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Abstract: Alzheimer disease, the leading cause of dementia, and polycystic ovary syndrome, one
of the most prevalent female endocrine disorders, appear to be unrelated conditions. However,
studies show that both disease entities have common risk factors, and the amount of certain protein
marker of neurodegeneration is increased in PCOS. Reports on the pathomechanism of both diseases
point to the possibility of common denominators linking them. Dysregulation of the kynurenine
pathway, insulin resistance, and impairment of the hypothalamic-pituitary-gonadal axis, which
are correlated with amyloid-beta aggregation are these common areas. This article discusses the
relationship between Alzheimer disease and polycystic ovary syndrome, with a particular focus on
the role of disorders of tryptophan metabolism in both conditions. Based on a review of the available
literature, we concluded that systemic changes occurring in PCOS influence the increased risk of
neurodegeneration.
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1. Introduction

Alzheimer disease (AD) was first described in 1906 [1], and it is the most common
cause of dementia, responsible for approximately 50–70% of cases [2]. The prevalence
of the disease increases with age, and is estimated to be between 10.3% and 19.5% for
men and women at age 45, respectively, and 11.6% and 21.1% at age 65 [3]. Currently,
the main role in the pathogenesis of Alzheimer disease is attributed to tau protein and
amyloid-beta [4]. The causal therapy has not yet been established however, monoclonal
antibodies targeted specifically against beta-amyloid were introduced in recent years as
a potential treatment, but the results of the therapy were not as satisfactory as they had
been expected [5,6]. The same is true for polycystic ovary syndrome (PCOS), which was
first described by Stein and Leventhal in 1935 and occurs in 6–20% of reproductive-age
women [7–9]. The pathomechanism is still not fully understood, and, as a consequence,
causal treatment is not available.

Both disease entities, seemingly unrelated, share common features, such as chronic
inflammation, mitochondrial dysfunction, and insulin resistance, exacerbating the patho-
physiological processes. Moreover, cardiovascular disease, hypertension, diabetes mellitus
type 2, or obesity, which are much more common in PCOS, are risk factors for AD as well.
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In recent years, a number of studies have postulated the role of disruption of various
metabolic pathways in the pathogenesis of both diseases; it turns out that both entities share
common pathophysiological disturbances. Taking that into account, it might be supposed
that processes occurring in PCOS women may promote the onset of neurodegeneration in
later life. This hypothesis is supported by the fact that amyloid-beta is an immunoactive
peptide, and its levels are increased in chronic inflammation. As a component of the innate
immune system, its levels rise in response to chronic inflammation [10]. In addition, higher
concentrations of amyloid precursor protein (APP) were found in the plasma of PCOS
patients [11].

It is worth noting that most studies regarding PCOS are conducted in premenopausal
patients, but on the other hand, the process of neurodegeneration in AD, excluding early-
onset form, usually develops fully in older age. To the best of the authors’ knowledge, it
has not been studied whether the diagnosis of PCOS at a young age implicates an increased
risk of Alzheimer disease in later life.

In this review, the authors analyze available literature for possible mechanisms linking
the two conditions, suggesting that patients with PCOS might be at increased risk of AD.

