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Abstract: Drug resistance is a major challenge in the treatment of advanced cholangiocarcinoma
(CCA). Understanding the mechanisms of drug resistance can aid in identifying novel prognostic
biomarkers and therapeutic targets to improve treatment efficacy. This study established
5-fluorouracil- (5-FU) and gemcitabine-resistant CCA cell lines, KKU-213FR and KKU-213GR, and
utilized comparative proteomics to identify differentially expressed proteins in drug-resistant cells
compared to parental cells. Additionally, bioinformatics analyses were conducted to explore the
biological and clinical significance of key proteins. The drug-resistant phenotypes of KKU-213FR
and KKU-213GR cell lines were confirmed. In addition, these cells demonstrated increased mi-
gration and invasion abilities. Proteomics analysis identified 81 differentially expressed proteins
in drug-resistant cells, primarily related to binding functions, biological regulation, and metabolic
processes. Protein–protein interaction analysis revealed a highly interconnected network involv-
ing MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1. siRNA-mediated knockdown of these
genes in drug-resistant cell lines attenuated cell migration and cell invasion abilities and increased
sensitivity to 5-FU and gemcitabine. The mRNA expression of these genes is upregulated in CCA
patient samples and is associated with poor prognosis in gastrointestinal cancers. Furthermore,
the functions of these proteins are closely related to the epithelial–mesenchymal transition (EMT)
pathway. These findings elucidate the potential molecular mechanisms underlying drug resistance
and tumor progression in CCA, providing insights into potential therapeutic targets.

Keywords: cholangiocarcinoma; quantitative proteomics; drug resistance; 5-fluorouracil; gemcitabine; EMT

1. Introduction

Cholangiocarcinoma (CCA), a malignancy affecting the bile ducts, is relatively rare on
a global scale. However, its prevalence and mortality rates are notably elevated in specific
Asian regions, with the highest occurrences observed in Northeast Thailand [1]. Due
to late-stage diagnosis, most CCA cases are ineligible for curative surgical interventions.
Consequently, chemotherapy plays a crucial role in the treatment of these late-diagnosed
CCA patients [2]. However, the effectiveness of chemotherapy is limited by the acquisition
of drug resistance by CCA cells, leading to inevitable tumor recurrence [3]. A deeper
understanding of the mechanisms underlying drug resistance holds the potential to enhance
the effectiveness of CCA treatment. In the field of cancer research, to identify novel drug-
resistant mechanisms or investigate the potency of novel treatments for combating drug
resistance, drug-resistant cell lines are often employed [4–7].
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Proteomics techniques have played a crucial role in advancing our understanding of
cancer biology by investigating modifications in signaling pathways within tumor cells.
This progress has led to the creation of comprehensive cancer proteome databases, merging
molecular and clinical data, and identifying potential therapeutic targets and prognostic
markers [8–11]. Recent examples of such revelations have been observed in various cancers
including hepatocellular carcinoma [12], pancreatic cancer [13], glioblastoma [14], and lung
adenocarcinoma [15]. However, to our knowledge, proteomic profiling for the elucidation
of chemotherapeutic drug-resistant CCA cells has not yet been undertaken.

In the present study, we established 5-fluorouracil (5-FU) and gemcitabine-resistant
cell lines named KKU-213FR and KKU-213GR, respectively, from the KKU-213A parental
cell line. Various tumor characteristics such as the drug sensitivity, cell migration, and cell
invasion capability of these cells were investigated. Furthermore, quantitative proteomic
analysis was conducted to identify differentially expressed proteins in drug-resistant cell
lines compared with the parental cell line and to explore the underlying drug-resistant
mechanisms. Additionally, various bioinformatic tools were utilized to explore functions
and protein–protein interaction networks. The Cancer Genome Atlas Program (TCGA)
data were analyzed to investigate the clinical relevance of the key identified proteins.

2. Materials and Methods
2.1. Cell Culture

The KKU-213A, formerly known as M213, was established from liver fluke-associated
intrahepatic mass-forming CCA tissue with an adenosquamous carcinoma nature from a
Thai patient [16,17]. It was obtained from the Japanese Collection of Research Bioresources
(JCRB) Cell Bank in Osaka, Japan. The cell line was cultured under standard conditions in a
humidified atmosphere with 5% CO2 at 37 ◦C using Dulbecco’s Modified Eagle’s Medium
(DMEM, Invitrogen, Carlsbad, CA, USA), supplemented with 25 mM glucose, 10% fetal
bovine serum (FBS, Gibco, Paisley, Scotland), and 1% antibiotic-antimycotic mixture (Gibco,
Grand Island, NY, USA).

2.2. Establishment of Drug-Resistant CCA Cell Lines

The chemotherapeutic drugs 5-FU and gemcitabine were purchased from Sigma
(Sigma Aldrich, Saint Louis, MO, USA). Drug-resistant cell lines were established using a
stepwise concentration incremental method, as previously described [18], with necessary
modifications. The parental cell line of KKU-213A cells was initially cultured in DMEM
containing the IC25 concentrations of 5-FU and gemcitabine. After four passages, the
drug concentration was increased two-fold. Finally, cell lines growing exponentially in
the presence of 7 µM 5-FU and 3 µM gemcitabine were designated as KKU-213FR and
KKU-213GR, respectively.

