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Abstract: Musculoskeletal sarcomas pose major challenges to researchers and clinicians due to their
rarity and heterogeneity. Xenografting human cells or tumor fragments in rodents is a mainstay
for the generation of cancer models and for the preclinical trial of novel drugs. Lately, though,
technical, intrinsic and ethical concerns together with stricter regulations have significantly curbed
the employment of murine patient-derived xenografts (mPDX). In alternatives to murine PDXs,
researchers have focused on embryonal systems such as chorioallantoic membrane (CAM) and
zebrafish embryos. These systems are time- and cost-effective hosts for tumor fragments and near-
patient cells. The CAM of the chick embryo represents a unique vascularized environment to host
xenografts with high engraftment rates, allowing for ease of visualization and molecular detection of
metastatic cells. Thanks to the transparency of the larvae, zebrafish allow for the tracking of tumor
development and metastatization, enabling high-throughput drug screening. This review will focus
on xenograft models of musculoskeletal sarcomas to highlight the intrinsic and technically distinctive
features of the different hosts, and how they can be exploited to elucidate biological mechanisms
beneath the different phases of the tumor’s natural history and in drug development. Ultimately, the
review suggests the combination of different models as an advantageous approach to boost basic and
translational research.

Keywords: patient-derived xenografts (PDX); cell-derived xenografts (CDX); murine models;
zebrafish; chorioallantoic membrane (CAM); musculoskeletal sarcomas

1. Introduction

Sarcomas account for less than 1% of adult malignancies and 12–15% of paediatric
tumors [1]. Historically, sarcomas have been categorised according to the anatomical site
of occurrence in Bone Sarcomas (BS) (15%), Soft Tissue Sarcomas (STS) (80%) and Gastro-
Intestinal Stromal Tumors (GIST) (5%) [2]. Nowadays, the World Health Organization
distinguishes over 100 histological subtypes with peculiar morphology and molecular
traits [3,4]. Moreover, many histotypes are exceedingly rare (less than 1 case/1,000,000 per-
sons) [5]. More than 90% of BS are classified as osteosarcomas (OS), Ewing sarcomas (EWS),
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or chondrosarcomas (CHS) [3]. Among STS, liposarcoma (LPS) and leiomyosarcoma (LMS)
represent the most common histologic subtypes in adults, while rhabdomyosarcoma (RMS)
is the most prevalent histotype in children [6]. The reader is referred to Table 1 for clinico-
pathological details. To date, the gold standard treatment for localised sarcoma is surgery,
often in combination with radio- and/or polychemotherapy [1]. Unfortunately, around one
third of sarcoma patients still have a dismal prognosis, and those with metastatic disease
medially survive only 12 months [2]. Targeted drugs may overcome the limits of current
therapies, however, the selection of proper actionable targets in sarcomas is challenging [1].
Based on omic analyses, a plethora of novel therapies has been proposed, however, their
translation into the clinical praxis is discouraged by the unsatisfactory results obtained in
clinical studies so far [7,8]. This reflects the lack of faithful research tools to model cancer
phenotype at the molecular and organism levels [1,7]. Therefore, preclinical models that
incorporate the biology and genetics of human cancers and preserve inter- and intra-tumor
heterogeneity are compelling to obtain reliable and translatable results [7,8]. On the other
hand, the drug-screening pipeline requires high-throughput and time-effective systems.
Cell line-derived xenograft (CDXs) models have represented, up to now, the workhorse
for basic and translational research, thanks to their consistency and cost-effectiveness, but
patient-derived xenografts (PDXs) are currently recognized as the most effective preclinical
model for phenocopying cancer biology and architecture, and studying drug response
and resistance [8,9]. Both technical (low success rate and through-put, long experimental
time, lack of tools to follow tumor growth) and intrinsic (lack of immune milieu, stroma
substitution by host cells [10], different pharmacokinetics, and long-term model insta-
bility [11,12]) concerns profoundly burden this model [7]. The transposition of the EU
Directive 2010/63/EU on the protection of animals used for scientific purposes under
national laws has resulted in strict regulation, reflecting the growing ethical concerns
around the use of adult animal experimentation [13]. Therefore, researchers are turning
their attention to non-mammalian embryonal models, such as zebrafish larvae [14] and
chick embryos [15]. Embryonal models fall under the aegis of less restrictive regulation [16]
until they are capable of independent feeding (chick embryo: hatching; zebrafish: 5 days
post-fertilization (dpf) [17]) and, most importantly, until they acquire the ability to feel
pain (chick embryo: >13 egg development day (EDD) [18,19]; zebrafish: 5 dpf). Moreover,
mice are kept under conditions that respect animal welfare, but do not represent life “as
in the wild”—on the contrary, embryonal systems do not suffer environmental distress.
Technically speaking, embryonal systems hold the promise of higher manageability without
the need for animal facilities, higher throughput, and lower costs [14,15,20]. Zebrafish (ZF)
has emerged as an innovative in vivo model due to its unique combination of genetic and
physiological features. Its rapid development, embryo body transparency, high fecundity
and easy genetic manipulation make ZF a suitable approach for preclinical studies [14].
Moreover, the ZF genome has been completely sequenced showing high homology to
human DNA, and the larvae are therefore recognized as a suitable organism for genetic
manipulation [21]. In this scenario, ZF xenografts represent a unique approach to inves-
tigate complex biological processes, to uncover molecular mechanisms, and to develop
drug-screening platforms [14,22]. The chicken chorioallantoic membrane (CAM) model
has been widely used for studies on angiogenesis and tumorigenesis on prostate cancer,
glioblastoma, OS, and lung adenocarcinoma, thanks to its transparency and strongly vascu-
larized structure [23]. Moreover, the CAM can host xenografts of human tumor cells and
patient-derived fragments, given its immature immune system [24]. CAM has many advan-
tages, such as ease of access, short experimental times, and cost-effectiveness. Xenografting
human tumor cells or tissues on CAM induces angiogenesis, and this can be exploited
for both basic research and the development of novel antiangiogenic therapies [25]. The
choice of the host and of the procedure for a xenograft strictly depends on the experimental
question of interest. The intrinsic and technical peculiarities of the different models can be
exploited to represent and elucidate biological mechanisms which are specific to the differ-
ent phases of the tumor’s natural history. This review of musculoskeletal sarcomas (MSKT)
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models aims to highlight the peculiar features and potentialities of the different xenograft
hosts in the study of the different steps of tumor natural history and drug development,
with the aim of generating awareness of the choice of the proper model and to prompt the
integration of different models, boosting basic and translational research.
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Table 1. Sarcomas of the musculoskeletal system. The table reports the main molecular and clinical features of selected MSKT.

Sarcoma Type Pathognomonic Feature Incidence @ 5-Year Overall
Survival Primary Site Main Metastasis

Site Therapy Refs.

