buffer, and diaminobenzidine (DAB) solution (Dako). The slides were then counterstained
with hematoxylin. The stained slides were scanned at a resolution of 0.12 microns/pixel
using a 3DHISTECH PANNORAMIC 1000 microscope by 3DHISTECH Ltd. and Case-
Viewer/QuantCenter software 2.4.0. (Sysmex, Budapest, Hungary), with a 40× objective
lens, and saved in NRXS format. Quantification of positive membranous staining for
pan-cytokeratin was performed using the image analysis software CaseViewer version 2.4
(3DHISTECH Ltd., Budapest, Hungary).

Tumor budding was defined as either one isolated tumor cell or up to four cells in
clusters detached from the main tumor mass [22]. Within a low-power field (×50 original
magnification), five areas with the highest budding number at the invasive margins were
selected. Within a high-power field (200× original magnification), the number of budding
cells was counted. According to the International Tumor Budding Conference (ITBCC)
guidelines, the number of buds was categorized as low (0–4 buds), intermediate (5–9 buds),
and high (≥10 buds). The tumor budding counts were independently reviewed by two
examiners, one of whom was a medical doctor.

All the methods described in this study were performed in accordance with the relevant
guidelines and regulations set forth by Siriraj Institutional Review Board (SIRB Protocol
No.: 277/2565(IRB4), COA no. Si 542/2022), ensuring full compliance with the international
guidelines for human research protection, such as the Declaration of Helsinki, the Belmont
Report, CIOMS Guidelines, and the International Conference on Harmonization in Good
Clinical Practice (ICH-GCP). Clinical samples from the patients were obtained after acquiring
informed consent from the patients and were archival specimens which covered their usage
in accordance with the protocol approved by Siriraj Institutional Review Board.

2.3. Differential Expression Analysis

Differential expression analysis is conducted using the “DESeq2” package in R [23].
The first step involves count normalization, which is performed to facilitate comparisons
between samples. Next, the model estimates gene-wise dispersions to generate more
accurate estimates of dispersion. Subsequently, the negative binomial model is fitted, and
the Wald test is conducted to test the hypothesis. Finally, statistical information is prepared,
including the log fold change (logFC) and p-value. logFC can be computed according to
logFC = log2

( xhighTB
xlowTB

)
, where xhighTB and xlowTB are the normalized counts of high- and
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low-TB samples, respectively. Positive and negative logFC values occur when a gene is
up-regulated and down-regulated, respectively. Next, the p-value from DESeq2 tests the
null hypothesis that there is no differential expression across the two groups. If the mean
expression levels of the two groups are significantly different, the p-value of the gene is
smaller. The adjusted p-value (adj.p.val) is then computed using the Benjamini– Hochberg
method. Following the standard procedure, we select a subset of genes with the condition
that adj.p.val < 0.05 for DEGs.

2.4. Mutual Information (MI)

The idea behind mutual information is to measure the relationship between two ran-
dom variables or quantify the amount of information obtained from one random variable by
observing another random variable. Let X and Y be random variables. MI quantifies the infor-
mation shared between X and Y and is evaluated by MI(X, Y) = H(X) + H(Y)− H(X, Y),
where H(X) = −∑x∈X p(x)log(p(x)), which is the entropy or the expected uncertainty in
a random variable X, and H(X, Y) = −∑x∈X ∑y∈Y p(x, y)log(p(x, y)) is the joint entropy,
which measures the uncertainty when considering two random variables simultaneously.
p(x) and p(y) stand for the marginal probability functions of X and Y, respectively, while
p(x, y) refers to the joint probability of both variables occurring together. In this study, the
“praznik” [24] package in R is utilized, where X represents the normalized count of each gene
and Y is a binary class consisting of high- and low-TB samples. In the scenario of scoring
genes, H(Y) is equal for all genes. Therefore, a high entropy of X, H(X), indicates substantial
unpredictability in the gene expression across the samples. Similarly, a high joint entropy
H(X, Y) signifies considerable variability in the combined distribution of gene expression and
class labels. The MI score ranges from 0 to infinity. A mutual information score of 0 implies
that knowing one variable provides no information about the other. Conversely, a high MI
value suggests a strong relationship or dependency between variables X and Y. In the context
of genes and classes, a gene with a higher MI score implies that it gains more information
when the class is known. Therefore, when selecting genes based on mutual information scores,
the set of genes with the highest MI scores is chosen. These genes are considered to have
the strongest association with the class variable, making them potentially more informative
for tasks such as classification or understanding the relationship between gene expression
patterns and class labels.