2.3. Chemotherapeutic Drug Sensitivity Assay

The drug-resistant characteristic of the established KKU-213FR and KKU-213GR cell
lines was verified through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay. In this process, both drug-resistant cells and their parental counter-
parts were seeded at a density of 3 × 103 cells/well in a 96-well plate and incubated for
24 h. Subsequently, they were exposed to varying concentrations of 5-FU or gemcitabine
for 72 h. Afterward, an MTT solution at a concentration of 0.5 mg/mL was introduced into
each well and incubated at 37 ◦C for 2 h. The resulting formazan crystals were dissolved
by replacing the medium with 100 µL of dimethyl sulfoxide (DMSO). The absorbance was
measured at 540 nm using a microplate reader, enabling the calculation of cell viability
percentages for comparison between the drug-resistant and parental cell lines.

2.4. Cell Migration and Invasion Assay

The migration and invasion abilities of cells were evaluated using a modified Boyden
chamber technique. In short, 2 × 104 cells were placed onto an 8-µm porous polycarbonate
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membrane in the upper chamber. For the invasion assay, the membrane was pre-coated
with 0.5 mg/mL Matrigel (Corning, Bedford, MA, USA). The lower chamber contained
a complete medium to encourage cell migration in response to chemoattractants. After
12 h, any non-migrated cells in the upper chamber were removed and the membrane was
fixed and stained using a 0.4% sulforhodamine B (SRB) solution. The numbers of migrated
and invaded cells were then counted and compared across five randomly chosen low-
power fields.

2.5. Proteomics Analysis Using LC-MS/MS

Cell pellets from KKU-213A, KKU-213FR, and KKU-213GR were lysed with 0.5% SDS
and centrifuged at 10,000× g for 15 min. The resulting supernatant was transferred to a
new tube, mixed with two volumes of cold acetone, and incubated overnight at −20 ◦C.
The mixture was thawed and centrifuged again at 10,000× g for 15 min. Following the
removal of the supernatant, the pellet was dried and stored at −80 ◦C until needed. Protein
concentration of all samples was determined using the Lowry protein assay, with bovine
serum albumin (BSA) as the standard protein. To reduce disulfide bonds, a solution of
10 mM dithiothreitol in 10 mM ammonium bicarbonate was added to the protein solu-
tion. To prevent reformation of disulfide bonds, the solution was treated with 30 mM
iodoacetamide in 10 mM ammonium bicarbonate. Protein samples were digested with
sequencing-grade porcine trypsin (at a ratio of 1:20) for 16 h at 37 ◦C. Subsequently,
100 ng of digested peptides were injected into an Ultimate3000 Nano/Capillary LC System
(Thermo Scientific, Oxford, UK) coupled to an HCTUltra LC-MS system (Bruker Daltonics
Ltd., Hamburg, Germany) equipped with a nano-captive spray ion source.

Briefly, the peptide digests were enriched on a µ-Precolumn (300 µm I.D. × 5 mm) C18
PepMap 100 with 5 µm, 100 Å (Thermo Scientific, UK). The peptides were then separated
on a 75 µm I.D. × 15 cm column packed with Acclaim PepMap RSLC C18, 2 µm, 100 Å,
nanoViper (Thermo Scientific, UK). This column was maintained in a thermostatted column
oven at 60 ◦C. The column was supplied with solvents A and B, which contained 0.1%
formic acid in water and 0.1% formic acid in 80% acetonitrile, respectively. Tryptic peptides
were eluted from the column using a gradient of 5–55% solvent B at a constant flow rate
of 0.30 µL/min for 30 min. Electrospray ionization was performed at 1.6 kV using the
CaptiveSpray method with nitrogen as the drying gas at a flow rate of 50 L/h. Mass spectra
(MS) and MS/MS spectra were acquired in the positive-ion mode at 2 Hz, covering a range
of 150–2200 m/z. The collision energy was set at 10 eV based on the m/z value. MS/MS
data-dependent acquisition was enabled. The ion trap was configured for positive-ion
mode utilizing the manufacturer-specified standard enhanced mode with a scan rate of
8100 m/z/s. The scan range spanned from m/z 400 to 1500 for MS, averaging five spectra,
and accumulated either 100,000 charges [by ion charge control (ICC)] or 200 ms, whichever
came first. Collision-induced dissociation (CID) fragmentation was performed on the five
most intense ions within the m/z range of 200–2800. The threshold for precursor ion selection
was set at an absolute intensity of 5000. To prevent redundancy, strict active exclusion
was applied: a precursor ion was excluded after two spectra and then reintroduced after a
brief 0.3-min interval. The samples were run in three biological replicates of KKU-213A,
KKU-213FR, and KKU-213GR, with each replicate undergoing LC-MS analysis in triplicate.
A spike of digested BSA was used as an internal standard.