Osteosarcoma
(OS) BS

Multiple chromosomal
aberrations; frequent TP53

and
RB1 mutations; DNA

helicase disorders

3–4.5 * 60% * Knee, humerus Lungs

Neo-adjuvant and adjuvant
chemotherapy (Methotrexate,

Adriamycin, Cisplatin (MAP));
surgery or radiotherapy where

surgery is not possible

[26,27]

Ewing sarcoma
(EWS) BS 85–90% EWS::FLI1

translocation <1 70% # Long and flat
bones

Lungs, bone, bone
marrow

Induction chemotherapy
(doxorubicin, etoposide,

cyclophosphamide, vincristine,
and ifosfamide); surgery;

radiotherapy

[28]

Chondrosarcoma
(CHS) BS IDH1/2, EXT1/2 mutations <6

>90% (low grade);
75% (II grade);
30% (III grade)

Proximal femur,
humerus, tibia,

pelvis and scapula
Lungs Surgery [29–31]

Liposarcoma (LPS) STS MDM2, CDK4 amplification 10
93% (grade I §);

57% (grade II §§);
21% (grade III §§)

Most commonly in
thigh,

retroperitoneum,
inguinal region

and popliteal fossa

Retroperitoneum,
distant sites and

soft tissue sites §§
Surgery; chemoradiotherapy [32,33]

Rhabdo-
myosarcoma

(RMS)
STS

PAX3::FOXOA1 and
PAX7::FOXOA1

translocations; RAS-PI3K,
RTK signaling, loss of

PTEN, TP53 and CDKN2A
in fusion negative RMS

4.5 ˆ >70%
Head, neck,

genitourinary
tract, limbs

Lungs, bone and
bone marrow

Surgery, ionizing radiation,
chemotherapy (vincristine,

actinomycin D,
cyclophosphamide (VAC);

Ifosfamide)

[34]

Myxofibrosarcoma
(MFS) STS Highly complex karyotypes 1 75%

Lower limbs,
trunk, head and

neck

Lungs, bone and
lymph nodes

Surgery; radiotherapy;
chemotherapy (doxorubicin,

ifosfamide)
[35,36]

Synovial Sarcoma
(SS) STS 95% SYT::SSX1/2/4

translocation 1–2 76% # Extremities Lungs, bone and
lymph nodes

Surgery; radiotherapy;
chemotherapy (anthracycline plus

ifosfamide, gemcitabine,
docetaxel, trabectidin, VAC)

[37]

Leiomyosarcoma
(LMS) STS Highly complex karyotypes

with genomic instability 6 50%
Commonly in

peritoneum and
extremities

Lungs,
peritoneum, liver,

and bone

Surgery; radiotherapy;
chemotherapy
(doxorubicin)

[33]

Undifferentiated
pleomorphic

sarcoma (UPS)
STS Highly complex karyotypes 8–10 48%

Long bones,
preference for

proximal tibia and
distal femur

Lungs
Surgery; radiotherapy;

chemotherapy
(anthracycline and ifosfamide)

[38,39]

Notes: @ cases/106 population/year; * in children and adolescents; # local disease; § well-differentiated LPS; §§ de-differentiated LPS; ˆ aged under 20.
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2. Xenografting MSKT

According to the National Cancer Institute Dictionary of Cancer Terms, the term
“xenograft” refers to the transplant of an organ, tissue, or cells to an individual of another
species [40]. While xenografts obtained by injection of established or near-patient cells
(cell-derived xenografts, CDXs) are more reproducible and provide higher throughput,
xenografting tumor fragments (patient-derived xenografts, PDXs) has the advantage of
maintaining cellular heterogeneity and architectural features of the original tissue [8].
Xenografts of MSKT have been reported in rodents, especially in mice (m), embryonic and
adult ZF (z), and CAM (ovo). Notably, xenografts in mice are regulated by the EU Directive
on the protection of animals used for scientific purposes, while embryonal models are
not considered animals until they are able to feed themselves, hence simplifying bureau-
cracy [16]. In the following paragraphs, technical details of the xenografting procedure
in the different hosts are discussed for the sake of comparison (Figures 1 and 2). The
description of the detailed protocols for the obtainment of CDXs and PDXs from each host
is beyond the scope of this review, therefore, the readers are referred to technical papers
and reviews for further information [41–48].

The earliest reports of xenotransplantation of MSKT into nude mice were published
around the 1980s [49–51], but mPDX have re-gained momentum only in the last two
decades. Obtaining an mPDX is a demanding endeavour, requiring an adequate tumor
specimen (>1 mm3 and 10% viability [52]) and immune-compromised mice, which en-
tail cumbersome sterile handling, significant costs and time (latency reaches 1 year [53]),
imaging systems adapted to animal hosts, and experience in handling, given the low en-
graftment rate (Table 2). Moreover, an mPDX should be serially transplanted at least twice
to obtain a stable model, and validated for its fidelity to the original tumor (Figure 1A) [7].
Indeed, preserving the tumor microenvironment from the donor tumor is the premise
for the study of the tumor behaviour in vivo. However, passage after passage, the tumor
stroma is increasingly replaced by the host stroma, and a decrease in tumor fidelity is
generally observed. The replacement of the stroma is mostly considered an acceptable
drawback of the model, since Arnaud Blomme et al. demonstrated that the metabolic
profiles of both tumor cells and stromal cells remain stable for at least four passages, even
though the replacement began at the second passage [10]. Ultimately, this large amount of
work is rewarded by the creation of living biobanks of MSKT, which virtually eternalize a
tumor specimen and render it available for future studies (Table 2). In respect to mPDX,
establishing ovoPDXs is simpler to accomplish. Back in 1911, CAM represented the very
first host for xenografts, while MSKT were transplanted only in 2012 [44,54]. Indeed, the
high density of blood vessels creates an ideal milieu for tumor growth due to the ubiquitous
supply of oxygen, nutrients, and growth factors [55]. In addition, ovoPDXs present unique
advantages as grafts are visible to the naked eye, allowing for easy monitoring under a
stereomicroscope [15]. Chick embryos are inexpensive and easy to manipulate as they are
immunodeficient up to 18 EDD, experiments run in 10 days, and engraftment rates reach
80% in MSKT [44]. However, this ease comes at a price. Indeed, the amount of tumor
tissue retrievable at the end of the experiment is similar to that at the start, limiting the
possibility of down-stream molecular analysis (Figure 1B). For this reason, even if serial
passages of ovoPDX are feasible up to 8 times in OS [56], these models cannot contribute to
the creation of living biobanks. Notably, ovoPDXs allow for the mimicking of neoangio-
genesis in vivo: indeed, after a first avascular phase of around 72–96 h after implantation,
neovascularization occurs, in which the anastomosis between the CAM vasculature and
the tumor vasculature is established, providing nutrients for a rapid growing phase [57].
Finally, one research group reported the feasibility of zPDX of gastrointestinal tumors
in embryos [58,59] and in adult fish [60], however, the application of this technique is
discouraged by the small embryo size.
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Figure 1. Methodologies and applications of CDXs and PDXs in the different hosts. Each figure 
reports a timeline of xenografting experiment, including technical details and downstream 
Figure 1. Methodologies and applications of CDXs and PDXs in the different hosts. Each figure reports
a timeline of xenografting experiment, including technical details and downstream applications.
(A) mice; (B) chick embryo; (C) zebrafish larvae. Timeline specifications: M: months; EDD: egg
development days; dpf: days post-fertilization.
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Figure 2. Comparison of CDXs and PDXs in the different hosts. The table highlights the limits and
potentialities of xenograft in mouse, chick embryo, and zebrafish larvae.

CDXs can be obtained from established or near-patient cells, including primary and
mPDX-derived cells. mCDX with established cell lines and their gene-edited or drug-
resistant variants have been considered the workhorse for basic and translational re-
search [9]. They usually require 1–5 × 106 cells/mouse and experiments run over a
few months (Tables 3 and 4; Figure 1A). mCDX of near-patient cells represent a win–win
approach that couples the fidelity and heterogeneity of patient-derived samples with the
manageability, time-effectiveness, and scalability of CDX [61]. Even though CAM is an
established in vivo model to evaluate the progression of CDXs [15], there are only a few
reports describing its use for BS and STS analysis, mostly focused on OS. In 2010, Balke
et al. reported the ability of different OS cell lines (MNNG-HOS, U2OS and SaOS) to
form vascularized solid tumors on CAM after four days of incubation [25]. Of note, the
amount of xenografted cells for ovoCDX may be equal or even superior to mCDX, but
experimental times are shorter (Figure 1B). On the other hand, zCDX can be considered
miniature models as they only require <103 cells, rendering them particularly suitable for
precious near-patient cells [62] (Figure 1C). zCDX also minimises experimental timelines to
just a few days, as well as costs and the manipulation. Moreover, ZF embryos stand out for
their optical transparency, facilitating in vivo imaging of engrafted cells [14].