2.5. The Protein–Protein Interaction Network and Network Diffusion Technique

The protein–protein interaction network was constructed from STRING database
version 12.0 [25]. A subnetwork is selected based on the criterion of a combined score
greater than 0.4, resulting in 19,038 protein nodes and 901,089 edges. Network diffusion is
a network-based technique that requires the input of a network with initial seed nodes. Let
G be the network with n nodes, and W be the weighted adjacency matrix of G. Assume that
D is an n × n diagonal matrix where Dii = ∑j Wij, and L = D−W is called the Laplacian

of the graph. The regularized Laplacian kernel is introduced in [26] as K = (I + αL)−1,
where I is an n× n identity matrix. The network diffusion score is computed as Sdi f f = K·y,
where y is a binary vector of length n, with 1 assigned to the seed nodes and 0 otherwise.
The overlapping set of genes found by the DESeq2 and mutual information techniques was
identified as potential biomarkers. The proteins corresponding to these selected genes were
considered seed nodes whose relevant scores were distributed along the edges of the PPI
network. The diffusion scores were then sorted in descending order, and a top percentage
was determined as a cutoff. This set of genes has a strong biological relationship with our
identified genes and is further used for pathway enrichment analysis.
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2.6. Pathway Enrichment Analysis

The pathway enrichment analysis is performed using “Metascape” [27]. This web-
based tool includes functional and pathway terms from Gene Ontology (GO) processes,
KEGG pathways, Reactome pathways, canonical pathways, WikiPathways, and CORUM
pathways. The hypergeometric test with the Benjamini–Hochberg statistical correction
algorithm is utilized. GO biological processes and KEGG pathways are chosen, with a
minimum pathway size of 10 and a maximum of 500. Pathways meeting the significance
criterion of a p-value < 0.01 are selected for further analysis.

3. Results
3.1. Potential Biomarkers by Differentially Expressed Genes and Mutual Information

In this study, we obtained fifteen formalin-fixed paraffin-embedded (FFPE) breast
cancer tissues from breast cancer patients (see Section 2.2 for more details). With a low
number of samples in comparison between high and low TB, traditional analysis of differ-
entially expressed genes using DESeq2 may provide some bias due to the low data entry
when calculating either a mean value or median value for comparing between the two
groups of samples. Therefore, in our analysis, we propose the use of the mutual informa-
tion technique (very well known as a great tool for feature selection techniques [13,28]).
Since the mutual information will capture the values of all the members in one group and
separate them from the other group, the final list comprises overlapping genes found to
have significantly different expressions by DESeq2 and high uncertainty by the mutual
information technique.

Using DESeq2, we identified 99 significantly differently expressed genes with an ad-
justed p-value < 0.05 and |logFC|> 1.5 (see Table S1 for the complete list). Concurrently, a
higher MI score indicates a closer relationship between a gene and its class, with each gene’s
MI score provided in Table S2. However, there is no standard cutoff for MI scores. The dis-
tribution of the MI scores, shown in Figure S1, indicates that only 56 genes have the highest
MI score of 0.5004. Interestingly, most of these genes exhibit a high classification power, as
shown in Figure S2. The results from DESeq2 revealed a significant difference in the mean
of the normalized counts between the two classes, while mutual information demonstrated
greater efficacy in class separation, particularly for small sample sizes. The effectiveness of
mutual information in providing better classification is discussed in Sections 3.2 and 3.3. In
short, we demonstrate that the inclusion of MI or mutual information yields more reliable
results and related functional pathways. Therefore, we utilized the intersection of these
two approaches to enhance the likelihood of identifying potential biomarkers. Table 2 lists
seven potential biomarkers identified using both methods, along with their corresponding
statistical information. The baseMean values represent the average of the normalized read
counts, while the logFC values indicate up-regulation or down-regulation. NEIL1 exhibited
the highest baseMean, indicating high expression across most samples, while STAR had
the lowest. NEIL1, SLC46A3, FRMD6, and SCARF2 were up-regulated, while NOL4, STAR,
and C8G were down-regulated. Figure 2 depicts the normalized gene expression counts of
all the biomarkers obtained.