The DecyderMS 2.0 Differential Analysis software was employed to quantify peptides
in individual samples from MS/MS data [19,20]. It provides novel 2D and 3D visualizations
of LC-MS data to allow for raw data quality assessment and interactive confirmation of re-
sults obtained through automated methods for peptide detection, charge state assignments,
and peptide matching across multiple LC-MS experiments. Univariate statistical tools such
as Student’s t-test and ANOVA are available to identify significantly varying peptides
among different groups of samples. Briefly, the raw LC-MS/MS data files were imported
into the program, which transformed the information into a virtual peptide image. These
images were then processed within the Pepdetect module of DecyderMS. The program
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initially identifies individual peptides by placing a box around them. Subsequently, ion
counts for each peptide are integrated, and the Log2 of this number is reported. The process
is repeated for each replicate sample. This resulting data are then uploaded to the Pepmatch
module, where peptides within different virtual images are matched based on m/z and
retention time. Notably, because the data was acquired in an ion trap mass spectrometer,
tandem MS ensures accurate peptide matching (i.e., MS/MS spectra consistency). Within
the Pepmatch module, each virtual image is assigned to a specific group (KKU-213A, KKU-
213FR, and KKU-213GR). Group-to-group comparisons are performed. Integrated peptide
counts serve as the basis for statistical analyses, assessing the probability that observed
changes are not due to chance. False discovery rates are determined from the data.

MASCOT software, version 2.2 (Matrix Science, London, UK), was used to correlate
MS/MS spectra obtained from DecyderMS software to the Homo sapiens protein database
(downloaded on 18 August 2021). The search criteria included taxonomy (Homo sapiens),
enzyme (trypsin), variable modifications (oxidation of methionine residues), mass values
(monoisotopic), protein mass (unrestricted), peptide mass tolerance (1.0 Da), fragment
mass tolerance (±0.4 Da), peptide charge states (1+, 2+, and 3+), and a maximum number
of missed cleavages [21]. Proteins were identified using one or more peptides with an
individual MASCOT score corresponding to p < 0.05 and subsequently annotated by
UniProtKB/Swiss-Prot entries (http://www.uniprot.org/; accessed on 18 August 2021).

2.6. Identification of Differentially Expressed Proteins

MetaboAnalyst 6.0 was used for the statistical evaluation of the identified proteins [22].
To illustrate the distinction between various groups of identified proteins, partial least
squares-discriminant analysis (PLS-DA) was utilized. Differentially expressed proteins
(DEPs) were selected if they showed at least a 3-fold significant difference between drug-
resistant cell lines and the parental line, with a false discovery rate (FDR) < 0.05.

Venn diagrams were generated to show the total number of upregulated and down-
regulated proteins. To visualize and compare the Log2 expression values of all DEPs, a
heatmap was generated using MetaboAnalyst 6.0 [22].

2.7. Bioinformatics Analysis

Protein organization and biological action were conducted on differentially expressed
proteins using the protein analysis through evolutionary relationships (Panther software
version 18.0; http://pantherdb.org/; accessed on 5 December 2022) protein classifica-
tion [23]. The categorization included molecular function, biological process, and
protein class.

The gene symbols of all upregulated proteins sharing in both KKU-213FR and KKU-
213GR were queried against TCGA data through The University of Alabama at Birming-
ham Cancer data analysis portal (UALCAN) (http://ualcan.path.uab.edu/index.html;
accessed on 12 July 2023) [24] to analyze their mRNA expression levels in CCA pa-
tients’ tissues. The genes that were upregulated in both drug-resistant cell lines, as in-
dicated by proteomics results, and whose mRNA expression levels were significantly
elevated in CCA patients’ tissues according to TCGA data, were filtered and presented in a
heatmap. These genes were then subjected to protein–protein interaction prediction and
generation using STRING version 11.5 (https://version-11-5.string-db.org; accessed on
30 July 2023) [25]. The following parameters were used: Organism: Homo sapiens; Network
type: Full STRING network; Required score: medium confidence (0.4); and FDR stringency:
medium (5 percent). The largest protein network, comprising six proteins, was assigned
as the ‘focused network’ and further analyzed. The mRNA expression of the six selected
genes and the correlations among them were assessed through expression and correlation
analysis using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) platform
(http://gepia2.cancer-pku.cn/#correlation; accessed on 7 August 2023). The dataset of
cholangiocarcinoma (CHOL) and gastrointestinal tract (GI) cancer patients was utilized.

http://www.uniprot.org/
http://pantherdb.org/
http://ualcan.path.uab.edu/index.html
https://version-11-5.string-db.org
http://gepia2.cancer-pku.cn/#correlation
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The correlation between genes was computed with Pearson correlation coefficients and
presented in scatter plots.

2.8. Survival Analysis

The prognostic values of the six genes within the focus network were assessed using
TCGA data through the GEPIA2 web portal. Overall survival (OS) and disease-free survival
(DFS) were analyzed through Kaplan–Meier survival plots and heatmaps (http://gepia2
.cancer-pku.cn/#survival; accessed on 7 August 2023). Heatmap analysis was employed
to compare the contributions of genes to survival in gastrointestinal (GI) tract cancers,
with estimates generated using the Mantel–Cox test at a significance level of less than 0.05.
Survival analysis was performed based on the expression status of genes in the focused
network, and a Kaplan–Meier curve was plotted. The Cox proportional hazards model,
including a 95% confidence interval (CI), was used to evaluate the significance of genes in
predicting OS and DFS.