The morphological and morphometric evaluation of newly formed tissues is feasible
in all xenograft hosts, but it is more challenging in ZF samples due to their small size and
the limited number of available antiZF antibodies [63]. Down-stream molecular analysis is
theoretically feasible for all the models, yet the amount of the available material is limited
in the case of ZF and chick embryo. Technological development, especially in the field of
imaging, has opened up new possibilities to quantify primary tumor growth and the study
of tumor cells’ migration in the embryonal models.

In the next sections, we will compare different xenograft hosts and modalities, and
highlight their peculiarities with respect to the different steps of tumor natural history,
i.e., tumorigenesis, angiogenesis, and metastatization, as well as their potentialities in
translational research.
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Table 2. mPDX collections for MSKT. The table reports injection site, engraftment rate, latency of
selected collections of MSKT mPDX, and their applications.

Tumor-Related Features PDX-Related Features Applications Refs.
Sarcoma

Histotype
Inoculated

Mass Injection Site Tumor Take
(%)

Latency of 1◦
Passage

OS and EWS nd flank, s.c. 25/49 (51%) 16–280 days modeling [64]
LPS, LMS, MFS,
SS, UPS, CHS

and other $
25–75 mm3 bilaterally s.c. 32/188 (17%) ns drug testing; Xenosarc

platform [65,66]

CHS 2 mm3 s.c. ns ns omic analysis [67]

OS 2–3 mm3 flank, s.c. 15/37 (40.5%) 19–225 days
modeling;

clinicopathological
correlations

[52]

OS and EWS 4 mm3 transscapular
brown fat, s.c.

OS:22/61 (36%)
EW:7/29 (24%) 1 week–1 year modeling; target

dependencies; drug testing [53]

LPS 4 × 4 mm bilaterally s.c. 7/10 (70%) 2–9 months drug testing [68,69]

OS, EWS, RMS 2 × 2 × 1 mm s.c.

EW: 17/41
(41.55%); OS:
5/12 (41.7%);
RMS: 8/15

(53.3%)

ns
modeling;

clinicopathological
correlations; drug testing

[70]

OS, RMS 2 × 2 mm3 flank, s.c. OS: 51.4%
RMS: 53.8% 300 days target dependencies [71]

OS 3 mm3 flank, s.c. 9/21 (42.9%) 3–9 weeks modeling [72]

LPS diameter of
3–5 mm lower back 25/56 (44.64%) ns drug testing [73]

OS 2 mm in
diameter flank, s.c. 20/57 (35.1%) ns

modeling;
clinicopathological

correlations
[74]

LMS ns s.c. 17/49 (35%) ns target dependencis [75]

OS, EWS, RMS,
SS, other * 2–5 mm3 interscapular

fat pad, or i.m. 76/131 (58%) 12–285 days
modeling; target

dependencies; drug
testing; MAPPYACTS

[76]

Sarcoma
(NCI PDXNet
consortium)

ns s.c. ns ns

modeling;
clinicopathological
correlations; target

dependencies

[77]

RMS 25–30 mm3 flank, s.c. 50% (6/12) 195 days
(median) modeling [78]

OS, LMS, LPS 1–2 mm3 flank, s.c. ns ns modeling; EuroBoNeT [79,80]
BS 3 × 3 × 3 mm flank, s.c. 16 19–125 days modeling [63]

STS 5-mm
fragments

orthotopic, i.m.
or s.c. 32/107 (29.9%) 9–184 days

modeling;
clinicopathological

correlations
[81]

OS, EWS, RMS,
other §

single-cell
suspension orthotopic

OS 15/31 (48%);
RMS 13/20

(65%); EWS 2/7
(29%); other
5/6 (83%)

1–11 months
modeling; drug screening
on primary colture; drug

testing
[82]

OS, EWS, LPS,
UPS, SS other 2 mm3 s.c. 7/12 (58%) ns target dependencies and

drug identification [83]

Notes: ns: not specified; * also includes solid tumors, CNS, lymphoma, and leukemia; $ atypical lipomatous tumor,
undifferentiated sarcoma not otherwise specified, solitary fibrous tumor, undifferentiated spindle cell sarcoma,
extra-skeletal myxoid chondrosarcoma plus ultra-rarer histotypes, BCOR/CIC; § desmoid small round cell tumor;
i.m.: intramuscular; s.c.: subcutaneous.
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Table 3. mCDX for the evaluation of oncogenes and oncosuppressors. For each paper, the table de-
scribes the main features of xenografted cells and experimental details of selected mCDX determining
the role of genes in tumorigenesis.

Sarcoma Cells Mice Gene Refs.

MSKT ID Type
Quantity

(×106)
Injection

Site
Mice/

Experimental
Group

Experimental
Time (Days) ID Role

OS 143.98.2 OS Est. 1 Heterotopic 6 25 STAT3 ↑ [84]

OS 143B PML BK
TK Est. 10 Heterotopic 5 nd CHEK1 ↑ [85]

OS MG63 Est. 1 Heterotopic nd 30 GFRA1 ↑ [86]
OS MNNG-HOS Est. 1.5 Heterotopic 5 20 S1PR3 ↑ [87]
OS MNNG-HOS Est. 5 Heterotopic 20 21 FGD1 ↑ [88]

OS MNNG-HOS Est. 2 Heterotopic/
Orthotopic ≤6 25 * KIF18B ↑ [89]

OS U2OS Est. 1 Heterotopic 10 28 NG6X ↓ [90]
OS 143B Est. 0.5 Orthotopic 5 30 FOXP1 ↑ [91]
OS pOS-1 Near-pt. 5 Heterotopic 6 42 Gαi3 ↑ [92]
OS pOS-1 Near-pt. 4 Orthotopic na 28 TIMM13 ↑ [93]
OS K-HOS Est. 1 Heterotopic 7 ≥35 RIPK1 ↑ [94]

EWS RDES, TC-32 Est. 3/0.2 Heterotopic ≤6 nd SOX6 ↑ [95]

EWS A673 Est. 2 Heterotopic 6 25 KLF15 or
TCF4 ↑ [96]

EWS A4573 Est. 4 Heterotopic 10 20 CAV1 ↑ [97]
EWS TC-71 Est. 1 Heterotopic 7 50 RIPK1 ↑ [94]
EWS A673 Est. 2 Heterotopic 5 >60 miR34a ↓ [98]

RMS RD Est. 1.25/1.5 Heterotopic ≤7 45 HES1-YAP1-
CDKN1C ↑ [99]

RMS Rh30, Rh41 Est. 0.75–1 Heterotopic 40 40/75 miR-486-5p ↓ [100]

RMS
Rh18, Rh30,
C265S-Rh30

mutant
Est. 2 Orthotopic ≤10 ≤45 PANX1 ↓ [101]

LPS DDLPS 246 Near-pt. 1–2 Heterotopic 6 45 miR-133a ↓ [102]

Notes: Est: established; near-pt: near-patient; nd: not disclosed; na: not available ↑ oncogene; ↓ oncosuppressor;
* time to amputation.

Table 4. mCDX for the evaluation of metastatic potential. For each paper, the table describes the
main features of xenografted cells and experimental details of selected mCDX determining the role of
genes in metastatic potential.

Sarcoma Cells Mice Gene Refs.