Table 2. Statistical information on seven potential biomarkers.

Genes baseMean logFC lfcSE Stat p-Value Adjusted p-Value

NOL4 200.02 −5.14 1.1013 −4.6685 3.03 × 10−6 0.002490
STAR 36.16 −5.00 1.1492 −4.3530 1.34 × 10−5 0.005210
C8G 216.37 −4.84 0.9440 −5.1302 2.89 × 10−7 0.000580

NEIL1 588.06 3.16 0.8325 3.8001 0.000145 0.029210
SLC46A3 244.48 2.97 0.6544 4.5456 5.48 × 10−6 0.003100
FRMD6 441.97 2.00 0.4376 4.5627 5.05 × 10−6 0.003100
SCARF2 159.33 3.28 0.8192 4.0070 6.15 × 10−5 0.015180
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Figure 2. Plot depicting the expression of the identified gene set, where the y-axis represents the
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offset to enhance the visibility of individual points.

As shown in Table 2 and Figure 2, we identified seven potential genes within breast
cancer: NOL4, STAR, C8G, NEIL1, SLC46A3, FRMD6, and SCARF2. Their biological and
tumor-related functions are summarized in Table S3. In short, NEIL1 (Nei Like DNA Glyco-
sylase 1) is involved in DNA repair and is up-regulated in breast and lung cancer, reducing
cancer cell death and promoting cancer progression [29–31]. SCARF2 (Scavenger Receptor
Class F Member 2) is involved in endocytosis, lipid metabolism, and cell adhesion and is
up-regulated in various cancers, promoting tumor progression [32,33]. NOL4 (Nucleolar
Protein 4) is involved in ribosome biogenesis and RNA processing and is up-regulated in
various cancers, also promoting tumor progression [34–38]. STAR (Steroidogenic Acute
Regulatory Protein) is crucial for steroid hormone synthesis, with its increased expression
promoting certain types of breast cancer [39–42]. C8G (complement C8 gamma chain)
facilitates membrane attack complex (MAC) formation and cell lysis and is down-regulated
in breast cancer, suggesting the suppression of cell lysis [43]. FRMD6 (FERM Domain-
Containing 6, known as Willin) is an upstream regulator of the Hippo signaling pathway
and is mentioned to have both tumor-suppressive and tumor-promoting effects [44–47].
SLC46A3 (solute carrier family 46 member 3) transports folate derivatives [44]. Loss of SLC46A3
increases the resistance of HER2+ breast cancer to trastuzumab emtansine [44,48–50]. Further
details on these genes and the supporting literature are discussed in our discussion section.

3.2. Effectiveness of Potential Biomarkers in Distinguishing between Low- and High-TB Samples

We assessed the effectiveness of potential biomarkers in distinguishing between low-
and high-TB samples by employing heatmap plots to illustrate sample clusters based on
their expression profiles. Figure 3 contains two columns. The first column illustrates
the correlation between the expression profiles of the identified biomarkers for different
techniques. The color intensity reflects the strength of the correlation between samples,
revealing distinct expression patterns within each sample. The second column displays
the corresponding principal component analysis (PCA), which visualizes the distributions
of the samples based on the first two principal components derived from the expression
data of the identified genes. Each sample is represented by a point, with colors and
shapes indicating different TB levels. Figure 3A presents a heatmap of the correlations
between the expression profiles of the 99 DEGs obtained across the BCA samples using
DESeq2. Figure 3B shows a PCA plot of the first two principal components, where each
point represents a sample, with the colors and shapes indicating different levels of tumor
budding (TB). Notably, the three samples of low TB could not be grouped together into
one cluster for the BCA samples, highlighting the limitations of solely relying on the
traditional method of comparing the mean values for small sample sizes. In contrast,
key biomarkers identified by the mutual information technique (Figure 3C,D) exhibit a
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clear distinction between the low- and high-TB samples. Finally, the heatmap and PCA
plots using the expression profiles of the biomarkers detected by both DESeq2 and mutual
information are shown in Figure 3E,F. These potential biomarkers can classify samples with
different TB levels, a task which is not achievable using the genes identified by DESeq2 or
mutual information alone. Moreover, the expression profiles of the genes discovered via the
mutual information technique demonstrate improved clustering of the low- and high-TB
samples compared to those of DESeq2. However, the overlapping genes found by both
DESeq2 and mutual information constitute the best set for distinguishing between low- and
high-TB samples.
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(A,B), biomarkers detected by mutual information (C,D), and the seven potential biomarkers detected by
DESeq2 and MI (E,F). The first column depicts the clusters and the correlations among expression profiles,
while the second column displays the corresponding PCA plot of the first two principal components.
Color intensities in the heatmaps reflect the strength of the correlation. Points in the PCA plots represent
samples, with colors and shapes denoting different groups.
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3.3. Relevant Proteins and Functional Pathway Enrichment Analysis