2.9. RT-qPCR

The mRNA levels of the six chosen genes were assessed using RT-qPCR, with the
beta-actin gene (ACTB) serving as an internal control. Initially, total RNA was isolated from
KKU-213A, KKU-213FR, and KKU-213GR cells, as well as from the drug-resistant cells
transfected with siRNAs, using the GF-1 total RNA extraction kit (Vivantis, Malaysia), and
then converted into cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo
Scientific, Vilnius, Lithuania). The resulting cDNA was amplified using gene-specific
primers (Table 1) and Maxima SYBR Green/ROX qPCR master Mix (Thermo Scientific,
Vilnius, Lithuania), following the manufacturer’s instructions. The qPCR analysis was
conducted on an Agilent Technologies Stratagene Mx3005P instrument. The relative mRNA
expression levels were normalized using the internal control gene and calculated using the
2−∆∆Ct method.

Table 1. Lists of gene-specific primers for RT-qPCR.

Gene Sequence (5′ to 3′)

ACTB
For: GGATTCCTATGTGGGCGACG

Rev: TTGTAGAAGGTGTGGTGCCAG

MET
For: CGCACAAAGCAAGCCAGATT

Rev: AGTGCTCATGATTGGGTCCG

LAMB1
For: GGCAATCTGAAAATGGTGTGGA

Rev: ACGAGGCCTCACAGTCATAG

ITGA3
For: GGGACAGTGATGGGTGAGTC

Rev: GTAGGGCCACTCCAGACCTA

NOTCH2
For: AGGTGTCAGAATGGAGGGGT

Rev: GCCGTTGACACATACACAGC

CDH2
For: TGCAAGACTGGATTTCCTGAAGA

Rev: AGCTTCTCACGGCATACACC

NDRG1
For: ATTGGCATGGGAACAGGAGC

Rev: CATCCTGAGATCTTGGAGGCG

2.10. Gene Knockdown Using siRNA

Specific siRNA sequences targeting MET, LAMB1, ITGA3, NOTCH2, CDH2, and
NDRG1 mRNA, as well as a non-targeting negative control siRNA (siNC), were obtained
from Gene Universal Inc. (Newark, DE, USA) and are shown in Table 2. Briefly, for gene
knockdown, 2 × 105 cells per well were plated in a six-well plate overnight. The next day,
the cells were washed and serum-starved in 800 µL per well of Opti-MEM® (Gibco, Grand
Island, NY, USA) for 1 h. Then, 200 µL of transfection complex containing 100 pmoles siRNA

http://gepia2.cancer-pku.cn/#survival
http://gepia2.cancer-pku.cn/#survival
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and 2 µL Lipofectamine™ 2000 (Thermo Scientific, Carlsbad, CA, USA) were added to each
well. After 6 h of incubation, the medium was changed to complete medium. Twenty-four
hours after transfection, the cells were subjected to cell migration, invasion, and drug
sensitivity assays, and were harvested for RNA extraction and subsequent RT-qPCR.

Table 2. List of siRNAs for gene knockdown.

siRNA Target Gene siRNA Sequence (5′ to 3′)

siMET MET GGACCGGUUCAUCAACUUCTT

siLAMB1 LAMB1 AAUGUAACUGCAAUGAACATT

siITGA3 ITGA3 GGAAAGGAAACAGCUACAUGATT

siNOTCH2 NOTCH2 GAAUUGUCAGACAGUAUUGTT

siCDH2 CDH2 UGACAACAGACCUGAGUUCTT

siNDRG1 NDRG1 GACCACUCUCCUCAAGAUGTT

siNC - UUCUCCGAACGUGUCACGUTT

2.11. Statistical Analysis

The results are displayed as mean ± standard deviation (SD). The significance of compar-
isons between groups was evaluated using the two-tailed Student’s t-test, with a significance
level set at p < 0.05. Each experiment was performed with at least three replicates.

3. Results
3.1. Drug-Resistant CCA Cell Lines Exhibit Aggressive Behaviors

We established two chemotherapeutic drug-resistant CCA cell lines, namely KKU-
213FR and KKU-213GR, representing the KKU-213A cells resistant to 5-FU and gemcitabine,
respectively. These drug-resistant CCA cell lines underwent drug sensitivity assays under
various concentrations of 5-FU and gemcitabine. The results confirmed that KKU-213FR
cells were resistant to 5-FU, and KKU-213GR cells were resistant to gemcitabine, respec-
tively (Figure 1a,b).Biomolecules 2024, 14, x FOR PEER REVIEW 7 of 22 
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Figure 1. Phenotypic study of drug-resistant CCA cell lines. Drug sensitivity assay of KKU-213FR
(a) and KKU-213GR (b). (c) Cell migration assay. (d) Cell invasion assay: magnification 100×; scale
bar, 100 µm. The data are presented as mean ± SD from three replicates. Significant differences
between treated versus untreated controls or parental versus drug-resistant cells are indicated by
* p < 0.05, ** p < 0.01, and *** p < 0.001.
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The Boyden chamber migration assays demonstrated that both drug-resistant cell lines
exhibited significantly higher migration capabilities than the parental cell line (Figure 1c).
Similarly, the invasion assay revealed that both KKU-213FR and KKU-213GR had higher
invasion rates compared to their parental counterparts (Figure 1d).