MSKT ID Type
Quantity
(×106)

Injection
Route

Metastasis
Site

Mice
/Experimental

Group
Experiment
Time (Days) ID Role

OS 143B,
MG63.2 Est. 1.5 Orthotopic Lung 5 28, 56 IGFBP5 ↓ [103]

OS 143B Est. 0.5 Orthotopic Lung ≥6 20 CXCR4 ↑ [104]
OS SaOS-LM7 Est. * 1 Systemic Lung 10 49/56 BMP-2 nd [105]

OS 143B Est., drug-
resistant 0.5 Orthotopic Lung 8 40 MIG-7 ↑ [106]

OS U2OS Est. 10 Heterotopic Lung 6 70 ROCK2 ↑ [107]

OS MG-
63/Akaluc Est. 1 Systemic Lung ≤8 nd LPAR1 ↑ [108]

OS MG63,
SaOS2 Est. 1 Systemic Lung 11 21 TRIM7 ↑ [109]

EWS TC71 Est. 0.5 Metastatic site
(chestwall) Lung 9 nd PDGFR-β ↑ [110]

EWS A673 Est. 2 Systemic Lung and
lymph nodes 6 98 IGF2BP3 ↑ [111]

EWS TC71,
EWS4

Est.,
near-pt 0.01 Systemic

Lung,
kidneys,
retroperi-
toneum

5, 10 150, 250 PORCN ↑ [112]

EWS A673
Luc Est. 0.25 Orthotopic Lung and

bone ≤15 28 ZYX/ITGA5 ↓ [113]

Notes: Est: established; near-pt: near-patient; nd: not disclosed; ↑ oncogene; ↓ oncosuppressor; * established by
7 cycling of parental cell line through the lungs of nude mice.
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3. Tumorigenesis

A better understanding of the initial molecular events that lead to an irreversibly
transformed cellular state might revolutionise early detection strategies as well as thera-
peutic success rates [114]. The models of election for the study of the formation of tumors
are represented by carcinogen exposure-induced tumors, genetically engineered mouse
models (GEMMs) [115–117], and gene-edited ZF [118–120]. However, these models are out
of the scope of this review and the reader is referred to the cited literature for MSKT de
novo models. Regardless of the host, PDX are not ideal models to study tumorigenesis
as they intrinsically consist of the injection of a preformed tumor in a living organism.
However, the transplanted tumors can be gene-edited in vivo to determine the contribu-
tion of a specific oncogene to tumor growth: for example, OS mPDXs were administered
adenovirus-associated virus (AAV) carrying shFOXP1 to confirm its oncogenic role in
OS [91]. Similarly, the onco-suppressive role of miR193b was verified in vivo, transfecting
established mPDX of dedifferentiated LPS with the miRNA itself or a small molecule
inhibiting its target [121]. Other than this approach, mPDXs are correlatively exploited
if they express and/or lack the gene of interest. mPDXs with high basal expression of
TAp73 or activated Hedgehog pathways were used to confirm the pro-tumorigenic role of
PLK2 [122] and Gli/Smo [123] and the efficacy of their pharmacological inhibition in OS.
Additionally, the pro-tumorigenic role of SOX6, demonstrated via gene-editing approaches,
was eventually validated in a collection of mPDX of EWS, where SOX6 levels correlated
with a higher Ki67 index [95]. Gene-edited cells have been the workhorses for studying
the impact of genes on tumorigenesis for years, both in vitro and in vivo. This approach,
together with the use of specific inhibitors, has elucidated the contribution of oncogenes,
oncosuppressors, miRNAs [98,100,124], and related pathways in sarcomagenesis (Table 3).
Notably, Slemmons and colleagues generated and xenografted YHR and YHV cells har-
bouring multiple transgenes to elucidate the role of YAP in RMS [125]. Other researchers
have, instead, exploited inducible models to study the interaction of other oncogenes
with EWS::FLI1 [96]. To circumvent the limitations in the gene-editing of near-patient
cells, mice bearing OS primary-CDX were infected with AAV carrying shGαi3 [92], with
a similar approach to that used on mPDX. Finally, the oncogenic role of Gαi3 [92] and
TIMM13 [93] in OS was corroborated via mCDX of CrispR/Cas9-edited near-patient cells.
mCDXs of gene-edited cells require the obtainment of stable-modified models, which is
time-consuming and may introduce variability due to sub-cloning and inconsistencies with
in vitro experiments. The use of fast-developing embryonal models allows us to employ
the same transient strategies (siRNA, antisense, miRNA antagonists, soluble molecules,
and transfections) used in vitro in the in vivo setting, combining time-effectiveness and
consistency in methodology and robustness of results. This approach was exploited to
evaluate the role of the activation of Akt in RMS, using the same plasmid for myrAkt,
both in vitro and in ZF, completely avoiding the use of mice [126]. A similar approach
in ovoCDX permit the uncovering of the reliance of SS on YAP/TAZ-TEAD-mediated
transcriptional activity and confirmed the efficacy of its inhibition via verteporfin [127].

4. Angiogenesis

Angiogenesis is essential for tumors’ growth beyond the size of 1 cm3, as this is an
empirical limit beyond which nutrient deficiency and hypoxia occur [128]. Understanding
how cancer cells hijack the natural process of angiogenesis to their favour could highlight
novel therapeutic targets and help restrain tumor progression ab initio [129,130]. Angiogen-
esis is a very complex, spatially dynamic, and temporarily determined phenomenon, which
is very difficult to dissect and visualize in an adult organism. Indeed, the qualitative evalu-
ation and quantification of angiogenesis in vivo requires sophisticated techniques, such as
injection of fluorescent and non-fluorescent markers [131], Magnetic Resonance Imaging
(MRI), Positron Emission Tomography (PET), or Optical Doppler Tomography [128,132].
An alternative is represented by the in vivo angiogenesis assay (DIVAA), consisting of
subcutaneous implantation of semi-closed silicone cylinders (angioreactors) into nude mice.
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This system was used, in combination with mCDXs, to highlight the role of microvesicular
cargo in OS angiogenesis [133]. The role of EWS::FLI1 in hijacking angiogenesis and the
recruitment of bone marrow-derived cells was described in mCDX of EWS cells [134,135].
mPDX are employed to evaluate the efficacy of anti-angiogenic drugs on tumor growth,
rather than to study the angiogenetic mechanism per se. As one of the few examples, EYA3-
targeting monoclonal antibody-drug conjugates and benzarone were tested in EWS [136].

Embryonal models, on the other hand, offer the advantage of incomparable ease of
visualization and imaging. The CAM is the system of election for the study of angiogenesis,
thanks to its highly vascularized bed. Xenografted cells, for example SaOS2, can induce
sprouting angiogenesis, irrespective of the number of seeded cells, although the degree
of the angiogenic response significantly correlates with cell number [25]. Analogously,
xenografted tumor fragments also induce angiogenesis around 72–96 h after implantation
and anastomose to the CAM vessels [57]. The CAM assay enables a straightforward
observation of angiogenesis to the naked eye, which is not possible with other animal
in vivo models. Moreover, tumor angiogenesis and vasculogenesis can further be visualized
using in vivo microscopy in the CAM adjacent to the tumor [137]. Additionally, acquired
images can be manually and/or semi-automatically analysed through specific software
(ImageJ, AngioQuant, AngioTool) to gather quantitative information, which is of utmost
interest for the screening of antiangiogenic drugs [137,138]. The study of angiogenesis in the
CAM often proceeds stepwise, including chick aortic ring sprouting assays in vitro, CAM
and/or yalk sac membrane (YSM) assay in ovo or ex ovo, and disease-related evaluation
based on ovoCDX: such an approach has highlighted the anti-angiogenic properties of
reversine in OS [139] and the various peptides in fibrosarcoma [140]. The angiogenic
properties of cytokines, chemokines, growth factors, chemotherapeutics, and targeted
drugs can be assessed by the direct placing of the substance of interest on the naked
membranes of the chick embryo. Vimalraj and colleagues proposed a variant of YSM assay,
which is classified as an in vitro model, where cells were not actually xenografted but grown
on coverslips, which were simply juxtaposed on YSM. This approach highlighted the role
of miR-432-5p and miR-424-5p in regulating angiogenesis in OS [141,142]. Interestingly, the
data on the inhibitory effect of miR-432-5p on angiogenesis obtained in ovo were confirmed
in the zCDX of OS cells previously transfected with the miRNA mimic [141].

