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Abstract: Preoperative risk biomarkers for delirium may aid in identifying high-risk patients and
developing intervention therapies, which would minimize the health and economic burden of
postoperative delirium. Previous studies have typically used single omics approaches to identify
such biomarkers. Preoperative cerebrospinal fluid (CSF) from the Healthier Postoperative Recovery
study of adults ≥ 63 years old undergoing elective major orthopedic surgery was used in a matched
pair delirium case–no delirium control design. We performed metabolomics and lipidomics, which
were combined with our previously reported proteomics results on the same samples. Differential
expression, clustering, classification, and systems biology analyses were applied to individual and
combined omics datasets. Probabilistic graph models were used to identify an integrated multi-
omics interaction network, which included clusters of heterogeneous omics interactions among
lipids, metabolites, and proteins. The combined multi-omics signature of 25 molecules attained an
AUC of 0.96 [95% CI: 0.85–1.00], showing improvement over individual omics-based classification.
We conclude that multi-omics integration of preoperative CSF identifies potential risk markers for
delirium and generates new insights into the complex pathways associated with delirium. With future
validation, this hypotheses-generating study may serve to build robust biomarkers for delirium and
improve our understanding of its pathophysiology.

Keywords: delirium; risk factors; multi-omics; lipidomics; proteomics; metabolomics

1. Introduction

Delirium is a condition characterized by an acute change and fluctuation in attention,
thinking, and consciousness. Postoperative delirium affects 15–53% of older surgical pa-
tients and has been associated with extended hospitalization, significant postoperative
complications, higher discharge rates to extended care facilities, and death [1,2]. In addi-
tion, delirium is associated with greater than USD 164 billion in annual U.S. healthcare
expenditures, with USD 32.9 billion attributed to the postoperative setting alone [1,3].
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Despite our growing understanding of the epidemiology of delirium, no laboratory
test facilitates its diagnosis or mitigation. Instead, it is a wholly clinical diagnosis. Ad-
ditionally, etiology and pathogenesis are poorly understood, challenging the discovery
of biomarkers and clinical tests. Several biological models of pathogenesis have been
proposed, including neuroinflammation, neurological aging, neuroendocrine stress, neuro-
transmitter dysfunction, oxidative stress, and dysregulation of the circadian rhythm [4,5].

Cerebrospinal fluid (CSF) provides brain protection, nourishment, and waste removal
and is central for regulating nervous system functions. CSF is contained within the ven-
tricles of the brain and the subarachnoid spaces of the skull and spine [6,7]. The choroid
plexus (ChP) is a secretory tissue responsible for the primary source of CSF in the human
brain. ChP secretes up to 500 mL of CSF daily, facilitating a total renewal of CSF four to five
times a day [8]. This persistent turnover acts as the primary mechanism for transporting
essential nutrients to the brain, assists in removing brain metabolic waste products and
unnecessary molecules, and mediates the transport of circulating proteins such as cytokines
and growth factors to different target cells in the brain [6]. The reduction in CSF turnover
may result in an accumulation of unnecessary and toxic molecules that interfere with the
neuronal functioning of the brain, as seen in aging and some neurodegenerative diseases [7].
CSF homeostasis is strictly regulated, and any variation in the molecular composition may
be a useful diagnostic marker [9].

High-throughput technologies and omics approaches have opened the door to large-
scale systems-level quantification of a diverse range of molecules within a biological system.
These approaches can be applied to various biological matrices, such as plasma, serum,
saliva, urine, and CSF. Omics is the complete cataloging of a molecular class within a system
or phenotype. Omics approaches offer powerful tools for systems analysis, differentiating
between two phenotypes, characterizing cellular changes in disease, and facilitating the
identification of disease-specific markers.

Proteomics provides a comprehensive study of the proteome, the collection of proteins
within a system [10]. The applications of proteomics approaches are many, ranging from
discovering risk-and-disease markers to understanding disease pathogenesis. Proteins
are involved in cellular processes, so perturbations in their expression may imply the
underlying root of a diseased state. Metabolomics is a group of quantitative approaches
to studying the collection of small metabolites in a system. Metabolites are often the end
products and byproducts of biochemical processes in cells and are particularly sensitive
to endogenous and exogenous stimuli [11]. Differences in their levels provide an efficient
way to monitor and detect alterations in specific cellular pathways. Lipidomics—the high-
throughput approach to cataloging lipid species within a system—is increasingly being
applied in clinical research, offering new disease detection and prediction opportunities [12].
Lipids have numerous important roles in living organisms, especially in the central nervous
system. Their concentrations can differentiate between a healthy versus a diseased state.
They are essential components in the structure and function of the central nervous system.
Lipid composition, transportation, and metabolism in neurons and astrocytes are integral
to cellular health [13].

All three omics approaches, proteomics, metabolomics, and lipidomics, have previ-
ously been applied to the study of delirium pathogenesis and biomarker discovery using
both CSF and plasma. Han et al. used an untargeted lipidomics approach to CSF collected
preoperatively from elderly individuals undergoing hip fracture surgery. Their findings
suggested phosphatidylethanolamine as a possible risk marker for delirium [14]. We
previously used targeted metabolomics to examine plasma collected pre- and postoper-
atively in a matched case-control delirium study. These results showed perturbations in
energy metabolism and that amino acid synthesis pathways may be associated with an
increased risk of postoperative delirium [15]. Previous CSF metabolomics studies have
supported the hypothesis that the genesis of delirium is rooted in an imbalance in aromatic
amino acids [16]. In addition, the CSF proteome of delirium patients revealed evidence
that inflammatory response is a key component of postoperative delirium [17]. We previ-
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ously used mass-spectrometry-based plasma proteomics to define a preoperative delirium
multi-protein signature that includes zinc-alpha-2-glycoprotein (AZGP1) and c-reactive
protein (CRP) and a postoperative signature of interleukin-6 (IL-6), interleukin-2 (IL-2), and
CRP [18]. We also used the high-throughput, aptamer-based SomaScan proteomics plat-
form to identify high preoperative (PREOP) chitinase-3-like-protein-1 (CHI3L1/YKL-40)
and high postoperative day 2 (POD2) IL-6 as risk and disease markers of postoperative
delirium [19].

Previous studies have focused on a single omics approach. Biological systems consist
of complex environments of interrelated pathways, and most disease phenotypes are driven
by multiple perturbed components, which a single omics approach cannot sufficiently ex-
plain. Therefore, we applied a multi-omics approach to samples from a nested case-control
study of matched postoperative delirium and no delirium samples from the Healthier
Postoperative Recovery (HiPOR) cohort [20]. We conducted an exploratory, hypothesis-
generating study, which, if validated in future work, can improve our understanding of
delirium pathogenesis.