3.2. Comparative Proteomic Analysis of Drug-Resistant CCA Cell Lines

We employed liquid chromatography with tandem mass spectrometry (LC-MS/MS)
to conduct a comparative proteomic analysis of the parental CCA cell line (KKU-213A)
and the drug-resistant cell lines (KKU-213FR and KKU-213GR). The proteomics analysis
workflow is depicted in Figure 2a. In total, 5444, 5894, and 5848 proteins were identified
from KKU-213A, KKU-213FR, and KKU-213GR, respectively. The partial least squares-
discriminant analysis (PLS-DA) illustrated a good separation of identified proteins among
groups (Figure 2b). Proteins with expression differences exceeding 3-fold between drug-
resistant cell lines and the parental line, with a false discovery rate (FDR) < 0.05, were
classified as differentially expressed proteins (DEPs). In KKU-213A vs. KKU-213FR, we
identified a total of 279 DEPs, including 137 upregulated and 142 downregulated proteins.
In KKU-213A vs. KKU-213GR, we identified 127 DEPs, comprised of 112 upregulated
and 15 downregulated proteins. To identify important genes and pathways in these drug-
resistant cells, we searched for overlapping DEPs and found 81 DEPs shared by both
KKU-213FR and KKU-213GR, with 80 proteins upregulated (Figure 2c) and only 1 protein
downregulated (Figure 2d). The log2 expression values of these proteins in KKU-213A,
KKU-213FR, and KKU-213GR were visualized using a heatmap (Figure 2e).Biomolecules 2024, 14, x FOR PEER REVIEW 8 of 22 
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Figure 2. Proteomics analysis of KKU-213A, KKU-213FR, and KKU-213GR cell lines. (a) Proteomics
analysis workflow. (b) Partial least squares-discriminant analysis (PLS-DA) of all identified proteins.
Venn diagram of upregulated proteins (c) and down-regulated proteins (d) in KKU-213FR and KKU-
213GR compared to KKU-213A. (e) Heatmap with group averages of upregulated (red frame) and
down-regulated (green frame) proteins shared among KKU-213A, KKU-213FR, and KKU-213GR.
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3.3. Gene Ontology Analysis

To gain an overall perspective on proteome changes following the development of
drug resistance, we subjected the list of DEPs from proteomics data to Gene Ontology
(GO) analysis based on the GO database and protein analysis Through Evolutionary
Relationships (PANTHER) classification. This allowed us to categorize these proteins based
on their molecular function, biological processes, and protein classes (Figure 3). As depicted
in Figure 3a, the largest fraction of the upregulated proteins is associated with the molecular
function of binding proteins. Other prominent groups of proteins that exhibited changes
include those with catalytic activity, transcriptional regulation, molecular transduction, and
transporter activity. Furthermore, the analysis of biological processes revealed that most
proteins were involved in cellular processes, followed by metabolic processes, localization,
and development processes. Smaller percentages of proteins fell into categories related
to responses to stimuli, multicellular organismal processes, signaling, and locomotion
(Figure 3b). Additionally, these upregulated proteins were mainly classified into categories
such as metabolite interconversion enzymes, transcriptional regulators, protein-modifying
enzymes, and cytoskeleton proteins (Figure 3c).
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3.4. The mRNA Expression of Upregulated Proteins in CCA Patients’ Tissues

To investigate whether the 80 upregulated proteins shared in both KKU-213FR and
KKU-213GR were also upregulated in CCA patients’ tissues compared to their corresponding
normal tissue counterparts, we utilized the UALCAN web portal as an analysis tool based
on TCGA data. The results reveal that 25 out of 80 genes (Figure 4a) were significantly
upregulated in CCA patients’ tissues compared with adjacent normal tissues, as shown in
the heatmap in Figure 4b. These include TRAP1, CUL3, ARIH1, RPN2, NOTCH2, CDH2,
TTLL4, PSMD13, DHX9, WDR74, NDRG1, MET, COMMD3, TERF2, TCP1, DDX19B, DMTF1,
EGLN1, LAMB1, SNRPG, TMEM115, ITGA3, GRINA, RCOR3, and TJAP1 (Figure 4b).
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Figure 4. Identification of significant genes in CCA. (a) The Venn diagram represents 80 upregulated
proteins from the proteomic analysis and 25 upregulated genes in CCA tissue compared to normal
tissue. (b) Heatmap analysis displaying the expression of 25 overlapping genes that were signifi-
cantly upregulated in CCA patients’ tissues based on TCGA data (left) and proteomics data (right).
(c) PPI analysis of the 25 upregulated genes via STRING. (d) Box plot showing the mRNA expression
of six selected genes (a focused network) in CCA patients’ tissues (red box) vs. normal tissues
(grey box) based on TCGA data. Significant differences between groups are indicated by * p < 0.05.
(e) The mRNA expression of six selected genes verified by RT-qPCR in KKU-213A, KKU-213FR,
and KKU-213GR. Significant differences between the KKU-213A and KKU-213FR groups, as well as
between the KKU-213A and KKU-213GR groups, are indicated by *** p < 0.001.
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3.5. Identification of Protein–Protein Interaction Networks