ZF embryos represent an ideal model to study the interplay between tumor and en-
dothelial cells [143]. Their transparency allows the monitoring of blood vessel development
to evaluate the effects induced by the presence of cancer cells. The sub-intestinal vein
(SIV) is a major vessel plexus in proximity to the yolk sack, commonly used to quantify the
angiogenic potential through the measure of vessels spreading in surrounding tissues [144].
This model can be applied to study the angiogenic alterations induced by cancer cells or
the preclinical effect of anti-angiogenic drugs. The generation of ZF strains with fluorescent
vessels, together with the ease of high-content imaging, also represent great opportunities
offered by this host (reviewed in [145]), which are quite underexploited in MSKT.

5. Metastatization

Metastatization is a multistep process, including local invasion, intravasation, and
dissemination via hematogenous or lymphatic vessels, extravasation, homing, dormancy
and final outgrowth of a new tumor [146]. As metastases represent the main cause of cancer-
related death [147], representative metastasis models are pivotal to dissecting the molecular
mechanism underlying each step and highlighting the related target dependencies [148].

Spontaneous metastasis from heterotopically implanted sarcoma mPDX represent
rare events (Table 1) [53]. On the other hand, orthotopic mPDXs or mCDXs do lead to the
formation of distant metastases in a wide range of target organs, other than lung and lymph
nodes [149–151], probably due to the interaction of tumor cells with the native tumor-niche.
However, metastatization takes such a long time that orthotopic primary tumors, especially
in the limbs, often need to be excised and mice followed-up until metastases appear, how-
ever, this surgery represents a major ethical concern. Spontaneous metastasis models from
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orthotopic mPDX or mCDX were reported for EWS [152], OS [150,153,154], and UPS [155].
Interestingly, this technique represents the best setting for the preclinical evaluation of anti-
metastatic drugs and was exploited in the mPDX of OS treated with a monoclonal antibody
against the Wnt-signalling inhibitor dickkopf-1 [156], a β-catenin/transducin β-like protein
1 (TBL1) inhibitor alone and in combination with doxorubicin [157] and in mPDX of the
Giant Cell Tumor of Bone (GCTB) treated with a monoclonal antibody targeting CD44 [158].
Established or rarely near-patient [159] mCDXs via systemic injection, which is performed
mainly intravenously, lead to the formation of experimental metastasis. This route of
administration eliminates the first steps of metastatization and directly disseminates cells
into the bloodstream, enhancing replicability and reducing experimental times. The main
metastatic site in these models is represented by the lungs, being the first organs reached by
venous circulation. Systemic, orthotopic, and rarely heterotopic, mCDX served to elucidate
the contribution of several genes and pathways to metastasization (Table 4). Notably,
multiple mCDX with gene-edited cells were used to elucidate the pro-metastatic role of
Rab22a-NeoF1 in OS and to dissect its molecular mechanism [160]. Moreover, orthotopic
spontaneous and systemic experimental metastasis models have also been employed to
assess the anti-metastatic efficacy of CSF1R [161], HDAC [100], PDPN [162], CDK [159],
and LPAR1 [108] inhibitors in OS.

In contrast, embryonal models can be effective systems for studying the first steps of
metastases (i.e., local invasion, intra- and extravasation, and dissemination). In this case,
the formation of full-blown metastasis is not observable, due to the short-time experiments
and to the lack of target organs. Nevertheless, it was previously demonstrated that cells
systemically injected into the chick embryo do lead to tumor formation in the hatched
chicks [163]. CAM assays allow the easy monitoring of the intravasation of tumor cells into
the microvasculature and the determination of the invasive phenotype of ovoCDX and
ovoPDX, heterotopically deposited on the CAM surface or of the experimental metastatic
potential after intravenous injection in the chorioallantoic vein [41,138,164]. Metastatic
cells can be distinguished from the chicken ones and quantified by IHC or qPCR of ALU
sequences from the DNA of isolated chicken embryo organs [165]. Imaging of metastatic
cells is feasible via CT, MRI for magnetically labeled cells, and video-microscopy or flu-
orescent imaging under ex ovo conditions. In the context of sarcomas, Snail, a master
gene of epithelial-to-mesenchymal transition (EMT), was modulated in OS cells, which
were heterotopically injected on the CAM: cells overexpressing Snail showed a higher
ability to invade the stroma, and enter and migrate along the vasculature of the CAM [166].
Analogously, the pro-migratory role of IL6 was demonstrated ex ovo upon injection of
EWS cells and paracrine administration of the soluble interleukin [167]. Authors have
demonstrated the higher invasiveness of treated cells by visualising migrated cells under a
fluorescent microscope and categorising them according to the distance from the tumor
edge [167]. Moreover, the analysis of ALU sequences has revealed a greater invasion ability
to the lung and liver of FUS-CHOP-transfected LPS cells [168]. No less important, the CAM
system may represent a complementary assay for anti-metastatic drug testing [138,164],
but no examples are available for sarcomas.

Moving attention to the ZF model, the most attractive feature is the absence of pig-
mentation, which makes it particularly suitable for the imaging analysis of inner organs
and tissues [169]. Moreover, researchers have generated several transgenic strains ex-
pressing fluorescent proteins in specific cell populations and organs, or upon pathway
activations [170]. This, together with the injection of cancer cells marked with fluorescent
trackers, allows the monitoring of single-cell behaviour and the dynamic interactions with
surrounding and distant tissues. High-resolution imaging technologies, such as light sheet
and confocal microscopy, represent the best approach to visualize the cross-talk between
endothelial and cancer cells at a single-cell level—all outputs that are difficult to reach with
other animal models [9]. Through this model, Van der Ent and colleagues first demonstrated
the ability of EWS cells to proliferate, migrate, and disseminate via the hematogenous route
to fins, head, and body. Afterwards they exploited an Albino Casper, TG(fli1:EGFP) strain,
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characterised by fluorescent vessels, to track the amount, size, and migratory routes of
tumor cell foci for each embryo upon treatment with nutlin-3a and/or YK-4-279 [171].
Using a similar approach, fluorescent RON-deficient and proficient cells were injected
into a ZF line with red fluorescently tracked endothelium: RON deficiency reduced local
tumor burden at injection sites and perivascular areas with metastatic cells [172]. Lastly,
mCherry-labelled EWS cells were injected into the yolk sac of fli1:EGFP ZF embryos to
verify that the inhibition of SIRT1/2 via tenovin-6 halted the invasiveness of tumor cells by
tracking the distance and direction of cell clusters inside the embryo in vivo [173].