2. Materials and Methods
2.1. Human Subjects/Study Population

The HiPOR study protocol was approved by the Partners Human Research Committee
(Boston, MA, USA), and all participants provided written informed consent. Eligible
individuals were aged 63 years or older and were admitted for elective total knee and
hip replacement using spinal anesthesia at the Massachusetts General Hospital [21,22].
Older adults with prior dementia were excluded based on patient or family report of
dementia diagnosis, medical record review, or a baseline Mini-Mental State Examination
(MMSE) score of less than 24 [23,24]. Additional exclusion criteria included severe visual
or hearing impairment, stroke, and psychosis. For the current study, only participants
enrolled between 2009 and 2016 with adequate banked CSF specimens were used.

2.2. Delirium Assessment and Matching

Delirium was assessed in HiPOR using the Confusion Assessment Method (CAM)
based on the MMSE Mini-Mental State Examination (MMSE, purchased from Psychological
Assessment Resources) for cognitive testing and the Delirium Symptom Interview (DSI) for
patient symptom reporting [23–26]. CAM is a standardized, widely used, evidence-based
tool that has been shown to have high sensitivity, specificity, and inter-rater reliability [27].
CAM diagnostic criteria for delirium require “acute change or fluctuating course in mental
status” and “inattention” and either “disorganized thinking” or “altered level of conscious-
ness”. Patients in the delirium group (DEL) met full CAM criteria on either postoperative
day one or two. Patients with subsyndromal delirium were those who did not meet full
CAM criteria but showed acute change or fluctuating course in mental status in addition to
at least one of the remaining three CAM features. The remaining patients, without either
full or subsyndromal delirium, were assigned to the control group (CNT). Patients with
subsyndromal delirium were excluded from eligibility as either DEL or CNT.

DEL and CNT samples were matched on four patient criteria using the optimal match
algorithm [28] to generate a nested, matched case-control study design that maximizes
statistical power for discovery phase biomarker studies with small sample sizes [29]. Sex
had to be an exact match, age within five years, year of surgery within five years, and
baseline MMSE score within three points.

2.3. Collection and Processing of Cerebrospinal Fluid

Spinal anesthesia was administered to all HiPOR participants prior to surgery. While
the anesthesia was being administered, 1 mL of CSF was collected using a spinal needle.
The samples were stored in a −80 ◦C freezer following centrifugation at 1000× g for 10 min.
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2.4. Proteomics

Protein quantification was performed using the SomaScan Assay Kit 1.3K, Cells and
Tissue (item 900-00009) using serum diluent (SomaLogic, Boulder, CO, USA) as previously
described [30,31]. The assay measured the levels of 1305 human proteins [32]. Raw data
were processed through a quality control protocol, normalization, and calibration following
the manufacturer’s instructions [33].

2.5. Targeted Metabolomics and Untargeted Lipidomics

Lipids and metabolites were extracted and measured using previously published untar-
geted and targeted methodologies, respectively [15,34]. For targeted metabolomics, a liquid
chromatograph–mass spectrometry (LC-MS/MS) separation and metabolite identification (ID)
was performed using the 5500 QTRAP hybrid triple quadrupole mass spectrometer (SCIEX)
with fast positive/negative polarity switching. Rapid polarity switching allows a single run of
sample to maximize metabolites identified [34]. Q1/Q3 multiple reaction monitoring (MRM)
transitions were employed for definitive metabolite ID. The list of targeted molecules and their
corresponding mass/charge (m/z) for the positive and negative ion modes (Supplementary
Table S1) were used to link the molecular formula and PubChem Identifier (Supplementary
Table S2). For the CSF-targeted metabolomics, 125 µL of each sample was extracted. In untar-
geted lipidomics, 40 µL per sample was processed for lipid isolation. Quality control measures
applied to the platform can be found in Supplementary Table S8.

Data preprocessing followed the general workflow as previously described by Tripp
and colleagues and outlined in Supplementary Figure S1 [15]. An analyte was considered
“present” if measured in at least 50% of the samples within a phenotypic group (CNT,
DEL). Signal drift was corrected using pooled quality control samples and a random forest
signal correction (QC-RFSC) algorithm [35]. Signal imputation was performed using the
k-nearest neighbor (knn) method [36]. Finally, metabolites and lipids were normalized to
previously selected molecule-specific internal standards using the normalization method
for metabolomics data using an optimal selection of multiple internal standards technique
(NOMIS) (Table 1) [15,37].

Table 1. Metabolomics Internal Standards (ISs). Optimal internal standards were selected using
previously published protocols [15]. All non-IS molecules were normalized to their respective ISs
using NOMIS [35].

Lipids Metabolites

LPE (17:1) L-Tryptophan_D3_pos
PE (15:0) (18:1) DL-Valine_D8_pos
PG (15:0) (18:1) DL-Alanine_D3_pos
PI (15:0) (18:1) DL-Alanine_D3_pos

As an artifact of the non-targeted lipidomics protocol, a lipid signal can be listed over
multiple output lines. These lines represent distinct signal capture and were consolidated
and summed before assessing if a lipid was “present”. The coefficient of variation was calcu-
lated for pooled quality control samples at each preprocessing step to evaluate the successful
removal of technical noise introduced during data acquisition (Supplementary Table S3).

2.6. Statistical Analysis

Differential analysis was assessed using parametric and non-parametric statistical
tests, namely, paired t-test, binomial test, and Wilcoxon signed-rank test, to account for the
degree, direction, and rank of difference between delirium and control groups, respectively.
To capture these different characteristics, metabolomics and lipidomics data were analyzed
using all three tests. For each statistical test, the Benjamini–Hochberg (BH) procedure
was applied to correct for multiple hypotheses testing [38]. The fold-change (FC) of an
analyte was calculated by using one-step Tukey’s biweight algorithm on FC (tFC) values
(DEL/CNT) for each matched pair [39]. This provides a robust estimation of the FC for
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each molecule that is unaffected by outliers. The FCs of the downregulated metabolites
in the delirium group are indicated using the negative sign (e.g., an FC of −2 implies
two-fold downregulation in the delirium group). Statistical analyses were performed using
MATLAB (v.2021b, The MathWorks Inc., Natick, MA, USA).

2.7. Systems Biology

Metabolites (n = 51 of 219) and lipids (n = 26 of 161) with a nominal p-value < 0.05
in at least one statistical test were used as input for molecule-specific systems biology
analysis (Table 2, Supplemental Table S4). Systems biology was performed using Metabo-
Analyst (v3.0, www.metaboanalyst.ca, accessed on 2 June 2021), an online tool for analyzing
metabolomics data, and LIpid Pathway Enrichment Analysis (LIPEA), a lipid-specific tool
to identify altered pathways [40,41].