2. Outline of the Pathophysiology of Alzheimer Disease

Due to the age of onset of the disease, two forms are distinguished: early-onset,
occurring before the age of 65, and late-onset, occurring after the age of 65. These forms
significantly differ in terms of prognosis, symptomatology, and pathogenesis [4]. During the
course of the disease, there is a progressive atrophy of specific areas of the brain, beginning
with the intraparietal cortex, the hippocampus, the amygdala, and then the association
cortex, primarily within the frontal, parietal and temporal lobes [12]. Although the exact
patomechanism of AD is not well understood, there are many hypotheses describing
underlying processes. It seems that the initiating process of the neurodegeneration cascade
is the deposition of amyloid-beta in senile plaques. The amyloid precursor protein (APP)
is cleaved via the enzyme beta-secretase to an 89 or 99 amino acid peptide, which is
then cleaved by gamma-secretase (BACE1) to amyloid-beta 1–40 (Abeta40) or amyloid-
beta 1–42 (Abeta42). The former is well soluble, but the latter easily form deposit. The
variant polymorphism of APP, the catalytic domain of gamma-secretase-presenilin 1 and
2, and the presence of the APOE e4 allele determine which version of amyloid-beta will
be formed in greater amounts [13]. Abeta15, Abeta16, Abeta17 and Abeta38 have also
been described in the brains of AD patients [14]. The process of forming senile plaques
is the most characteristic hallmark of AD [15]. However, the amount of deposit does not
correlate with the degree of cognitive deficits of patients [16]. Amyloid-beta also forms
soluble oligomers, which most likely initiate the pathology of tau protein in an unclear
mechanism and, as a result, cause neuronal degeneration [17,18]. Oligomers contribute
to neuroinflammation and synapsotoxicity [19], and their concentration correlates with
cognitive deficits [20].

Tau protein is an essential protein for the proper process of microtubule formation;
it participates in the process of axon elongation and in the formation of new intercellular
connections within dendrites. In AD, there is excessive phosphorylation of this protein, and
it begins to form neurofibrillary tangles (NFTs), which, when deposited in the neurocyte,
lead to neuronal atrophy. This process takes place in the brain areas mentioned above [13,
21], and the amount of NFT deposits located in the brain correlates with the degree of
cognitive deficit [22].

Impairment of the cholinergic system, which is particularly involved in cognitive
processes, especially memory, also plays a significant role in the Alzheimer disease patho-
genesis [23]. In the course of AD, the basal nucleus of Meynert (NBM) located in the basal
part of the forebrain is primarily damaged [24]. NBM projects to numerous areas of the
cerebral cortex, hippocampus cortex, and intraparietal cortex. Progressive atrophy and
axon damage is observed in AD in these areas; the process is correlated with amyloid-beta
and tau protein burden [25–27].
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It is suspected that the occurrence of Alzheimer disease requires multifactorial dys-
function along with the presence of appropriate environmental conditions. Numerous
genes involved in the pathogenesis of Alzheimer disease have been described so far, in-
cluding, but not limited to, mutations in amyloid precursor protein (APP), presenilin 1
and 2 (PSEN1 and PSEN2), and carrying the E4 allele of Apolipoprotein (ApoE) genes.
Mutations in the ApoE gene are considered the most significant risk factor for the disease,
increasing the risk of its development by a factor of 3–4. Finding mutations in these genes
is primarily applicable in early-onset Alzheimer disease [28–31]. The role of genetic factors
acting protectively on the central nervous system is also being considered to be involved in
AD pathogenesis [32,33].

In recent years, the role of neuroinflammation has been increasingly emphasized
as a significant factor causing neuron damage in the course of Alzheimer disease; mi-
croglia activation, in particular, can lead to either neuroprotective or neurodegenerative
effects [34–36].

Despite decades of research and a huge amount of data, there is still debate about the
causality and exact role of amyloid-beta and tau protein in the pathogenesis of the disease.
This is reflected in widespread research regarding biochemical and imaging biomarkers use
in diagnostics, whose presence, confirming the pathology of beta-amyloid and tau protein,
strongly facilitates the diagnosis of Alzheimer disease [37].

3. Outline of the Pathophysiology of PCOS

PCOS is a condition in which hyperandrogenemia, menstrual irregularity, and poly-
cystic ovary morphology occur. While the exact pathogenesis is still unknown, there is
considerable evidence linking the development of PCOS to insulin resistance (IR) [38]. It
is present in 50% to 70% of cases [39] and appears to be immanent to PCOS, as it occurs
regardless of BMI [40,41]. Patients with PCOS, in addition to the above-mentioned traits
may exhibit a variety of metabolic, dermatological, and psychiatric health problems [42].
Different phenotypes depending on the presence of particular traits, and many diagnostic
criteria were developed as a result of heterogeneity in symptomatology [8]. The diagnosis
of PCOS is usually based on the Rotterdam criteria, which requires the presence of two out
of three factors: hyperandrogenism, ovulatory dysfunction, and polycystic morphology of
the ovaries on ultrasound examination [43].