The 25 upregulated proteins were further investigated for protein–protein interactions
(PPI) using STRING analysis. The results are represented in Figure 4c. The PPI network
contains 23 nodes with 14 edges (versus 6 expected edges), a clustering coefficient of
0.514, an enrichment p-value of 0.00611, and an average node degree of 1.22, revealing the
largest protein network that includes MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1.
Smaller networks were also identified, including CUL3, COMMD3, ARIH1, and EGLN1.
Additionally, connecting proteins such as DDX19B, DHX9, and SNRPG, along with two
more connecting proteins, TCP1 and TRAP1, were identified. Subsequent analyses focused
on the largest protein network, designated as the ‘focused network’. The mRNA expression
of six genes in the focused network was further analyzed in CCA patients’ samples through
the GEPIA2 web portal and verified in drug-resistant CCA cell lines using RT-qPCR. The
results, presented as box plots in Figure 4d, demonstrate that LAMB1, ITGA3, NOTCH2,
and NDRG1 exhibit significantly higher mRNA expression in CCA tissues compared to
normal tissues, while the difference was not significant for MET and CDH2. Furthermore,
the mRNA levels of all six genes were confirmed to be upregulated in both KKU-213GR
and KKU-213FR (Figure 4e).

3.6. Assessment of the Prognostic Value of Six Selected Genes

We evaluated the correlation between the overall survival and disease-free survival of
CCA patients and the mRNA expression levels of MET, LAMB1, ITGA3, NOTCH2, CDH2,
and NDRG1 using TCGA data through the GEPIA2 web portal. No significant correlations
were observed, possibly due to the small sample size of CCA patients’ tissues (Figure S1).
We further explored the prognostic value of these six proteins in a pooled dataset of
GI tract cancer patients, including cholangiocarcinoma (CHOL), colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), pancreatic
adenocarcinoma (PAAD), rectum adenocarcinoma (READ), and stomach adenocarcinoma
(STAD). The results are presented in survival maps (Figure 5a,b) and Kaplan–Meier plots
(Figure 5c,d). High expression levels of LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1 are
associated with poor overall survival of GI tract cancer patients (Figure 5c). Additionally,
elevated expressions of ITGA3, NOTCH2, and CDH2 are indicative of a shorter disease-free
survival time (Figure 5d).

3.7. Correlation among Six Genes in the Focused Network

To further explore whether the connected proteins found in STRING analysis exhibit
correlation in patients’ samples, we investigated the correlation of gene expression between
connected proteins in the focused network using the Pearson correlation coefficient through
the GEPIA2 platform. Except for CDH2 vs. NDRG1, we identified significant positive
correlations between 10 gene pairs in GI tract cancer patients’ data, including MET vs.
LAMB1, MET vs. ITGA3, MET vs. NOTCH2, MET vs. NDRG1, LAMB1 vs. ITGA3, LAMB1
vs. NOTCH2, LAMB1 vs. NDRG1, ITGA3 vs. NOTCH2, ITGA3 vs. NDRG1, and NOTCH2
vs. NDRG1. On the other hand, four gene pairs, including MET vs. CDH2, LAMB1 vs.
CDH2, ITGA3 vs. CDH2, and CDH2 vs. NDRG1, showed negative correlations (Figure 6).
Additionally, when analyzing the CHOL dataset alone, we found positive correlations
between five gene pairs in CCA patients’ data, including MET vs. LAMB1, MET vs. ITGA3,
MET vs. NOTCH2, MET vs. CDH2, and NOTCH2 vs. CDH2 (Figure S2).
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3.8. siRNA-Mediated Knockdown of Six Selected Genes Attenuates Cell Migration, Cell Invasion,
and Reverses Drug-Resistant Phenotypes

We further confirmed the significance of the six selected genes using a loss-of-function
study with siRNA. Gene knockdown efficiency was confirmed with RT-qPCR, and the re-
sults showed that siMET, siLAMB1, siITGA3, siNOTCH2, siCDH2, and siNDRG1 could sig-
nificantly and effectively suppress the mRNA expression of the respective genes
(Figure 7a). The drug-resistant CCA cells (KKU-213FR and KKU-213GR) transfected with
all six gene-specific siRNAs showed reduced cell migration (Figure 7b) and cell invasion
(Figure 7c) capability when compared to those cells transfected with siNC. Moreover,



Biomolecules 2024, 14, 969 13 of 21

knockdown of these six genes suppressed the drug-resistant phenotype of these cells
(Figure 7d).
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cells. (a) mRNA expression after siRNA transfection. (b) Cell migration assay. (c) Cell invasion
assay. (d) Drug sensitivity assay. Data are presented as mean ± SD from three replicates. Significant
differences between siRNA-transfected cells and siNC-transfected controls are indicated by * p < 0.05,
** p < 0.01, and *** p < 0.001, magnification 100×; scale bar, 100 µm.
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4. Discussion

Despite recent advancements in surgical techniques, chemotherapy, and the devel-
opment of targeted therapies at the molecular level, the primary cause of cancer-related
deaths is still the progressive growth of metastases that show resistance to existing treat-
ments [26]. Although chemotherapy is a commonly employed approach for managing
advanced CCA patients, even with combinations of drugs, the median survival rate remains
below one year [27]. This challenge arises from the intricate mechanisms of chemoresis-
tance, which typically aid cancer cells in evading the lethal effects of anticancer drugs.
Thus, gaining a deeper comprehension of the molecular foundations of drug resistance
is crucial for unraveling the complex mechanisms and indicators associated with drug-
resistant characteristics.