Table 2. Metabolites (a), lipids (b), and proteins (c) with a significant difference (nominal p-value < 0.05)
between delirium and control groups in at least one statistical test. The lowest nominal p-values are
listed. Tukey fold changes (tFC) of the downregulated lipids in the delirium group are indicated
using a negative sign. Molecules are ordered by tFC.

(a)

Metabolite p-Value BH p-Value tFC Metabolite p-Value BH p-Value tFC

deoxyadenosine 0.0008 0.0557 2.46 ornithine 0.0481 0.2451 1.27

shikimate 1 0.0154 0.2114 2.25 D-gluconate 0.0481 0.2451 1.26

indoleacrylic acid 1 0.0302 0.2451 2.02 kynurenine 0.0334 0.2451 1.25

S-adenosyl-L-homocysteine 0.0005 0.0540 1.97 deoxyinosine 0.0481 0.2451 1.25

methylnicotinamide 0.0481 0.2451 1.84 acetyllysine 0.0348 0.2451 1.25

anthranilate 1 0.0210 0.2451 1.81 N-acetyl-
glutamate 0.0007 0.0632 1.23

1,3-diphopshateglycerate 0.0002 0.0418 1.80 D-sedoheptulose-1-
7-phosphate 1 0.0160 0.2180 1.25

N-acetyl spermidine 0.0077 0.1290 1.70 aspartate 0.0481 0.2451 1.17

glucose-6-phosphate 0.0050 0.1175 1.66 2-
hydroxygluterate 0.0067 0.1175 1.16

hydroxyphenylacetic acid 1 0.0481 0.2451 1.64 Succinate 1 0.0481 0.2451 1.14

7-methylguanosine 0.0035 0.1175 1.62 phenylpropiolic
acid 0.0023 0.1023 1.13

S-ribosyl-L-homocysteine 1 0.0059 0.1175 1.58 2-oxo-4-
methylthiobutanoate 0.0038 0.1376 1.13

fructose-6-phosphate 0.0052 0.1175 1.56 deoxyribose-
phosphate 0.0342 0.3151 1.13

SBP 0.0481 0.2451 1.49 arginine 0.0481 0.2451 1.11

D-glucono-delta-lactone-6-
phosphate 0.0481 0.2451 1.48 methylmalonic

acid 0.0033 0.1175 1.10

3-methylphenylacetic acid 1 0.0077 0.1462 1.45 asparagine 0.0154 0.2114 1.09

nicotinamide riboside 0.0431 0.1462 1.45 dGMP 0.0290 0.2857 1.01

uracil 0.0070 0.1175 1.41 trehalose-sucrose 0.0389 0.2451 0.90

1-Methyladenosine 1 0.0135 0.1847 1.45 3-hydroxybuterate 0.0485 0.3365 −0.81

guanine 0.0481 0.2451 1.39 dTTP 0.0432 0.3269 −1.13

uridine 0.0054 0.1175 1.37 alanine 0.0481 0.2451 −1.15

carbamoyl phosphate 0.0240 0.2749 1.33 dihydroxy-acetone-
phosphate 0.0481 0.2451 −1.43

homoserine 0.0481 0.2451 1.32 2-deoxyglucose-6-
phosphate 0.0481 0.2451 −1.46

www.metaboanalyst.ca
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Table 2. Cont.

(a)

Metabolite p-Value BH p-Value tFC Metabolite p-Value BH p-Value tFC

ribose-phosphate 0.0328 0.2451 1.31 N-
Acetylputrescine 0.0429 0.3151 −1.54

acadesine 0.0481 0.2451 1.30
2,3-

Diphosphoglyceric
acid

0.0154 0.2114 −1.67

N6-Acetyl-L-lysine 0.0226 0.2451 1.29

(b)

Lipid p-Value BH p-Value tFC Lipid p-value BH p-value tFC

PC (36:7e) 0.038 0.269 1.52 DG (18:3e) 0.038 0.269 −1.33

PE (16:1e) (22:6) 0.038 0.269 1.49 PI (18:0) (20:4) 0.038 0.269 −1.38

BiotinylPE (32:5) 0.004 0.269 1.46 TG (16:0) (16:0)
(17:0) 0.038 0.269 −1.39

PIP2 (31:6e) 0.002 0.269 1.32 TG (6:0) (6:0) (14:1) 0.038 0.269 −1.44

DG (8:0) (12:2) 0.050 0.377 1.27 TG (12:1e) (6:0)
(6:0) 0.002 0.269 −1.46

DG (4:0) (10:3) 0.011 0.269 1.20 PE (18:0) (22:6) 0.011 0.269 −1.47

DG (4:0) (11:3) 0.038 0.269 1.12 CerP (d36:3+O) 0.016 0.338 −1.53

PC (17:0) (14:1) 0.038 0.269 1.07 PE (16:1e) (20:4) 0.004 0.269 −1.57

PC (16:1e) (18:1) 0.030 0.377 −0.91 PC (32:0e) 0.038 0.269 −1.62

CL (15:0) (18:1) (15:0) (18:1) 0.030 0.269 −1.16 PC (32:1e) 0.038 0.269 −1.64

PE (40:5e) 0.038 0.269 −1.19 PE (18:0) (20:3) 0.011 0.269 −1.74

DG (6:0) (11:3) 0.038 0.269 −1.23 SM (d38:2) 0.038 0.269 −1.80

ChE (20:4) 0.038 0.269 −1.31 PC (35:1) 0.038 0.269 −2.09

(c)