Apart from the above key inherent features of PCOS, numerous phenomena modifying
its course have been studied. Patients experience reprogramming of the pulse generator
in the hypothalamus, which leads to abnormal secretion of gonadotropins with increased
secretion of luteinizing hormone (LH) [44]. This promotes excessive ovarian androgen
production, which disrupts ovarian follicle maturation and, as a consequence leads to
ovulation disorders and characteristic polycystic ovarian morphology. Moreover, IR leads
to compensatory hyperinsulinemia and additional stimulation of the LH receptor by insulin;
this process also leads to androgen overproduction by theca cells in the ovary [45]. However,
PCOS is not just a gynecological problem. Although PCOS is typically diagnosed during
reproductive age, it impacts patients’ health throughout their entire lifetime. Current
diagnostic criteria do not take into account metabolic changes, which are an integral
component of the syndrome.

In PCOS, mitochondrial dysfunction and chronic inflammation are observed [46].
Proinflammatory cytokines (TNF-α, CRP, IL-6, IL-8, and IL-18) level elevation is also
observed [46]. Concomitant microflora dysbiosis is postulated to promote chronic low-
grade inflammation and IR [47,48]. This might explain why the population of PCOS
patients has a higher risk of metabolic syndrome and its complications, such as diabetes
mellitus type 2, hypertension, dyslipidemia, non-alcoholic fatty liver disease (NAFLD),
obesity, cardiovascular disease, and endothelial dysfunction [49–52]. Moreover, there is
also an increased incidence of depression, eating disorders, and sleep disorders [53–55]
(Figure 1).
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This indicates the presence of significant metabolic abnormalities underlying the
condition, manifested by dysfunctions of many systems and organs, including the central
nervous system. The role of unhealthy lifestyles and chemical endocrine disruptors is also
postulated [56,57].

Diabetes Mellitus
Advances in the analysis of metabolic markers make it possible to study amino acid

profiles. Elevated levels of branched-chain amino acids (BCAA) are correlated with the
presence of metabolic abnormalities in PCOS and may serve as an early biomarker of
the disease [58,59]. The claim that systemic metabolic rather than exclusively gynecolog-
ical disorders underlie PCOS is consistent with the fact that a male equivalent of PCOS
has been postulated. Male relatives of PCOS women more often present features of the
metabolic syndrome, insulin resistance, early-onset androgenic alopecia, increased risk of
cardiovascular disease, and benign prostatic hyperplasia when compared to the general
population [60–62].

New diagnostic and laboratory techniques, as well as research related to understand-
ing the processes underlying PCOS and the metabolic syndrome, are contributing to
the discovery of new diagnostic markers, such as changes in amino acid metabolism or
organokines [63–67].

4. Physiology of Tryptophan Metabolism

Tryptophan (Trp) is classified as an essential amino acid, which can be only obtained
by the body through external supply. Sources of Trp include poultry, beef, pork, lamb, nuts,
legumes, and dairy products [68]. The daily requirement for this amino acid is 4 mg/kg
body weight per day [69]. It belongs, along with tyrosine and phenylalanine, to the aromatic
amino acid (AAA) group [70]. Trp is used as a protein building block and is a substrate
for numerous signaling substances; additionally, its metabolites play a regulatory role in
various body processes. Only 1% of Trp supply absorbed in the gastrointestinal tract is
used as a protein building block; the remainder is metabolized via other pathways [71–73].
Thus, ingested Trp is used to build proteins, incorporate them into the kynurenine pathway,
and produce serotonin and melatonin.
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4.1. Production of Serotonin and Biogenic Amines

Approximately 5% of absorbed tryptophan is converted to serotonin [74], and this
process occurs mainly in the enterochromaffin cells of the intestine. Through hydroxyla-
tion, Trp is firstly converted to 5-hydroxytryptophan and then to 5-hydroxytryptamine
(serotonin) by the enzyme aromatic amino acid decarboxylase [75]. Overall, 95% of the
serotonin produced in the body is secreted in the gut, with only 5% synthesized locally
in the central nervous system (CNS). Serotonin plays a key role as a neurotransmitter in
the enteric nervous system, regulating gastrointestinal motility. Serotonin cannot cross the
blood-brain barrier (BBB), so it must be synthesized within the CNS from Trp. Trp is the
only amino acid in the bloodstream that is transported in an albumin-bound form, allowing
it to cross the BBB via the LAT1 transporter [76,77].