Previous research has successfully developed cell lines that are resistant to commonly
used chemotherapeutic drugs 5-FU and gemcitabine in various cancer types, and these
cell lines have become invaluable tools for elucidating drug resistance mechanisms and
identifying potential therapeutic targets in cancer research. For instance, 5-FU resistance
has been achieved in hepatocellular carcinoma cells (HLF-cell line) [28], colorectal cancer
cells (HCT-8 and H630) [29,30], breast cancer cells (T47D) [30], triple-negative breast cancer
cells (MDA-MB-231) [31], and gastric cancer cells (SNU638) [32]. In pancreatic cancer,
gemcitabine-resistant cell lines have been established, such as SW1990 [33], PaCa-2 [34],
PANC [35], and in pancreatic ductal carcinoma cell lines [36]. Additionally, gemcitabine-
resistant cell lines have also been developed in CCA, specifically KKU-M139 and KKU-M214
cell lines [18]. In this research, we successfully established 5-FU- and gemcitabine-resistant
CCA cell lines KKU-213FR and KKU-213GR (Figure 1a,b).

The intricate process of drug resistance in cancer cells linked to metastasis-related
differentiation signaling involves dynamic changes in both cancer and stromal cells [37].
Metastasis encompasses a decrease in tumor cell adhesion receptor expression, promoting
heightened cell motility, while invasion entails the disassembly of the extracellular matrix
(ECM) [38]. Patients with chemotherapeutic resistance in CCA often undergo advanced
cancer recurrence with metastasis [39]. Subsequently, we explored the metastatic potential
of 5-FU- and gemcitabine-resistant CCA cell lines. Further assessment through the Boyden
chamber assay demonstrated a higher number of migrated and invaded cells, affirming the
heightened metastatic potential of the established drug-resistant cell line (Figure 1c,d).

To investigate alterations in cellular mechanisms related to drug resistance, we iden-
tified changes in the proteome profiles. A total of 80 proteins were upregulated in both
KKU-213FR and KKU-213GR when compared to the parental cell line. These proteins
underwent classification using GO analysis, categorizing them based on their molecular
function, biological process, and protein class. The upregulated proteins were primarily
classified under the molecular function category of ‘binding’ (GO: 0005488). Previous
studies have highlighted the significant roles played by various binding proteins in cancer
progression and the development of drug resistance. These proteins function in diverse
ways such as transmitting signals through signaling molecules [40,41], altering the number
or mutation of receptors [42–44], and releasing cytokines [45,46].

Drug resistance mechanisms involve alterations in various cellular processes such
as increased cell replication [47,48], transcriptional activation of drug-resistant genes or
oncogenes [49,50], and DNA repair in response to exposure to chemotherapeutic drugs to
prevent cell death [51–53].

The second largest group of proteins was categorized under biological regulation and
metabolic processes. In response to chemotherapeutic agents, cancer cells that possess the
ability to evade cell death caused by the drugs can alter their biological processes to sus-
tain growth or proliferation [54,55], migrate to other parts of the body by reducing cell
adhesion [56,57], and secrete enzymes or signals to modulate the extracellular matrix [58,59].

When categorized via protein class, the majority of upregulated proteins were clas-
sified as metabolite interconversion enzymes. Metabolic reprogramming of cancer cells
can hinder immune responses and create obstacles to cancer treatment. Cancer cells must
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balance increasing metabolic demands associated with uncontrolled cell division and
metastasis, which often render them resistant to current therapies. Several studies have
discovered abnormalities in metabolism in chemotherapy-resistant cancers [60–62].

We further compared upregulated proteins from the proteomic data to their mRNA ex-
pression in patients’ tissues from the TCGA database through the UALCAN platform [24].
Among the 80 upregulated proteins identified in drug-resistant cell lines based on pro-
teomics analysis, only 25 were found to be upregulated in cholangiocarcinoma (CCA)
tissues compared to normal tissues when analyzed using TCGA data through the UAL-
CAN web portal. This discrepancy may be attributed to the absence of comparative gene
expression data between chemosensitive and chemoresistant CCA patient samples within
the CHOL dataset. The 25 overlapping genes may play a crucial role in both drug resistance
and carcinogenesis in CCA, whereas the remaining 56 non-overlapping genes may solely
contribute to the development of drug resistance. Future research involving the analysis
of these 80 upregulated genes in drug-sensitive and drug-resistant clinical samples will
further elucidate their roles in drug-resistant CCA. When subjected to STRING analysis, we
identified a highly interconnected network comprising six proteins: MET, LAMB1, ITGA3,
NOTCH2, CDH2, and NDRG1. It is notable that a medium confidence level (0.4) was
used as a parameter in the STRING analysis. If high confidence (0.7) was used, the protein
network would remain largely similar, except for the exclusion of NOTCH2 and NDRG1.
To avoid excluding significant genes, the medium confidence value was utilized. Nearly all
of the proteins in this network, except for MET, were associated with the poor prognosis in
GI tract cancer patients (Figure 5). Although statistical significance was not found when
analyzing CCA data alone, it was likely due to the small sample size. Furthermore, the
mRNA expression in patients’ samples of genes in the focused network was positively cor-
related with each other (Figure 6). Interestingly, the silencing of these six genes reduces cell
motility rates and attenuates the chemotherapeutic-resistant phenotype of both KKU-213FR
and KKU-213GR (Figure 7).