Protein p-Value BH p-Value tFC Protein p-Value BH p-Value tFC

ACAN 0.0126 0.5077 1.79 MICA 0.0113 0.5077 0.90

CFL1 0.0407 0.5077 1.62 HAPLN1 0.0424 0.5077 0.86

CXCL11 0.0465 0.5077 1.46 PRKCA 0.0351 0.5077 −1.02

H2AFZ 0.0191 0.5077 1.44 PTPN6 0.0440 0.5077 −1.04

MUC1 0.0370 0.5077 1.39 IGFBP2 0.0285 0.5077 −1.07

NAMPT 0.0287 0.5077 1.36 FSTL1 0.0370 0.5077 −1.12

INS 0.0185 0.5077 1.35 CTSD 0.0208 0.5077 −1.15

CD97 0.0058 0.5077 1.32 PROC 0.0148 0.5077 −1.21

ICOS 0.0275 0.5077 1.31 CCL28 0.0086 0.5077 −1.21

PARK7 0.0278 0.5077 1.31 CHRDL1 0.0258 0.5077 −1.22

FAM107B 0.0279 0.5077 1.29 MSN 0.0142 0.5077 −1.24

CD38 0.0478 0.5077 1.29 MMP14 0.0278 0.5077 −1.29

NGF 0.0079 0.5077 1.20 CCL2 0.0300 0.5077 −1.34

PPIF 0.0152 0.5077 1.17 CXCL6 0.0167 0.5077 −1.36

THPO 0.0100 0.5077 1.12 GNLY 0.0453 0.5077 −1.43

DCN 0.0127 0.5077 1.09 CTSV 0.0370 0.5077 −1.47

1 Metabolites associated with bacteria.

2.8. Multi-Omics Integration

Multi-omics integration and analysis were performed for the 15 matched pairs that had
all three, metabolomics, lipidomics, and proteomics, data sets. In addition to the metabolites
(n = 51) and lipids (n = 26) used for systems analysis, proteins previously identified and
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reported (n = 32) by Dillon and colleagues, which used the same experimental design,
were also included. Signal, p-, and tFC values for all 109 molecules can be found in the
Supplementary Data [31].

These 109 molecules were used as input into the multi-omics integration algorithm
OBaNK: Omics Integration Using Bayesian Networks and External Knowledge (https://
github.com/bridgettripp/OBaNK.git, accessed 25 September 2022) [42]. OBaNK learns the
interaction structure of heterogeneous omics data through probabilistic graph modeling and
further strengthens interactions through external knowledge from the Kyoto Encyclopedia
of Genes and Genomes (KEGG), KEGG2Net, Recon3D, and SwissLipids [43–46]. Structure
learning was performed on 1000 bootstrapped data sets, and the consensus network was
obtained using model averaging [47]. The links in the consensus network were assigned
a “strength value” based on their frequency of occurrence in the networks obtained by
bootstrapping. These values were modified based on the incorporation of the external
knowledge model as previously described [42]. Only links with modified strength values
above the Scutari confidence threshold were included in the final network to denote
significant interactions [48]. The output of OBaNK is a multi-omics interaction network
where nodes represent molecules from different omics modalities and links represent
interactions.

2.9. Machine Learning

Clustering of samples and molecules was performed using the Unweighted Paired
Group Method with Arithmetic-mean (UPGMA) approach (a.k.a hierarchical clustering)
with average linkage. Pearson’s correlation was used as the distance metric, and molecular
expression data were standardized across samples prior to clustering [49]. The association
of observed clusters with delirium was assessed using Fisher’s exact test.

Classification of samples was performed on data transformed using principal compo-
nents analysis (PCA) [50]. Data were log-transformed and mean-centered for each feature
prior to the application of PCA. Support vector machine classification (SVM) with linear,
polynomial, and Gaussian kernels was used [51–53]. To further minimize the multi-omics
signature and validate the contribution of integration of different omics, we used regular-
ized logistic regression with elastic net [54]. Classification performance was assessed using
leave-one-out cross-validation accuracy and area under the curve (AUC) of the receiver
operating characteristic (ROC) curve [55,56]. All statistical and machine learning analyses
were performed using MATLAB (v.2021b, TheMathWorks Inc., Natick, MA, USA).

3. Results
3.1. Sample Characteristics

The full cohort of 289 subjects was reduced to 103 (27 delirium, 76 non-delirium)
prior to the match due to the exclusion of those (i) enrolled before 2009 (to limit sample
degradation), (ii) without baseline cognition (MMSE), (iii) with low CSF volume (200 µL),
and (iv) with subsyndromal delirium, missing data, or inability to determine delirium
status. Applying our matching algorithm with the four matching factors (age within five
years, exact sex, year of surgery within two years, MMSE score within three points) to the
103 subjects yielded 24 matched pairs (24 delirium cases, 24 non-delirium controls), which
were run on the SomaScan platform for proteomic profiling of a total of 48 samples. Due to
limited sample volumes and quality limitations, 18 and 16 delirium cases matched with
no-delirium controls were processed for metabolomics and lipidomics, respectively. Fifteen
matched pairs had all three omics signals measured (Supplementary Figure S2). Sample
characteristics are shown in Table 3. Delirium and control groups showed no statistically
or clinically important differences in the matched variables, and the different subgroups
used for proteomics, metabolomics, lipidomics, and multi-omics were also similar in key
variables. The difference in surgery date for all matched pairs was within two years, except
for one matched pair used in metabolomics that had a five-year difference.

https://github.com/bridgettripp/OBaNK.git
https://github.com/bridgettripp/OBaNK.git


Biomolecules 2024, 14, 924 8 of 22

Table 3. Baseline Characteristics of HiPOR Delirium Cases and No Delirium Controls.

Characteristics
Proteomics Metabolomics

D (n = 24) C (n = 24) D (n = 18) C (n = 18)

Age, M (SD)
(Range)

73.0 (4.9)
(65–81)

72.6 (5.5)
(64–83)

72.9 (5.1)
(65–81)

73.0 (5.7)
(65–83)

Female, n (%) 11 (46) 11 (46) 10 (56) 10 (56)

MMSE, M (SD) 27.2 (2.0) 27.5 (1.7) 27.3 (2.1) 27.7 (1.4)

Absolute difference in year of surgery
between D and C, mean (SD) 0.8 (0.8) 1.2 (1.2)

Characteristics
Lipidomics Multi-omics

D (n= 16) C (n = 16) D (n = 15) C (n = 15)

Age, M (SD)
(Range)

72.9 (4.6)
(65–81)

72.6 (5.3)
(64–82)

73.0 (4.8)
(65–81)

72.3 (5.4)
(64–82)

Female, n (%) 9 (56) 9 (56) 8 (53) 8 (53)

MMSE, M (SD) 27.2 (2.2) 27.8 (1.5) 27.4 (2.1) 27.9 (1.3)

Absolute difference in year of surgery
between D and C, mean (SD) 1.0 (0.8) 0.9 (0.8)

Abbreviations: C = control (no delirium), D = delirium, M = mean, SD = standard deviation.