6. Drug Development

Modeling sarcomas is essential for designing and validating novel drugs based on the
identification of specific target dependencies. mPDXs allow the amplification of patient-
derived tumor samples and the faithful preservation of histologic, genomic, epigenetic,
genetic, metabolic, proteomic, and clonal traits [7,9] (Table 2). Several collections are
available at local laboratories (Table 2), distributors, and within European programmes
(listed in [174]), providing a virtually unlimited repository of clinically annotated and
molecularly characterized human samples. The integration of different omic data via algo-
rithms, mathematical modeling, or, lately, AI-systems, can provide even more informative
and comprehensive results. RNA sequencing combined with drug prediction algorithms
has been employed to rank therapies in RMS tumors and related PDX: notably, in this
study, all the selected drugs were evaluated in mPDX [175]. Pandyia and colleagues set
up a multi-OMICS analytical pipeline to prioritize drugs based on biomarkers: their ap-
proach indicated CDK4/6 hyperactivation and BETs as druggable targets in OS, which
were validated in the same mPDX cohort in vivo [71]. While mPDXs constitute living
biobanks, embryonal models represent instead short-time hosts from which a limited
amount of material is retrievable at the end of xenografting experiments. However, given
their fidelity [176–178], embryonal models have peculiar advantages in drug-screening
applications. Indeed, they enable middle-to-high throughput studies that are feasible in the
context of an intact living system recapitulating human physiology and pharmacokinetics
in a reasonable timeframe [165,170]. Moreover, drug administration can be performed
by juxtaposition in ovo or by dissolution into ZF embryo water, simplifying handling.
A streamlined experimental procedure employing only one drug has been employed to
calculate the IC50 of vincristine in ovoCDX of established RMS cells [179], providing a
proof-of-principle for the employment of the CAM model as a platform for drug screen-
ing. However, a drawback of the use of ovoCDX in drug screening is the current lack of
automated high-throughput procedures, which are feasible in ZF. By analogy with ZeOn-
coTest [180], Grissenberger and colleagues exploited high-content images of xenografted
fluorescent EWS cells to follow tumor growth in ZF. This approach permitted the screening
of 16 compounds and their combinations in groups of 30–95 larvae over a 3-day period of
time in two cell lines and related models with inducible knock-down of EWS::FLI1 [181].
The obtained results were validated in a mPDX, with a significant reduction of mammalian
animal models, costs, and experimental time. Understandably, mPDXs are difficult to
employ for large high-throughput drug screening due to high costs and cumbersome
handling [174]. Once the drug has been selected, mCDXs and, lately, mPDXs, represent the
most effective preclinical models for the evaluation of drug efficacy. mCDXs have repre-
sented the principal modality of preclinical drug testing for decades—their employment is
still pivotal for near-patient [182], drug-resistant [183], and gene-edited [184] cells, rarer dis-
ease entities (SS [185,186], Epithelioid sarcoma [187], MFS [188]), and they often represent
a preliminary step to mPDXs. In recent decades, preclinical drug evaluation has moved
to mPDXs as the most trustworthy model. Accordingly, all the most promising molecules
currently in clinical trials for sarcomas have been tested on mPDX (Table 5). Moreover,
the efficacy of the inhibitors of (i) proteasome (VLX1570) [189], H3K27ac (GSK-J4), CDK7-
mediated transcriptional process (THZ1) [190], mevalonate pathway (atorvastatin) [191]
in EWS, (ii) ATR [192] and the combination of Aurora Kinase A plus navitoclax [193] in
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RMS, (iii) irinotecan and axitinib in LPS [194], and (iv) ATR in SS [195] was validated in
mPDX after drug screening. Most importantly, the creation of mPDX models of ultra-rare
sarcomas permitted the evaluation of trabectedin, eribulin, and various combinations of
chemotherapeutics in solitary fibrous tumors [196], doxorubicin, eribulin, temozolomide
plus irinotecan, and the targeted drugs palbociclib and linsitinib in an orthotopic mPDX of
FUS-ERG EWS [197–199], as well as the combination of c-MET, EZH2, mTOR inhibitors,
and ADM plus trametinib in epithelioid sarcoma [200,201]. However, preclinical testing
on mPDX does not warrant success in clinical evaluation [9]. Indeed, the robustness of
results is restrained by the limited number of experimental groups (<10 mice/group) and
disease entities of origin. Some notable examples of drugs which failed to enter clinical
praxis after exceptional preclinical results are represented by eribulin-, olaratumab-, and
Akt-directed therapies. In some cases, after an unsuccessful clinical trial, researchers re-
turned to their preclinical models to identify possible biomarkers of response. Low Bcl-2
expression was identified as a possible biomarker of response to nab-paclitaxel, and its
inhibition via venetoclax was found to be synergistic [202], while low SPARC expression
was associated with low drug retention and inefficacy [203]. Several papers go through the
entire path of drug discovery, especially in the context of ultra-rare tumors. This approach
permitted the identification, screening, and validation of anti-cancer drugs in the context of
(i) CIC-DUX4 Ewing-like sarcomas [204], (ii) desmoplastic round cell sarcoma [205–208],
(iii) mesenchymal chondrosarcoma [209], (iv) GCTB [210], and (v) clear cell sarcoma [211].

A particular mention should be paid to the extremely reduced number of cells needed
for zCDX (<103), which makes it an attractive and suitable system to xenograft near-patient
cells. In this context, the efficacy of bone-targeted therapy (denosumab), TK inhibitors
(lenvatinib), and their combination was evaluated on the zCDX of primary cells of desmo-
plastic fibroma [212], while trabectedin was evaluated on patient-derived primary cultures
of UPS [213].

Table 5. Open clinical trials with matching preclinical research on MSKT. The table reports details
of recent clinical trials in MSKT on the left, while on the right the details of the matched preclinical
research on mPDX are reported. n.d., not disclosed.

Clinical Trial Preclinical Research

NCT Number Study Title Conditions Mice/
Group

N◦

mPDX/
Trial

Refs.

NCT03838744
Randomized Trial in Advanced, Metastatic, or

Unresectable Soft Tissue Sarcoma After Failure of
Standard Treatments

Advanced Soft
Tissue Sarcoma 5 2 [214]

NCT04076579 Trabectedin in Combination With Olaparib in
Advanced Unresectable or Metastatic Sarcoma

Sarcoma; Sarcoma
Metastatic [214]

NCT03936465
Study of the Bromodomain (BRD) and

Extra-Terminal Domain (BET) Inhibitors
BMS-986158 and BMS-986378 in Pediatric Cancer

Pediatric tumors and
Lymphoma 7 1 [215]

NCT04095221
A Study of the Drugs Prexasertib, Irinotecan, and

Temozolomide in People With Desmoplastic Small
Round Cell Tumor and Rhabdomyosarcoma

Rhabdomyosarcoma 6 6 [216]

NCT03709680
Study Of Palbociclib Combined With Chemotherapy

In Pediatric Patients With Recurrent/Refractory
Solid Tumors

Pediatric solid
tumors 6 6 [199]
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Table 5. Cont.

Clinical Trial Preclinical Research

NCT Number Study Title Conditions Mice/
Group

N◦

mPDX/
Trial

Refs.

NCT04238819

A Study of Abemaciclib (LY2835219) in Combination
With Other Anti-Cancer Treatments in Children and

Young Adult Participants With Solid Tumors,
Including Neuroblastoma

Relapsed Solid
Tumor; Refractory

Solid Tumor
3 1 [217]

NCT05071209 Elimusertib for the Treatment of Relapsed or
Refractory Solid Tumors

Recurrent/Refractory
Alveolar Rhab-
domyosarcoma;

Recurrent/Refactory
Ewing Sarcoma;

5–6 2 [218]

NCT04067115
SARC037: A Phase I/II Study to Evaluate the Safety

of Trabectedin in Combination With Irinotecan in
Ewing Sarcoma Patients

Ewing Sarcoma 6 1 [208]

NCT04537715

Study to Describe the Interaction Between
Tazemetostat and Itraconazole and Between

Tazemetostat and Rifampicin in Participants With
Advanced Cancer

Epitelioid Sarcoma;
Synovial Sarcoma n.d. 6 [219]

NCT03793361 Phase II Study of Regorafenib as Maintenance
Therapy

Metastatic Soft
Tissue Sarcoma 10 7 [220]

NCT05515575 A Study of Niraparib in People With Soft Tissue
Sarcoma Who Have Changes in Their Tumor DNA Sarcoma, Soft Tissue 7 1 [221]

NCT05218499
Brightline-1: A Study to Compare Brigimadlin (BI

907828) With Doxorubicin in People With a Type of
Cancer Called Dedifferentiated Liposarcoma

Dedifferentiated
Liposarcoma 6 2 [222]

NCT04742959
Study of TT-00420 (Tinengotinib) Tablet as

Monotherapy and Combination Therapy in Patients
With Advanced Solid Tumors

Advanced solid
tumors 7–8 3 [203]

NCT02095132
Adavosertib and Irinotecan Hydrochloride in
Treating Younger Patients With Relapsed or

Refractory Solid Tumors

Relapsed or
Refractory Solid

Tumors
10 4 [223]

NCT04950075 Study of INBRX-109 in Conventional
Chondrosarcoma (ChonDRAgon)

Conventional
Chondrosarcoma 8 2 [224]

NCT03718091 M6620 (VX-970) in Selected Solid Tumors Advanced solid
tumor 6 1 [225]

NCT03810976 A Study of Eribulin With Gemcitabine in Patients
With Advanced Liposarcoma or Leiomyosarcoma

Liposarcoma or
Leiomyosarcoma 3–4 3 [226]

NCT04794127
Study of Trabectedin in Combination With

Pioglitazone in Patients Myxoid Liposarcomas With
Stable Disease After T Alone (TRABEPIO)

Myxoid
Liposarcomas 10 3 [227]

7. Combinatorial Approaches

The combination of different living hosts for xenografts represents a win-win approach
which exploits the peculiar traits of each model for specific scientific questions, providing
on the one hand the possibility to dissect disease mechanisms with higher robustness, and
on the other a more comprehensive insight at the organismal level [228]. Below, some
examples of this virtuous approach are reported.