4.2. Indole Derivatives

Part of the ingested tryptophan is processed by the commensal gut microbiota to
produce its own proteins, polyaromatic hydrocarbons, indole derivatives, and a small
amount of tryptamine. These compounds regulate intestinal permeability, immunity,
inflammation, and insulin sensitivity [78–81].

4.3. Kynurenine Pathway

About 95% of absorbed tryptophan is metabolized via the kynurenine pathway [82]
(Figure 2); the initiating and rate-limiting step in this pathway is the conversion of trypto-
phan to kynurenine by tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase
(IDO) types 1 and 2. TDO is primarily found in the liver and is responsible for producing
about 90% of kynurenine, while IDO is found in immune cells, adipose tissue, kidneys,
the brain, and pancreatic beta cells [83]. The activity of TDO and IDO, and thus the extent
of Trp incorporation into the kynurenine pathway, is reflected by the Trp/kynurenine
ratio [84].

Kynurenine is metabolized in several directions. It is converted to kynurenic acid
(KYNA) by kynurenine aminotransferase (KAT). On the other hand, with the involvement
of kynureninase (KYNU), it is converted to anthranilic acid (AA), which undergoes con-
version to 3-hydroxyanthranilic acid (3-HAA) through nonspecific hydroxylation. Via
kynurenine 3-monooxygenase (KMO), kynurenine is converted to 3-hydroxykynurenine
(3-HK). At this stage, the pathway diverges again: 3-HK can be a precursor for xanthurenic
acid (XA) (a reaction catalyzed by KAT) or for 3-HAA (a reaction catalyzed by KYNU),
which is then converted to picolinic acid or quinolinic acid (QA). QA is converted via
quinolinate phosphoribosyltransferase (QPRT) to NAD(P)H in mitochondria [85–88].

The various metabolites and enzymes of the kynurenine pathway have diverse biolog-
ical activities, and their roles in specific diseases are currently under investigation. QA has
neurotoxic effects on CNS [89], but, on the other hand, kynurenic acid has neuroprotective
and cardioprotective effects [90]. Moreover, the role of KYNA in carcinogenesis has been
postulated; however, its concentrations vary in different types of cancer, making this role
unclear [89,91,92]. Anthranilic acid contributes to the development of depression through
inflammatory processes [93]. 3-hydroxykynurenine (3-HK) also exhibits neurotoxic proper-
ties [94]. Xanthurenic acid (XA) concentrations decrease in response to improvement in
glucose tolerance after bariatric surgery; in animal models, administration of XA results
in a decrease in arterial pressure [95,96]. Picolinic acid has antiproliferative properties,
suggesting an anticancer effect [96,97].
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Inflammation is connected to an increase in the activity of individual enzymes in
the kynurenine pathway and a change in the concentrations of its various metabolites.
Enhanced activation of the discussed pathway is observed in obesity, chronic obstructive
pulmonary disease [98], diabetes mellitus type 1 and type 2 [87,99], atherosclerosis accom-
panying chronic kidney disease [100], cardiovascular diseases [101,102], neoplasms [103],
and neurodegenerative diseases [104]. Therefore, it is postulated that inhibitors of specific
enzymes involved in this pathway might be used as therapeutic agents for these diseases.
The potential of IDO1 inhibitors for anticancer treatment is being explored, leveraging the
fact that inhibiting this enzyme reduces immunotolerance induced by Trp metabolites [105].
Kynurenine monooxygenase (KMO) inhibitors have been utilized in the treatment of
acute pancreatitis in animal models [106]. Their potential role in the treatment of neuro-
pathic headaches has been suggested, attributed to their ability to decrease the neurotoxic
quinolinic acid [107]. Furthermore, the potential of KMO inhibitors in the treatment of
rheumatologic diseases is also under consideration [108].