3.2. Molecules Altered in the Delirium Group at PREOP

Following data preprocessing, 100 percent of the metabolites and 98.8 percent of the
lipids had a coefficient of variation of less than ten percent in the pooled quality control
samples, showing successful removal of technical and experimental noise (Supplemen-
tary Table S3). A total of 109 molecules (proteins, lipids, metabolites) were statistically
significantly altered in the delirium group at PREOP (p < 0.05) compared to the control
group. After BH correction for multiple hypothesis testing, no proteins or lipids and only
one metabolite (1,3-diphopshateglycerate) remained significant (Table 2), so we performed
downstream analysis using molecules with significant nominal p-values. Among the 51
differentially expressed metabolites (Tables 2a and 4), 44 (87%) were upregulated. How-
ever, we observed a reverse trend in the 26 lipids (Tables 2b and 4), where 18 (69%) were
downregulated, noted by a negative value under the fold change column, tFC. The previ-
ously reported 32 dysregulated proteins (Tables 2b and 4) showed a more even distribution
between up- and downregulated molecules, with 56 percent being upregulated.

Table 4. Summary of counts by molecule type used for downstream analysis and the quality control
(QC) strategy deployed. We performed downstream analysis using molecules with significant
nominal p-values (<0.05).

Molecular Type All 1 Used for Analysis QC Approach <10% CV 2

n (%)

Lipids 161 26 Pooled QC samples [15,34] 159 (98.8)

Metabolites 219 51 Pooled QC samples [15,34] 219 (100)

Proteins 1305 32 Multi-step QC process established
by manufacturer [33] N/A

1 Count after quantitative acquisition; 2 Coefficient of Variation.

Two of the three highest-fold change magnitudes within the metabolites with differ-
ential concentrations belonged to bacterial-derived analytes. Shikimate and indoleacrylic
acid had the second and third greatest fold changes, with 2.25 and 2.02, respectively
(Supplement Figure S3). Indoleacrylic acid is exclusively produced by the gut bacterial
metabolism of tryptophan [57]. Shikimate is an intermediate within the shikimate pathway,
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a metabolic pathway observed in microorganisms and plants. S-adenosyl-L-homocysteine
(SAH) had the fourth greatest change (tFC = 1.97). SAH is the metabolic precursor of
homocysteine. The accumulation of homocysteine (hyperhomocysteinemia) in plasma
reflects the functional status of three B vitamins (folate and vitamins B12 and B6) [58].

The 26 lipids with differential concentrations belonged to 11 lipid classes (Table 5).
Multiple lipids belonged to one of four classes: phosphatidylcholines (PC), diacylglycerols,
phosphatidylethanolamines (PE), and triacylglycerols. Sixteen of the twenty-six lipids were
phospholipids, with PC and PE accounting for the majority. Of the sixteen phospholipids,
eleven were down in the delirium group. PC species serve as a substrate for the synthesis of
the neurotransmitter acetylcholine. Our results showed that four of the six lipids in the PC
class were down preoperatively in patients developing postoperative delirium, three being
in the top five with the highest tFC magnitude (Tables 2b and 4). PE species are known
for their essential role in the elongation of the phagophore to form the autophagosome in
autophagy (Figure 1) [59]. Four of the five lipids that belonged to the PE class displayed a
decrease in the delirium group (Table 5).

Table 5. Breakdown of the classes for the significantly differentially expressed lipids. The down and
up columns represent the number of lipids downregulated and upregulated, respectively, in that
class in the delirium group when compared to the control group.

Lipid Class Total (n = 26) Down (n = 18) Up (n = 8)

Phosphatidylcholine 6 4 2

Diacylglycerols 5 2 3

Phosphatidylethanolamines 5 4 1

Triacylglycerol 3 3 0

Biotintl-PE 1 0 1

Ceramide-1-phosphates 1 1 0

Cholesteryl esters 1 1 0

Cardiolipins 1 1 0

Phosphatidylinositol 1 1 0

Phosphatidylinositol bisphosphate 1 0 1

Sphingomyelin 1 1 0Biomolecules 2024, 14, x FOR PEER REVIEW 10 of 23 
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phosphatidylethanolamines (PEs) recorded in our experiment were down in the delirium group. PE
(black ovals) is critical to the elongation process in autophagy. Autophagy is a catabolic pathway
that degrades cytosolic contents and is important for balancing energy stores in response to nutrient
deprivation. It starts with the formation of the phagophore, which goes through an elongation
process to form an autophagosome. A cytosolic microtubule-associated protein 1A/1B-light chain
3 (LC3) (denoted in grey) is conjugated to PE to form LC3-PE. Then, the mature autophagosome
fuses with the lysosome. After fusion, lysosomal proteases, like cathepsin D (CTSD), degrade the
contents of the autophagosome [59]. Our proteomics results showed a decline in CTSD in the delirium
group, inferring a potential build-up of autophagosomes and, ultimately, the dysregulation of the
autophagy pathway.

3.3. Pathway Enrichment Analysis of Lipids and Metabolites

MetaboAnalyst (v3.0, www.metaboanalyst.ca, accessed on 2 June 2021) returned six
significantly enriched pathways with our input metabolites (Table 6) [40]. These pathways
include the pentose phosphate pathway, arginine biosynthesis, glycolysis, alanine, aspar-
tate, and glutamate metabolism, butanoate metabolism, and nicotinate and nicotinamide
metabolism. Steps in and precursors to glycolysis are represented in this list of enriched
pathways. The input metabolites contained within the two most significantly enriched
pathways—the pentose phosphate pathway and arginine biosynthesis—were all upreg-
ulated and located in central positions within the pathways (Figure 2). This implies that
both pathways function at a greater rate in the delirium group than in the matched controls
before surgery. Studies have shown a significant increase in arginine is associated with
cognitive decline [60,61]. The pentose phosphate pathway is an alternative pathway to
glycolysis. Previous studies have shown dysregulation in alternative energy pathways in
people with delirium [15].

Table 6. Pathways that were significantly enriched using MetaboAnalyst.

Pathway Total Exp Hits Raw p-Value FDR

Pentose phosphate pathway 22 0.64 7 1.28 × 10−6 0.00011
Arginine biosynthesis 14 0.41 5 2.65 × 10−5 0.00111

Glycolysis/Gluconeogenesis 26 0.75 5 0.00067 0.0188
Alanine, aspartate, and glutamate metabolism 28 0.81 5 0.00096 0.0202

Butanoate metabolism 15 0.43 3 0.00805 0.113
Nicotinate and nicotinamide metabolism 15 0.43 3 0.00805 0.113

Abbreviations: Total: number of metabolites in the pathway. Exp: expected number of input metabolites that
would be in the pathway by random chance. Hits: metabolites significantly different between delirium and control
groups, i.e., input metabolites, that are in the pathway. FDR: False discovery rate based on the Benjamini–Hochberg
method [37].