Pignochino et al. demonstrated the efficacy of sorafenib in OS stepwise: the anti-
angiogenic action was assessed on naked CAM exposed to the drug itself or to the con-
ditioned medium of cells treated with the drug. As a second instance, the efficacy of
sorafenib in restraining the tumorigenic and metastatic ability of OS cells was evaluated
via heterotopic mCDX [229]. Analogously, in both ovoCDX and mCDX, and in a mPDX
model, the treatment with verteporfin significantly slowed tumor growth. In this case,
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models were used stepwise from the most time-effective and scalable (ovoCDX) to the most
complex, time-consuming, yet near-patient (mPDX), yielding consistent results [127]. Tome
and colleagues seeded 143B-LM-RFP OS cells in ovo—the derived tumor masses were then
transplanted into several other eggs and treated with echistatin. This protocol allowed the
drug to be tested in an established tumor. Subsequently, the efficacy of echistatin diminish-
ing the tumorigenic and metastatic potential of the same cells was demonstrated in mCDXs,
in combination with doxorubicin [230]. Analogously, the pro-angiogenic role of soluble
BDGF in CHS was firstly assessed in the absence of cells both in ovo and in mice, thereafter,
an mCDX of BDGF knock-down cells confirmed the finding at the organismal level [231].
Additionally, the role of IGFB6 on angiogenesis was firstly elucidated injecting its mRNA
in the one-stage flk1-GFP embryo in a physiological context—the anti-angiogenic effect was
later confirmed in a disease-related context with the injection of RMS cells in mice [232].
Concerning studies in the metastatic setting, Adane and colleagues, after intensive molecu-
lar investigations, found confirmation of the anti-tumorigenic role of STAG2 firstly in ZF,
where its loss was associated with a higher percentage of embryos with migrated cells, and
later in mice, where the injection of the same STAG2-KO cells yielded more lung metastasis
with respect to control cells [233].

Generally, drug screening studies proceed stepwise. For example, after identifying
active compounds targeting FAK and Aurora Kinase B in EWS via a high-throughput
chemical and genetic screening, Wang et al. preliminarily assessed the pharmacokinetic
properties and efficacy of zCDX prior to mCDX and mPDX [234]. Remarkably, since all
the hosts were characterized by immunodeficiency, the interspecific transfer of cells or
tissues from one to another was feasible. Indeed, Yan and colleagues performed high-
throughput drug screening on near-patient material in vitro—the most promising drugs
were selected for further evaluation and performed on zCDX of dissociated mPDX tumors
of two rhabdoid sarcomas [235].

8. Discussion

Survival rates for most MSKT have not improved since the 1980s, when chemotherapy
was introduced. This stagnation reflects, on the one hand, a lack of understanding of the
biological mechanisms underlying the sarcomagenesis and metastasis processes, and on
the other a lack of reliable models to identify effective tumor targets and to testing new
drugs preclinically [7,9].

Historically, most of the preclinical research has involved xenografts of cells or tu-
mor fragments in adult rodents, especially mice. Recently, researchers have turned their
attention to embryonal models such as chick embryo and zebrafish, which not only rep-
resent time- and cost-effective alternative hosts, but most importantly minimize pain,
environmental distress and, hence, ethical concerns related to animal experimentation.

With regard to basic research, mCDX involving established gene-edited or drug-
resistant cells have permitted the elucidation of the role of tens of genes modifying their
tumorigenic or metastatic power (Tables 3 and 4). In this experimental setting, the integra-
tion of fast-developing embryonal models has allowed, on the one hand, the employment
of the same transient strategies used in vitro in the in vivo setting and, on the other hand,
has raised the possibility of evaluating the phenotype of gene-edited near-patient cells.
Thus, embryonal models contribute to time-effectiveness, consistency in methodology, and
translatability of results. Murine models offer the unique possibility of studying all the dif-
ferent phases of the natural history of tumors with incomparable reliability, due to the close
homology with humans at many levels [7,9,115], albeit blindly. Conversely, embryonal
models permit the dissection and visualization of the dynamic interactions between cancer
cells, vessels, and the host’s organs, even at single-cell level. Particularly, embryonal models
allow the visualization and quantification of sprouting vessels, and the dissemination of
tumor cells upon xenografting tumor fragments or cells [144,164,170,177,236]. Notwith-
standing these features, researchers must keep in mind that embryos are miniaturized
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immunodeficient organisms under development, with high levels of specific growth factors,
and thus lack target organs and time to model a full-blown metastasis.

Concerning translational research, preclinical trials have successfully relied on mCDX
until mPDX took root at the beginning of the century. This practice allowed the expansion
and biobanking of patient-derived material, which is particularly relevant in the case of
rare and heterogeneous tumors, such as bone and soft tissue sarcomas [9]. mPDXs are
acknowledged as the most effective preclinical model for recapitulating intrinsic cancer
biology and architecture, and studying drug response and resistance [9]. Preclinical trials
taking advantage of mPDXs are relevant throughout the whole course of drug development,
including the phases in clinical experimentation. This is important in the context of rare
tumors, like sarcomas, for which most clinical studies include patients of all sarcoma
histotypes and in small case series. For these reasons, the use of PDX models represents a
precious method in preclinical cancer research. Trabectedin is a paradigm of the usefulness
of mPDX in the drug development process. This drug was approved in Europe in 2007 for
the treatment of advanced STS after the failure of anthracycline and ifosfamide [237]. In
2015, the FDA endorsed its use for the treatment of previously treated advanced metastatic
liposarcomas and leyomiosarcomas [238]. mPDXs were used to test trabectedin’s efficacy
on sarcomas [239], and recently they were leveraged for the investigation of the molecular
mechanisms of actions and of resistance [69]. These findings may give rise to innovative
therapeutic combinatorial strategies enhancing the trabectedin effects. Another example
of mPDXs’ utility in the management of trabectedin is represented by a recent paper by
Zuco et al. studying new therapeutic approaches for desmoplastic small round cell tumor
(DSRCT). The authors found that the combination of trabectedin with irinotecan resulted
in complete responses in mice trials. These findings strongly support further investigations
of this combination in clinical studies on relapsing DSRCT, moreover, these results can also
be translated for the development of Lurbinectidin, a novel synthetic agent derived from
trabectedin with a similar mechanism of action and that is currently under investigation in
combination with irinotecan in sarcomas (NCT02611024) [208]. Nevertheless, preclinical
testing on mPDX does not warrant success in clinical evaluation. In this scenario, the
introduction of embryonal models in the screening phase of drug development, upon
their validation as New Approach Methodologies (NAM), could provide mid-to-high
throughput systems in the context of an intact living organism recapitulating human
physiology and pharmacokinetics in a reasonable timeframe [165,170]. Finally, the little
material required for zCDX and the short experimental time in both embryonal systems
makes them appealing as “avatar models” or “mirror models” in a time-frame congruent
with clinical decision making [212,213].