5. Common Denominators of PCOS and Alzheimer Disease
5.1. Insulin Resistance and Metabolic Disorders

There are many risk factors for Alzheimer disease, including smoking, depression,
low levels of education, hearing loss, and other conditions that weaken social ties, as well
as head injuries and pollution [2,109]. Risk is higher also in metabolic diseases, such as
type 2 diabetes, insulin resistance, dyslipidemia, hypertension, and hyperhomocysteine-
mia [110–113]. Obesity also promotes the onset of neurodegeneration in middle-aged
people; however, later in life, the correlation between AD incidence and obesity is not
present [114].

Insulin resistance (IR) is a significant metabolic disorder in PCOS pathogenesis present
in the vast majority of subjects that also serves as a risk factor for AD [39].
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PET is a valuable source of data indicating involvement of particular structures of the
central nervous system in AD pathology. Much recent research uses Pittsburgh compound
B (PiB-PET), a radiotracer accumulating in senile plaques. It was found that the level of
insulin resistance expressed by the HOMA index correlated positively with the amount of
amyloid-beta deposition assessed using PiB-PET in AD-related areas in normoglycemic
middle-aged subjects [115] (Table 1). An observational study of a Finnish population
found that individuals with insulin resistance in middle age were more likely to have
amyloid-beta deposits imaged using PiB-PET 15 years later [116].

Table 1. Summary of findings linking PCOS with AD.

Method Finding Model Putative AD-PCOS Link Reference

PiB-PET
HOMA positively correlates with
Aβ accumulation in AD-related

brain areas
AD patients IR present in PCOS might promote

Aβ aggregation [115,116]

18FDG-PET
Glucose hypometabolism in
AD-related brain areas when
compared to healthy subjects

PCOS patients
PCOS is a risk factor for cellular
energy efficiency in AD-related

areas
[117]

18FDG-PET

Glucose hypometabolism in
AD-related brain areas positively
correlates with insulin and glucose

concentration

Healthy subjects
Hyperinsulinemia worsens
cellular energy efficiency in

AD-related areas.
[118]

Laboratory

Dose-dependent negative
correlation between usage of

antidiabetic medication and odds
of dementia

Diabetic patients IR and metabolic syndrome
increase the risk of dementia [119]

PiB-PET LH and FSH positively correlates
with amyloid burden Older-age subjects

Excessive LH secretion present in
PCOS might promote Aβ

aggregation
[120]

Laboratory Treatment with bHCG promotes
Aβ aggregation Ovariectomized rats LH might have amyloidogenic

properties [121]

Laboratory StAR protein lowered expression
in AD AD patients

Lowered StAR expression leads to
increased Aβ aggregation;

expression of this protein is
lowered also in PCOS

[122,123]

Laboratory
Kynurenine pathway

overactivation present in both
PCOS and AD

PCOS and AD patients [124–128]

Laboratory 3-HK levels are positively
correlated with HOMA IR Diabetic patients Kynurenine dysregulation is

linked to IR [87]

Laboratory

Amyloid precursor protein
concentration is increased in PCOS

group compared to healthy
subjects

PCOS patients In PCOS Aβ aggregation might be
more likely [11]

What is more, it was revealed in a prospective study of 165 subjects that the presence
of metabolic syndrome accelerated amyloid-beta deposition in patients with pre-identified
amyloid-beta deposits on PiB-PET [129].

In the study conducted by the AD Neuroimaging Initiative using 18F-FDG PET, it
was observed that AD subjects had reduced glucose uptake in regions associated with AD
(posterior cingulate, precuneus, parietal, and frontal cortex) compared to people without
cognitive impairment [130].