Characterizing individual lipids and systems analysis approaches for lipids are nascent
disciplines compared to other biomolecules. Evaluating the composition of lipids at the
class level produces the most accurate snapshot of a system (Table 5). Our pathway
enrichment analysis for the 26 significantly differentially expressed lipids using LIPEA
identified seven pathways, including autophagy and glycerophospholipid metabolism
(Supplementary Table S4) [41]. Although none of these enrichments showed statistical
significance, the lipid pathway association provides important descriptive information that
may help guide future pathophysiologic investigations.

www.metaboanalyst.ca
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Figure 2. Pathway analysis of metabolites with significant differences in signal between the delirium
and control groups. A red box indicates an input metabolite, and all are upregulated in delirium.
The two most significantly enriched pathways are (a) arginine biosynthesis (FDR = 0.0011) and
(b) pentose phosphate pathway (FDR = 0.00011). Supplementary Figure S4 contains the original
pathway figures generated through MetaboAnalyst, including KEGG compound numbers.

3.4. Signature Prediction of Delirium with Machine Learning

We further constricted the differentially abundant molecules by using a |tFC| > 1.5 cut-
off to utilize high fold changes and to generate a reasonably-sized multi-omics list to be used
as a predictive signature and to be analyzed in an interaction network setting. This resulted
in two proteins, fifteen metabolites, and eight lipids that were analyzed separately and
together for their clustering and classification performance. Figure 3 shows the hierarchical
clustering results for the separate and combined omics profiles. We observed thirteen,
six, and eleven out of thirty incorrectly clustered samples when individual proteomic,
metabolomic, and lipidomic signatures were used, respectively. However, we only had
five out of thirty samples incorrectly clustered when all three omics signatures were
combined to obtain a multi-omics signature. Clusters observed using metabolomics and
multi-omics signatures rendered significant association with delirium status (p < 0.0025
and p < 0.0007, respectively), while proteomic and lipidomic signatures did not provide
clusters significantly associated with delirium. These results suggest an improvement in
clustering when an integrated multi-omics signature is used.

In Figure 4, we show the SVM prediction results on data transformed using PCA
analysis. We obtained the lowest cross-validation accuracy with the proteomic signature
(60%) that improved for the metabolomic (70%) and lipidomic signatures (80%), peaking
for the combined multi-omics signature (87%). The AUC values for the lipidomic and
proteomic signatures were 0.88 and 0.91, respectively, while the combined multi-omics and
metabolomics signature attained a higher AUC (0.96) (see Supplementary Figure S5 for
the ROC curves). As shown in Figure 4, the distance of the samples to the decision line,
i.e., the margin in SVM classification, was wider in the multi-omics signature compared to
individual omics signatures, indicating a more robust classification model. The multi-omics
signature stood out as the best overall performing signature when all of the clustering,
cross-validation, and AUC results were considered.
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Figure 3. Hierarchical clustering for lipid, metabolite, protein, and combined omics signatures. The
blue and yellow horizontal bars denote control (CNT) and delirium (DEL) samples, respectively. Red
and green represent up- and downregulation in the delirium group, respectively. The vertical side bar
represents the range of row-normalized (zero-mean, unit-variance) signal values and corresponding
color codes. (a) Combined multi-omics signature (25 molecules), (b) Lipidomic signature (8 lipids),
(c) Proteomic signature (2 proteins), (d) Metabolomic signature (15 metabolites).

We analyzed individual and combined omics with and without a fold change cut-off
of 1.5 using regularized logistic regression with elastic net. We used model coefficients
that corresponded to the minimum expected deviance based on 3-fold cross-validation.
A sample deviance plot is shown in Supplementary Figure S6. Summarized in Supple-
mentary Table S6, the best performing set was the 25-molecule multi-omics data (8 lipids,
15 metabolites, 2 proteins) that represented a significant association with high fold change
and was used in the analysis shown in Figures 3 and 4. We further analyzed the 25-molecule
results by identifying the number of times a feature was included in the final model out of
30 leave-one-out model generations. We identified 16 molecules: 4 lipids, 11 metabolites,
and 1 protein that were involved in the majority of the models. Using these 16 molecules,
we performed hierarchical clustering, which resulted in two samples that were wrongly
clustered, and our PCA+SVM workflow, which resulted in 93.33% L1OXV accuracy and
0.9822 AUC of ROC with a 95% confidence interval of [0.91–1.00] (Figure 5). We believe
our results underline the value of integrating multiple omics for classification purposes, as
the final 16-molecule set obtained through this parsimonious approach included all three
omics and yielded the highest accuracy and AUC values.
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(b) Lipidomic signature (8 lipids), (c) Proteomic signature (2 proteins), (d) Metabolomic signature
(15 metabolites). Percent values along the axes represent the percent of variation in data explained by
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Figure 5. (a) Hierarchical clustering and (b) PCA+SVM plot using the refined multi-omics signature
with 16 molecules (11 metabolites, 5 lipids, and 1 protein). The molecules that ended up in the
majority of leave-one-out-cross-validation models in regularized logistic regression with elastic net
analysis constitute the refined list of 16. The input list for the regression analysis was the 25 molecules
(15 metabolites, 8 lipids, 2 proteins) that were significantly associated with delirium (p < 0.05) and
showed high fold change (|tFC| > 1/5).
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3.5. Multi-Omics Integration

We used OBaNK to integrate the three different omics experiments using the
109 multi-omics molecules with a p-value < 0.05. OBaNK takes as input biological data
and learns a molecular interaction network. The links are learned directly from the multi-
omics input data using a Bayesian network structure learning algorithm, and connections
are supplemented with external interaction knowledge [42]. This method improves the
traditional interaction network approaches, which typically do not incorporate existing
knowledge and are limited by single omics where heterogeneous molecular interactions,
i.e., interactions between different molecule types, e.g., proteins and metabolites, are not ac-
counted for, failing to represent a systems-level view. Connecting the three functional omics
layers using OBaNK identified a multi-omics interaction network with 22 subnetworks of
at least two or more molecules (Figure 6). Edges were linearly color-coded to represent the
interaction confidence; only those links with significant confidence were included, with
black representing the highest confidence. One of the subnetworks shown in Figure 6
was a tri-omics (lipidomics, metabolomics, and proteomics) cluster. Eight, including the
tri-omics group, involved interactions of two or more types of molecules. Two heteroge-
nous clusters represent molecules in histone methylation and chromatin accessibility, and
redox homeostasis.
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Figure 6. Multi-omics integration using OBaNK. A total of 109 molecules were used as input
(lipids = 26, metabolites = 51, proteins = 32) (Table 2, Supplemental Table S4). Nodes are colored to
represent the molecule type (blue = lipids; green = metabolites; orange = proteins). Edges represent
the significant interactions (strength) between molecules. Edges are linearly color-coded to represent
the interaction confidence [0.38–1.0], with black representing the highest confidence.
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4. Discussion