To enhance our understanding of the functional implications associated with the seven
biomarkers (NOL4, STAR, C8G, NEIL1, SLC46A3, FRMD6, and SCARF2), we employed a
network diffusion technique within a human protein–protein interaction network (details
in Section 2.5). By using these biomarkers as seeds, we identified an additional 191 proteins
related to the seeds for pathway enrichment analysis. Enrichment analysis was conducted
using “Metascape” [27], focusing on Gene Ontology (GO) biological processes and KEGG
pathways, resulting in 115 significant pathways (p-value < 0.01), as presented in Table S4.
The top 20 enriched pathways were sorted based on the gene ratio within each pathway
and visualized using the “clusterProfiler” R package [51], as depicted in Figure 4A. Using
Cytoscape v3.10.1 [52], we visualized the PPI subnetwork enriched with the top five
pathways, showcasing their interconnectedness in Figure 5.
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Figure 5. The protein–protein interaction subnetwork comprises proteins associated with the seven
biomarkers detected by the diffusion technique as their diffusion scores rank above the 99th percentile.
Node colors reflect the logFC values, with upward triangles denoting up-regulated genes, diamonds
indicating down-regulated genes, and octagons representing genes with no significant change. Genes
associated with a pathway of interest are grouped together.

Figure 4A illustrates the pathway enrichment results for the biomarkers detected by
both DESeq2 and the MI technique. Base excision repair AP site formation and Hippo
signaling were found to be significantly enriched with high gene ratios, both exceeding 0.6.
Base excision repair proteins including XRCC1, APE1, SMUG1, and FEN1 were significantly
associated with poor breast-cancer-specific survival [53]. Additionally, Hippo transducers
play crucial roles in breast cancer formation, progression, and dissemination and are
therefore suggested as potential therapeutic targets [54]. Without using MI, DEGs identified
by DESeq2 served as seeds for computing the network diffusion in the PPI network.
Subsequently, the top 99th percentile of the results was selected for the enrichment analysis,
yielding 37 GO and KEGG pathways (Table S5).

Figure 4B presents the top 20 GO pathways sorted by gene ratio. These pathways,
when compared to those identified using MI, are distinct and free of duplicates. All of
the enriched pathways have very low gene ratios. The pathway with the highest gene
ratio, close to 0.225, is calcium-dependent cell–cell adhesion via plasma. The absence of MI
results in a variety of genes in different pathways, which consequently provides a broader
seed set. Notice that this also leads to higher diffusion scores across nodes in different
components, resulting in multiple top-ranked genes within the subgraphs of the PPI
network, as illustrated in Figure S3. These subgraphs exhibit lower connectivity compared
to the single component obtained with the seeds from DESeq2 and MI, as shown in Figure 5.
Nodes that are well connected in the PPI network typically share similar functions and
contribute more effectively to the enrichment analysis. Thus, incorporating MI yields a
higher gene ratio (up to >0.8, as shown in Figure 4A), underscoring its significance in
enhancing the analysis outcomes.

4. Discussion and Conclusions

In this study, we demonstrate using TempO-Seq to extract transcriptomic data on
cancer cells in breast cancer subtypes to identify key biomarkers associated with high levels
of TB, indicative of disease pathogenesis and progression. TempO-Seq has transformed
gene expression analysis by directly measuring the activity in tissue samples without
requiring RNA extraction. This technique offers exceptional precision and sensitivity [7].
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Although FFPE samples typically yield fewer detected genes compared to fresh tissues,
improvements have been made over time [6,55]. While RNA-Seq can provide broader gene
detection and has become a standard method in many studies, it is often more prone to
noise [5]. In breast cancer research, TempO-Seq was used to identify DEGs in tumors with
low versus high cytoplasmic CAIX, highlighting the effective use of TempO-Seq [56].