Currently, thanks to their predictive value, xenografts are used in co-clinical trials in
which the xenograft is treated in parallel with the corresponding patient. This approach
facilitates the prioritization of optimal treatments, simplifies rapid classification of respon-
ders, identifies biomarkers, and detects mechanisms of resistance [240]. This format of trial
has also been conducted for sarcomas [241], with excellent results of concordance between
drug response in mice and in corresponding patients. Moreover, not only are mPDXs used
in co-clinical trials, but zPDXs are also, although not for sarcomas and instead for other
solid tumors [51].

Consisting of multiple cell types and an extracellular matrix, tumors engage in complex
interactions with surrounding tissues and the entire body. As a result, they are increasingly
perceived as organs [242], the complexity of which cannot be modeled by a single system,
neither in vitro nor in vivo. Therefore, while the choice of the xenograft host should align
with the experimental question, the combination of different xenograft models based
on cells and patient-derived material and the integration of omic, in vitro, and in vivo
data could provide robustness to preclinical results [228]. Moreover, the adoption of
stepwise approaches envisioning embryonal systems as a bridge between in vitro and
in vivo murine experiments could corroborate the first, while reducing the number of more
complex animals needed, in compliance with the 3R principles.
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9. Conclusions and Future Perspectives

In the present work, we reviewed the literature reporting xenografts of human muscu-
loskeletal sarcomas in mouse, zebrafish larvae, and chick embryos. The categorization of
papers based on the underlying biological question allowed us to highlight the intrinsic and
technical peculiarities of patient-derived and cell-derived xenografts across the phases of tu-
mor natural history and drug development. Embryonal models emerged as potential tools
to corroborate results obtained in gene-edited systems in vitro, using the same transient
approaches, thereby increasing robustness and reducing experimental times. Embryonal
models are promising systems for the study and visualization of stepwise, dynamic, and in-
teractive processes such as angiogenesis and metastatization, thanks to the ease of imaging
and reduced experimental windows. On the other hand, murine xenografts allow the study
of overt metastatization and the creation of living biobanks of sarcomas. Thanks to their
fidelity, mPDXs represent the gold standard for drug development, which could benefit
from the introduction of high-throughput embryonal systems in the screening phase.

Overall, the application of embryonal systems in sarcomas is still limited. Yet, the
combination of different hosts for xenografts in stepwise approaches involving near-patient
material promises to provide reliable high-throughput and highly informative models,
boosting both basic and translational research in respect of the 3R principles

Author Contributions: Conceptualization, V.G., M.T., L.M., E.L., G.M. and A.D.V.; writing—original
draft preparation, V.G., M.T., G.M. and M.P.; writing—review and editing, L.M., E.L., C.M.H., M.C.,
G.S., L.F., A.N.G., C.B., C.S., D.M.D. and T.I. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the European Union—Next Generation EU—NRRP M6C2—
Investment 2.1 Enhancement and strengthening of biomedical research in the NHS—project PNRR-
POC-2022-12376579 (CUP: D33C22001940006).

Biomedicines 2024, 12, x FOR PEER REVIEW 19 of 32 
 

Author Contributions: Conceptualization, V.G., M.T., L.M., E.L., G.M. and A.D.V.; writing—
original draft preparation, V.G., M.T., G.M. and M.P.; writing—review and editing, L.M., E.L., 
C.M.H., M.C., G.S., L.F., A.N.G., C.B., C.S., D.M.D. and T.I. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This work was supported by the European Union—Next Generation EU—NRRP M6C2—
Investment 2.1 Enhancement and strengthening of biomedical research in the NHS—project PNRR-
POC-2022-12376579 (CUP: D33C22001940006). 

 
Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is 
not applicable to this article. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Acronyms 
Adm Adrenomedullin 
Akt AKT Serine/Threonine Kinase 1 
AI Artificial intelligence 

ALU 
stretch of DNA characterized by the action of endonuclease from Arthrobacter 
luteus (Alu)  

Atr ATR Serine/Threonine Kinase 
Bcl-2 B-Cell Leukemia/Lymphoma 2 Protein. 
Bdgf Brain-Derived Nerve Growth Factor 
Bets Bromodomain Extraterminal Domain Proteins 
Bmp-2 Bone Morphogenetic Protein 2 
Cav1 Caveolin 1 
Cdk Cyclin-Dependent Kinase 
Cdkn1c/2a Cyclin Dependent Kinase Inhibitor 1c/2a 
Chek1 Checkpoint Kinase 1 
Cic-Dux4 Fusion; Capicua Transcriptional Repressor- Double Homeobox 4 
CMET Hepatocyte Growth Factor Receptor 
Csf1r Colony-Stimulating Factor-1 
Cxcr4 C-X-C Chemokine Receptor Type 4 

Ews::Fli1 
Fusion;  EWS RNA Binding Protein 1:: Fli-1 Proto-Oncogene, ETS Transcription 
Factor 

Ext1/2 Exostosin Glycosyltransferase 1 
Eya3 Eya Transcriptional Coactivator and Phosphatase 3 
Ezh2 Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit 
Fak Focal Adhesion Kinase 
FDA Food and Drug Administration 
Fgd1 Fyve, Rhogef And Ph Domain Containing 1 
Fli1 Friend Leukemia Integration 1 Transcription Factor 
Foxp1 Forkhead Box Protein P1 
Fus-Chop Fusion Protein; Fus RNA Binding Protein- DNA Damage Inducible Transcript 3 
Fus-Erg Fusion; FUS RNA Binding Protein- ETS Transcription Factor ERG 
Gfra1 Gdnf Family Receptor Alpha-1 
Gli GLI Family Zinc Finger 1 
Gαi3 Guanine Nucleotide-Binding Protein G(I) Subunit Alpha-3 
H3k27ac Acetylation of Histon3 in lysine (k) 27 
Hdac Histone Deacetylases 
Hes1 Hes Family Bhlh Transcription Factor 1 
IC50 Half Maximal Inhibitory Concentration 

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Acronyms

Adm Adrenomedullin
Akt AKT Serine/Threonine Kinase 1
AI Artificial intelligence

ALU
stretch of DNA characterized by the action of endonuclease from
Arthrobacter luteus (Alu)

Atr ATR Serine/Threonine Kinase
Bcl-2 B-Cell Leukemia/Lymphoma 2 Protein.
Bdgf Brain-Derived Nerve Growth Factor
Bets Bromodomain Extraterminal Domain Proteins
Bmp-2 Bone Morphogenetic Protein 2
Cav1 Caveolin 1
Cdk Cyclin-Dependent Kinase
Cdkn1c/2a Cyclin Dependent Kinase Inhibitor 1c/2a
Chek1 Checkpoint Kinase 1
Cic-Dux4 Fusion; Capicua Transcriptional Repressor- Double Homeobox 4
CMET Hepatocyte Growth Factor Receptor
Csf1r Colony-Stimulating Factor-1



Biomedicines 2024, 12, 1921 19 of 30

Cxcr4 C-X-C Chemokine Receptor Type 4

Ews::Fli1
Fusion; EWS RNA Binding Protein 1:: Fli-1 Proto-Oncogene, ETS
Transcription Factor

Ext1/2 Exostosin Glycosyltransferase 1
Eya3 Eya Transcriptional Coactivator and Phosphatase 3
Ezh2 Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit
Fak Focal Adhesion Kinase
FDA Food and Drug Administration
Fgd1 Fyve, Rhogef And Ph Domain Containing 1
Fli1 Friend Leukemia Integration 1 Transcription Factor
Foxp1 Forkhead Box Protein P1
Fus-Chop Fusion Protein; Fus RNA Binding Protein- DNA Damage Inducible Transcript 3
Fus-Erg Fusion; FUS RNA Binding Protein- ETS Transcription Factor ERG
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Tap73 Tumor Protein P73
Taz Transcriptional Coactivator with Pdz-Binding Motif
Tcf4 Transcription Factor 4
Tead Tea Domain Transcription Factor
Timm13 Translocase Of Inner Mitochondrial Membrane 13
Tp53 Tumor Protein P53
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