In this proof-of-concept exploratory study, we applied targeted metabolomics, pro-
teomics, and untargeted lipidomics approaches to preoperative CSF to quantify potential
molecules associated with the risk of postoperative delirium after orthopedic surgery
under spinal anesthesia and integrated these results using systems biology and machine
learning. While individual omics performed well in classifying patients who went on
to develop delirium vs. those who did not, combining lipidomics, metabolomics, and
proteomics improved clustering accuracy and discriminatory abilities. Systems analysis
of different omics may present a fuller picture when collectively considered, as observed
in improved classification accuracy and AUC performance, and our probabilistic graph
model supplemented with external knowledge elucidated interactions between different
molecule types. Integrated multi-omics analysis has the potential to provide a better picture
of the underlying mechanisms not attainable with a single omics approach. It should be
noted that our proof-of-concept study is intended for hypothesis generation to guide future
exploration and was not validated using an external cohort.

CSF metabolomics analysis at PREOP in the HiPOR study identified 51 significant
delirium-associated metabolites. We previously analyzed the metabolome associations
with postoperative delirium in plasma at PREOP and POD2 for a different elective, pri-
marily orthopedic surgery cohort, the Successful Aging after Elective Surgery (SAGES)
study and examined whether there existed any overlap between the HiPOR CSF and the
SAGES plasma metabolome data [15]. We observed that six metabolites were in common
between HiPOR CSF PREOP and SAGES plasma PREOP delirium-associated metabolites,
and nine metabolites were in common between HiPOR CSF PREOP and SAGES plasma
POD2 delirium-associated metabolites, with two of them, S-ribosyl-L-homocysteine and D-
gluconate, common to all three metabolomics analyses (Supplementary Table S7). Interest-
ingly, the fold change directionality between CSF and plasma was more congruent between
CSF PREOP and plasma POD2 than plasma PREOP. Specifically, among the six metabolites
shared between CSF PREOP and plasma PREOP only D-gluconate and 3-hydroxybuterate
had the same directionality. In contrast, all nine metabolites, D-gluconate, S-ribosyl-
L-homocysteine, S-adenosyl-L-homocysteine, 1-methyladenosine, acetyllysine, SBP, D-
sedoheptulose-1-7-phosphate, deoxyinosine, and D-glucono-delta-lactone-6-phosphate,
common to CSF PREOP and plasma POD2 had consistent directionality, all being increased
in delirium cases. Thus, despite CSF and plasma being collected from different cohorts,
there is nominal overlap between metabolites associated with delirium across both studies,
even though this is significant only for CSF at PREOP with plasma at POD2 (p < 0.01) [62].

Our previous POD2 plasma metabolomics analysis suggested that the dysregulated
expression of kynurenic acid, which is a degradation product of tryptophan, could be
associated with delirium [15]. While in this study, we did not observe significant alterations
in kynurenic acid in CSF, a significant increase in kynurenine, a tryptophan degradation
product upstream of kynurenic acid, was prominent. An increasing number of publications
link the regulation of kynurenine by inflammatory cytokines to neurological diseases [63].
Enhanced expression of kynurenine is linked to inflammatory states and in response to
immune system activation, and upregulated plasma levels of kynurenine have been shown
to be an independent predictor of greater duration of delirium in the ICU and of mortality
and neurological outcomes in cardiac arrest patients [64]. Neuroinflammation-mediated
kynurenine upregulation is found in serum, plasma, CSF, and brain tissue in a range of
neurodegenerative disorders, e.g., Alzheimer’s disease, multiple sclerosis, and Parkinson’s
disease [63,65,66]. We also observed an elevated level of N6-Acetyl-lysine. Both metabolites
have been identified as upregulated in a whole blood metabolomics analysis of patients
with dementia [67]. N6-Acetyl-lysine may be associated with the accumulation of acetylated
Tau in Alzheimer’s disease [68,69].

Over the last two decades, research has supported a bidirectional communication
system between the central nervous system and the microbial community in the gastroin-
testinal tract, referred to as the gut–brain axis [70]. Two of the metabolites with the highest
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positive fold change difference between delirium and healthy controls belong to a group of
bacterial-derived analytes: shikimate and indoleacrylic acid. Indoleacrylic acid is a product
of tryptophan metabolism by gut bacterial communities [57]. The upregulation observed in
the delirium group could imply greater metabolism of dietary tryptophan. Shikimate is an
intermediate within the shikimate pathway, a metabolic pathway observed in microorgan-
isms and plants. This pathway synthesizes folates and the aromatic acids phenylalanine,
tryptophan, and tyrosine [71]. As part of the gut–brain axis, signals from the brain control
functions in the gut, while the brain and gut communicate via a battery of physiological
channels, including molecules synthesized by the gut microbiota [70]. Studies have shown
that the gut microbiota can modulate the two major tryptophan metabolism pathways:
serotonin and kynurenine. Dysregulations in these pathways lead to disequilibrium in
cognitively important metabolites and neurotransmitters [70,72]. Recent studies focusing
on the gut microbiota composition in older patients found that microbiota associated with
inflammation pathways (e.g., Parabacteroides distasonis and Prevotella) and neurotransmitter
modulation were commonly higher in those who experienced delirium [73–75]. Future
studies may use the suggested system from the present study to determine the associa-
tions between gut microbiota and other potential biomarkers of postoperative delirium
in patients.

Enrichment analysis revealed that amino acid biosynthesis (arginine biosynthesis) and
metabolism (alanine, aspartate, and glutamate metabolism) possibly play a role in delirium.
These findings are consistent with amino acid metabolism alterations seen in our prior
plasma metabolomics study and another study of preoperative CSF in elderly patients with
hip fracture surgery [14,15]. They have also been associated with Alzheimer’s disease and
dementia [76]. We identified increased expression of S-adenosyl-L-homocysteine (SAH)
in the CSF at PREOP and previously in plasma at POD2 [15]. SAH plays an apparent role
in cognitive functions and is increased in cognitively impaired individuals in CSF and
plasma [77]. SAH is the metabolic precursor of homocysteine. Hyperhomocysteinemia has
been identified as a risk marker for cognitive decline, delirium, dementia, and Alzheimer’s
disease in older adults [78,79]. Levels of SAH also correlate with p-Tau181 [77]. Higher
levels of SAH also correlate with an increased risk of death in a prospective study of an
older population [78].