Even more significantly, glucose metabolism was also assessed using 18F-FDG PET in
young PCOS women. The study revealed decreased glucose uptake in the frontal, parietal,
and temporal cortex, as well as the hippocampus and amygdala, compared to healthy
controls [117]. Additionally, patients with prediabetes and DM2 presented reduced glucose
metabolism in regions associated with AD [131]. In a study assessing glucose metabolism
using PET with 18F-FDG in healthy subjects, glucose hypometabolism in AD-associated
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areas correlated positively with glucose and insulin concentrations, independently of
IR [118]. The findings suggest that hyperinsulinemia worsens cellular energy efficiency in
AD-related areas.

The mechanisms underlying the above observations are supported by the results
of experimental studies. Rodents with induced insulin resistance presented increased
aggregation of amyloid-beta and tau protein, as well as reduced cognitive ability [132]. One
of the causes of amyloid-beta accumulation might be connected to its abnormal clearance,
a process that physiologically involves the insulin-degrading enzyme (IDE) [133], which is
predominantly found in the endothelial cells of blood vessels within the CNS [134]. Insulin
resistance is accompanied by compensatory hyperinsulinemia, which competitively reduces
the availability of IDE for amyloid-beta. As a result, amyloid-beta concentration is increased
in circulation, which enhances passage to the CNS [135,136]. A study of human tissues from
AD patients revealed increased amounts of transcripts for gamma-secretase and decreased
amounts of transcripts for IDE. This dysregulation was attributed to increased signaling
of the Notch1 pathway, a product of the gamma-secretase metabolic pathway, involved
in processes of neuroplasticity, neurogenesis and long-term memory [137]. Additionally,
rodent models of AD demonstrated overexpression of amyloid-beta aggregation, CNS
inflammation and decreased cholinergic signaling within the hippocampus due to Notch
pathway signaling. GLP-1 agonist liraglutide, administered intraperitoneally for 30 days,
led to the normalization of Notch signaling and reduced cognitive deficits in subject
rodents [138].

A nested case-control study involving a cohort of 176,250 patients from the Danish
National Diabetes Register, including 11,619 individuals with dementia, revealed a dose-
dependent negative correlation between the use of anti-diabetic drugs (such as metformin,
DDP-4 inhibitors, and GLP-1 agonists) and the odds of dementia in diabetic patients [119].

On the other hand, the precise role of insulin in AD pathogenesis remains unclear.
Meta-analysis conducted in 2024 showed disturbances in carbohydrate metabolism cor-
relate positively with increased tau protein deposition but not with amyloid-beta deposi-
tion [139].

The body of evidence confirms that metabolic disorders, including insulin resistance,
are the key pathophysiological links between PCOS and AD.

5.2. The Role of Luteinizing Hormone and Anti-Mullerian Hormone (AMH)

Progesterone deficiency observed in PCOS results in increased LH concentration, and
LH receptors are found in the central nervous system [140,141]. Additionally, it has been
suggested that prenatal exposure to increased levels of maternal androgens influences
the abnormal formation of neuroendocrine loops within the hypothalamus, leading to
abnormal function of gonadotropin-releasing hormone (GnRH)-producing neurons and
consequently increased LH secretion [142]. The Anti-Mullerian hormone (AMH) role in
PCOS is still discussed, as the high levels of this hormone are present in the majority of
patients [143,144]. Magnetic resonance spectroscopy with tractography was utilized to
visualize the increased activity of hypothalamic neurons in PCOS women compared to
the general population. Subsequently, the authors of the study demonstrated in an animal
model that exposure to AMH affects the increased activity of GnRH-secreting neuroen-
docrine loops [145]. These findings are consistent with another study, which showed that
prenatal exposure to AMH affects the reprogramming of hypothalamic neuroendocrine
circuits, contributing to their increased activation and resulting in impaired secretion of
GnRH [146].

The function of LH in the AD pathogenesis was also discussed since women suffering
from AD presented higher levels of gonadotropins than healthy women. Increased levels
of gonadotropins have been observed for decades in women with AD compared to healthy
women [147]. What is more, a positive correlation between levels of circulating LH and
amyloid-beta was also found in men with AD [148]. The study employing PET-PiB and
magnetic resonance imaging showed a positive correlation between LH and FSH levels and
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cerebral amyloid-beta burden in elderly women [120]. Administration of βHCG, a molecule
structurally homologous to LH, in ovariectomized rats treated with estradiol resulted in
spatial memory impairments and increased amyloid-beta 1-40 and 1-42 levels [121].