The challenges posed by small sample sizes in cancer research are well recognized,
particularly in the context of detecting differential gene expression. Traditional methods
often rely on statistical tests that may lack robustness with limited sample sizes [57]. To
address this, we employed mutual information techniques, which are adept at identifying
features or genes differentiating two groups of small samples, such as low and high TB,
as in our case. With our small sample sizes, mutual information proves more robust
than traditional statistical tests, as it does not rely on assumptions about the underlying
data distribution. Additionally, our study demonstrates that using mutual information
is crucial for screening significant genes in network diffusion and functional enrichment
analyses. While single methods like DESeq2 may detect numerous genes, including non-
relevant ones, this can result in network diffusion valuing various pathways less important
to high-tumor-budding breast cancer. Moreover, a larger number of seed genes in the
diffusion technique can lead to diverse clusters in the PPI network, which may correspond
to different functions and may be less suitable for enrichment analysis.

Combining significant differentially expressed genes (DEGs) and important genes
identified by mutual information provides better potential biomarkers than either approach
alone. Subsequently, we identified seven potential genes related to tumor budding in breast
cancer (NOL4, STAR, C8G, NEIL1, SLC46A3, FRMD6, and SCARF2).

Each gene found in all breast cancer subtypes with high TB plays a different role in
cellular processes. Firstly, NEIL1 (Nei Like DNA Glycosylase 1) is involved in the DNA
repair process, specifically in the base excision repair pathway, which repairs damaged
DNA bases [29]. Dysregulation of the DNA repair process leads to genomic instability.
Consistent with this study, previous studies showed that the expression of NEIL1 was
up-regulated in breast and lung cancer cell lines, and NEIL1 silencing resulted in cancer cell
apoptosis by increasing the pro-apoptotic protein (Bax) and decreasing the anti-apoptotic
protein (Bcl-2) [30,31]. These results suggest that NEIL1 helps maintain genomic stability,
leading to a reduction in cancer cell death and eventually promoting the progression of
breast and lung cancer.

SCARF2 (Scavenger Receptor Class F Member 2) is a member of the scavenger receptor
family involved in various cellular processes, including endocytosis, lipid metabolism,
and cell adhesion [32]. It functions as a receptor for various ligands, including modified
lipoproteins and extracellular matrix proteins [32]. Meanwhile, NOL4 (Nucleolar Protein 4)
is a nucleolar protein involved in ribosome biogenesis and RNA processing [34]. It plays a
role in the assembly and maturation of ribosomes, the cellular machinery responsible for
protein synthesis [34]. It was reported that SCARF2 and NOL4 were up-regulated in various
types of cancers [33,35–38], and they promoted tumor progression and metastasis [33,35–38].
However, direct evidence linking SCARF2 or NOL4 to breast cancer is limited. Further research
is needed to elucidate the specific mechanisms by which SCARF2 and NOL4 contribute to
breast cancer pathogenesis.

Moreover, in this study, we found that Steroidogenic Acute Regulatory Protein (STAR)
and complement C8 gamma chain (C8G) were down-regulated. STAR plays a crucial role
in steroid hormone synthesis, particularly in transporting cholesterol into the mitochondria
for steroidogenesis [39], and the increased expression of STAR promotes the development
and progression of certain types of breast cancer, particularly hormone receptor-positive
breast cancer [40–42]. Interestingly, C8G is responsible for stabilizing the interaction be-
tween the complement components C8α and C8β and facilitating their assembly into the
complement membrane attack complex (MAC) [43]. Once the MAC is formed, it inserts
into the membrane of the target cell, disrupting its integrity and ultimately causing cell
lysis [43]. We found that in all the breast cancer subtypes with high TB, the expression
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of the C8G gene was down-regulated, suggesting that cell lysis is suppressed and may
contribute to breast cancer progression. However, a previous study reported that C8G
expression was increased in the exosome of rectal cancer patients who responded well to
neoadjuvant therapy [58]. Therefore, C8G might have specific function in each type of cancer.