Of the 26 lipids we identified, two downregulated phosphoethanolamines (PE (16:1e)
(22:6), PE (18:0) (22:6)) involved in glycerophospholipid metabolism had previously been
identified among preoperative CSF lipids decreased in delirium in elderly hip fracture
patients [14]. We observed lipid membership in three pathways: autophagy, ferroptosis,
and retrograde endocannabinoid signaling, which have previously been implicated in
neurodegenerative diseases. Autophagy is a catabolic process resulting in the degradation
of cytoplasmic contents generally activated by nutrient deprivation [80]. Ferroptosis is
a programmed cell death that occurs when glutathione-dependent antioxidant defenses
fail. It has been linked to neurodegenerative diseases, including Alzheimer’s disease [81].
Retrograde endocannabinoid signaling performs neuromodulation in the brain, and en-
docannabinoids can regulate several neural functions [82]. All three pathways displayed
lower availability of lipid species from the phosphatidylethanolamine (PE) class in the delir-
ium group, thus implying a potential perturbation in phospholipid biosynthesis. Wallace
et al. identified a strong inverse relationship between inflammatory markers, CRP, TNF-α,
resistin, and MCP-1, and lipids in the lysophosphatidylcholine (LPC), phosphatidylcholine
(PC) and phosphatidylethanolamine (PE) classes [83]. We observed eight significantly
downregulated lipids from the PC and PE classes in delirium. This might imply an upregu-
lation in the associated inflammatory markers. An increase in CRP and TNF-α in delirium
has been observed [84–86].

Multi-omics integration using OBaNK identified several interactions between metabo-
lites, lipids, and proteins. To evaluate whether these predicted potential interactions include
known biological relationships we looked in more detail at several of these interactions. For
example, the predicted interaction between CD38 and 2-hydroxygluterate (2-HG) (Figure 6)
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is strongly supported by findings in T lymphocytes where CD38 regulates the intracellular
levels of 2-HG, which plays a pivotal role in histone methylation and chromatin accessibil-
ity [87]. The NAD+ degrading enzyme CD38 levels increase during aging, may regulate
Alzheimer’s disease pathology, and play a role in neuroinflammation [88,89].

Another interaction cluster included biotinyl PE (25:0), D-glucono-delta-lactone-6-
phosphate, guanine, and PPIF. The metabolite D-glucono-delta-lactone-6-phosphate is
an intermediate in the pentose phosphate pathway. When functioning properly, the
pentose phosphate pathway is neuroprotective. Microglial and immune cells generate
high concentrations of glucose-6-phosphate dehydrogenase, a rate-limiting enzyme for
the pentose phosphate pathway [90]. When microglial cells have excessive activation of
glucose-6-phosphate dehydrogenase, this can lead to an overabundance of reactive oxygen
species [91]. PPIF is a component of the mitochondrial permeability transition pore and
is involved in mitochondrial apoptosis. PPIF induces a conformation change in the mito-
chondria, increasing reactive oxygen species levels [92]. The increased levels of reactive
oxygen species ultimately lead to mitochondrial apoptosis. This heterogeneous cluster,
therefore, appears to be linked to reactive oxygen species. Previous studies have suggested
dysregulation in redox homeostasis can lead to postoperative delirium [4].

Individual omics analysis on its own can guide future experiments and elucidate dys-
regulations between case and control cohorts. However, most conditions are rooted in more
complex etiologies and the complete picture may be missed when single omics data are
analyzed. For example, based on our lipidomics results only, dysregulation in autophagy
is weakly linked to the delirium group. However, when the analysis is expanded to the
proteomics and metabolomics results, a more complete picture emerges. There is evidence
that a hyperhomocysteinemic state, which is implied by the accumulation of SAH in our
metabolomics results, impairs autophagy, resulting in cellular injury in a murine brain
model [93]. Increasing evidence suggests that a hyperhomocysteinemic state is associated
with brain microvasculopathy [94–96]. Specifically, an elevated homocysteine level has
been reported to be associated with cerebral microangiopathy but not with cardioembolic
or macroangiopathic mechanisms [97]. Brain microvasculopathy is also associated with
delirium, and it is plausible that a hyperhomocysteinemic state may increase the risk of post-
operative delirium via potentiating brain microvasculopathy [98,99]. Future studies to test
this hypothesis are warranted. In our lipidomics results, we observe reduced availability of
phosphatidylethanolamine, a critical component in the formation of the autophagosome
used in macroautophagy (Figure 1). Under normal conditions, the lysosome fuses with the
mature autophagosome, and a lysosomal protease like cathepsin D (CTSD) degrades the
contents [59]. Our proteomics results showed a decline in CTSD in the delirium group. All
three omics results point to a possible dysregulation in autophagy.

Despite our strengths in multi-omics integration, experimental design, established
cohort, developed workflow, and data analysis methods, several limitations of this study
are of note. The sample size was limited in all three omics, leading to insufficient statistical
power to yield significant BH-corrected molecules. Although not being corrected for
multiple hypothesis testing, the identified molecule list validated some of the molecules in
previously published omics studies and showed highly successful discriminatory power for
clustering, classification, and prediction. Furthermore, the systems and pathway analysis
demonstrated the relevance of the identified molecule list as they were coherent with
each other and consistent with the existing biological and clinical literature. However,
it should be noted that our proof-of-concept study is hypothesis generating as it is an
exploratory study, lacking an independent validation cohort. Second, lipidomics is a
newer omics methodology, so analytical tools are limited. Additionally, nomenclature
between analytical tools is not standardized, so findings are limited to only those lipids
properly labeled for a specific approach. This results in lipid presence often being under
reported. Finally, targeted metabolomics and proteomics are restricted by the detection
of the predefined molecules established by the specific protocol; however, our analytical
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platforms do provide some of the broadest samplings available on a targeted platform. This
may result in the omission of relevant molecules involved in delirium.

5. Conclusions

In summary, we report, to our knowledge, the first multi-omics analysis of preopera-
tive CSF for delirium risk biomarkers, combining proteomics, metabolomics, and lipidomics.
We demonstrate that such a multi-omics approach may generate multi-analyte prediction
models with improved performance as compared to single omics-based models. Moreover,
our multi-omics OBaNK analytic strategy enables us to explore potential interactions be-
tween different omics data that help to reveal plausible pathophysiological mechanisms.
Despite the relatively small sample size, our computational analysis produced promising
associations, clustering, prediction, and interaction results, and the use of metabolomics
and lipidomics, in addition to proteomics, provided novel insights that would otherwise
not be possible with single-omics analysis. Although exploratory at this level, if validated in
future work, this multi-omics signature can serve to both increase the predictive power for
postoperative delirium and improve our understanding of delirium pathogenesis. Further
studies in independent cohorts are warranted to confirm and extend the findings from
this study.
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