Several past investigations have demonstrated the oncogenic functions of these pro-
teins in different cancer types. The mesenchymal epithelial transition factor (MET), alter-
natively termed hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase.
When it interacts with its ligand, hepatocyte growth factor triggers various cellular signal-
ing pathways related to proliferation, motility, migration, and invasion [63,64].

Laminin beta-1 (LAMB1), a type of extracellular matrix (ECM) glycoprotein, is present
in most tissues and is responsible for initiating cell assembly. This assembly is crucial for
the invasion and spread of cancer cells [65]. Studies have shown that LAMB1 is significantly
expressed in multiple invasive cancers [66] and plays a significant role in cancer progression,
as observed in gastric cancer [67,68], and lung adenocarcinoma [66].

Integrin alpha-3 (ITGA3) is a cell membrane-bound integrin protein receptor that plays
a role within the ECM. Its function involves serving as a cell surface adhesion molecule and
engaging with various ECM-receptor proteins such as integrin beta-1 (ITGB1), members of
the laminin family, and fibronectin 1 [69].

Neurogenic locus notch homolog protein 2 (NOTCH2) is a product of the NOTCH2
gene. It plays dual roles in cell interactions and serves as a highly conserved signal
transduction system once its ligand binds. Overexpression of NOTCH2 has been identified
in multiple cancer types including breast cancer [70], lung squamous cell carcinoma [71],
leukemia [72], ovarian cancer [73], and colorectal cancer [74]. The activation of NOTCH2
is linked to various mechanisms in tumor development such as regulating the properties
of tumor-initiating cells, controlling signaling pathways like MYC [75] or P53 [76,77],
promoting angiogenesis [78], regulating tumor invasion [79,80], and managing the cell
cycle [81,82].

CDH2, also known as neuronal cadherin (N-cadherin), is a marker of epithelial-to-
mesenchymal transition (EMT). CDH2 is referred to as a ‘mesenchymal cadherin’, which
replaces epithelial cadherin (E-cadherin) during the epithelial-to-mesenchymal transition
known as the cadherin ‘switch’ [83,84]. CDH2’s functions are associated with fibroblast
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growth factor receptors (FGFRs). This interaction leads to continuous FGFR signaling and
the progression of carcinoma [85]. Additionally, CDH2 enhances the activity of nuclear
β-catenin-mediated drug resistance in myeloma [86]. The roles of CDH2 have been demon-
strated in several cancers such as increasing invasiveness in melanoma cancer [87] and
esophageal squamous cell carcinomas [88].

N-myc downregulated gene-1 (NDRG1) is known to have diverse roles, functioning
both as a suppressor of metastasis and as an indicator of poor prognosis, while also
contributing to disease progression across various cancer types [89]. Although NDRG1 is
primarily recognized for its anti-oncogenic and anti-metastatic functions [90–92], studies
have revealed its pro-oncogenic role in certain cancers like gastric cancer and hepatocellular
carcinoma [93]. In clinical samples of esophageal cancer, elevated levels of NDRG1 were
associated with the malignant advancement of the disease [94]. This study proposed
that NDRG1 influences the Wnt signaling pathway and the accumulation of β-catenin
through the mediation of Wnt-associated genes, thereby promoting metastasis [83]. Indeed,
reducing NDRG1 levels in gastric cancer cells led to increased E-cadherin expression
and decreased vimentin expression, indicating a link between high NDRG1 levels and
the metastatic potential of gastric cancer cells [95]. Overall, the role of NDRG1 in either
promoting or suppressing tumor progression is highly dependent on the specific type of
tumor cell and its degree of differentiation.

Taken together, MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1 were upregu-
lated in drug-resistant CCA cell lines and in CCA patients’ tissues. These genes not only
contribute to acquired drug resistance but also play a crucial role in the progression of CCA
cells. They share a common role in activating tumor metastasis through EMT pathways.
Figure 8 provides a schematic picture illustrating the predicted functional role of these
proteins in the development of drug resistance and progression of CCA.
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5. Conclusions

Despite advancements in cancer therapies, metastasis-driven drug resistance poses a
formidable challenge leading to high mortality rates. Our study successfully established
5-FU- and gemcitabine-resistant CCA cell lines KKU-213FR and KKU-213GR, which exhib-
ited increased cell motility and invasion. Through the integration of proteomics analysis
and bioinformatics, we identified 25 genes that were upregulated in drug-resistant cell
lines as well as in patients’ tissues. Further investigation revealed a network of six highly
interconnected genes (MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1) whose expres-
sions are correlated with each other. Furthermore, the mRNA expression of these genes is
associated with a poor prognosis in GI tract cancer patients, emphasizing their potential as
prognostic markers and possibly therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biom14080969/s1, Figure S1. Survival analyses of six se-
lected genes in CCA patients; Figure S2. The correlation analysis of six focused genes in CCA cancers.
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