FERM Domain-Containing 6 (FRMD6), also known as Willin, is an upstream regulator
of the Hippo signaling pathway that has recently been shown to modulate actin cytoskele-
ton dynamics and the mechanical phenotype of neuronal cells [44]. FRMD6 is reported
to exert both tumor-suppressive [45–47] and tumor-promoting [59,60] effects in various
types of cancers, but still no evidence has been reported on breast cancer. However, in this
study, we found that FRMD6 gene expression was up-regulated, suggesting FRMD6 might
exhibit tumor-promoting effects in this scenario.

SLC46A3 (solute carrier family 46 member 3) belongs to the SLC46 family of solute
carriers, which are responsible for transporting folate derivatives into cells [44]. Several
studies have reported the association of SLC46A3 with breast cancer [44,48–50]. Loss of
SLC46A3 was reported to increase the resistance of HER2+ breast cancer to trastuzumab em-
tansine [44,48–50], and the efficacy of trastuzumab emtansine was reduced when SLC46A3
was inhibited [44,48–50]. Apart from breast cancer, a low level of this gene was related
to the aggressive type of hepatocellular carcinoma [61], indicating that SLC46A3 is an
important molecule that exhibits anti-tumoral effects.

Further investigation based on protein–protein interaction networks and network
diffusion was performed to elucidate the specific mechanisms by which these genes con-
tribute to breast cancer pathogenesis. This revealed enrichment in the Hippo signaling
and Wnt signaling pathways, which are known to promote tumor initiation, invasion, and
metastasis in several cancer types. Additionally, the use of network diffusion techniques
allowed us to uncover additional proteins closely related to our identified biomarkers,
thereby expanding our understanding of the functional pathways implicated in breast
cancer development and progression. This integrative approach enables the identification
of interconnected signaling pathways and regulatory networks that drive oncogenesis,
offering new avenues for therapeutic intervention. The crucial issue with this approach
is the selection of the initial seed genes or proteins in the PPI network, which iteratively
distribute their scores to related partners. It is important to consider both the number of
seeds and their potential significance as representatives of the specific interest, which in
our case is high tumor budding in breast cancer. We demonstrated that the enrichment
results, with small seed sets highly related to breast cancer, identified by DESeq2 with
mutual information, provided reasonable functional relevance to cancer and more robust
clusters in the PPI network.

Taken together, our study demonstrates the utility of TempO-Seq in uncovering the
dynamic gene expression changes associated with breast cancer and highlights the potential
of integrated analyses to elucidate the complex regulatory networks underlying cancer
pathogenesis and identify novel therapeutic targets. Our findings provide insights into
cancer biology and personalized treatment approaches, emphasizing the need for further
investigation into the mechanisms underlying the involvement of NOL4, STAR, C8G, NEIL1,
SLC46A3, FRMD6, and SCARF2 in breast cancer pathogenesis. This presents opportunities
for the development of novel therapeutic strategies and personalized treatment approaches
tailored to individual patients.

In clinical data and gene expression data analysis, small sample sizes pose significant
challenges that can impact the validity and reliability of the results. In our case, we have
only 15 breast cancer samples (12 samples in the high-TB group vs. 3 samples in the low-TB
group). To enhance the reliability of our analysis, DESeq2 and mutual information were
applied, and network diffusion analysis of the PPI network was performed to extract
potential biomarkers and their functional pathways. While our results provide initial
insights into the gene expression changes associated with high-TB cases, the small sample
size necessitates caution in the interpretation. Further experiments and analyses with
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larger, more comprehensive studies are required to validate these findings and explore
their clinical implications.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biom14080896/s1. Table S1: Statistical information on
significant DEGs; Table S2: Mutual information score for each gene [62–86]; Table S3: The biological
and tumor-related functions of the potential biomarkers; Table S4: GO and KEGG pathway enrich-
ment results; Table S5: GO and KEGG pathway enrichment results without using MI; Figure S1:
Histogram of MI score; Figure S2: Normalized count of genes with the highest MI score; Figure S3:
The PPI subnetwork containing nodes with diffusion scores rank above the 99th percentile without
using MI.
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