PCOS patients exhibit weaker cognitive performance in various domains [149]. A
study assessing brain activity in MRI revealed increased LH correlation with decreased
activity in cortical areas responsible for visuospatial memory, while areas responsible for
episodic memory showed increased activity [150].

Another study demonstrated that the use of acetylcholinesterase inhibitors in com-
bination with leuprolide acetate, a gonadotropin-releasing hormone (GnRH- analog that
reduces LH secretion), for 48 weeks resulted in the preservation of cognitive function in
women with moderate to severe AD [151]. Moreover, studies in animal models have shown
that administration of leuprolide acetate to transgenic rodents with induced AD resulted
in reduced amyloid-beta accumulation and improved cognitive abilities [152]. A study
employing neuroimaging also identified altered white matter microstructure in young
women with PCOS accompanied by cognitive decline; these changes were independent of
BMI and education level [153].

Another commonality between AD and PCOS refers to abnormalities in StAR protein
synthesis, which is a rate-limiting enzyme for progesterone (Prog) biosynthesis in mitochon-
dria. In PCOS, decreased production of Prog leads to the abolishment of negative feedback
between Prog and LH, resulting in increased LH synthesis. StAR protein transports free
cholesterol, a substrate necessary for progesterone production, into the mitochondria [154].
In PCOS, there is a reduction of the StAR protein expression of the StAR protein and the as-
sociated reduction in the expression of the CXCL14 chemokine [122]. Similarly, in AD, there
is also a decrease in StAR protein expression in the hippocampus, correlating with reduced
neuroprotective neurosteroid synthesis and promoting amyloid-beta deposition [123,155].
Moreover, rodent studies have demonstrated an increase in CXCL14 chemokine expression
in astrocytes in mice with the BACE1 gene knocked out, resulting in a reduction of amyloid-
beta accumulation [156]. The findings of these studies suggest a role of decreased StAR
expression and thus increased LH concentration in the development of amyloidopathy.

AD is more prevalent in women who exhibit increased concentrations of gonadotropins
due to the abolition of negative feedback with estradiol [157]. Taking into consideration the
above-mentioned data and conclusions that LH might promote amyloidopathy, women
with PCOS are exposed to this factor much earlier.

On the other hand, increased LH levels correlate with heightened kisspeptin (KISS)
neuronal activity and elevated levels of KISS have been observed in PCOS patients [158]. It
is postulated that this protein possesses amyloid-beta binding properties, thereby limiting
its toxicity in AD [159]. Further research is needed to better explain the cause of the
relationships in this complex issue.

5.3. Dysfunction of the Kynurenine Pathway

The possible denominator linking metabolic disorders, PCOS, Alzheimer disease, and
inflammation is dysregulation of Trp metabolism via the kynurenine pathway. The role
of disruption of this pathway in AD has been postulated for many years. Immunohisto-
chemical analysis of tissues taken from the brains of AD patients showed IDO expression
and the presence of quinolinic acid (QA) in senile plaques in the hippocampus and intra-
parietal cortex [160]. Amyloid-beta 1-42 has also been shown to promote QA production
by microglia [161]. QA presents in vitro neurotoxic effects by triggering the excitotoxicity
process of overstimulation of NMDA receptors, leading to activation of phospholipases,
proteases, and endonucleases, which damage cell structure. Moreover, it is proven that QA
augments hyperphosphorylation of the tau protein [162].

In the study evaluating levels of tau protein, amyloid-beta, kynurenine, serotonin,
Trp, and brain structure via MRI in both AD and healthy subjects, it was proven that an
increase in the kynurenine/serotonin ratio (KYN/5-HT) correlated with elevated serum
levels of inflammatory markers. Evaluation of tau protein, amyloid-beta, kynurenine,
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serotonin, and Trp concentrations, and brain MRI images revealed a positive correlation
with KYN/5-HT. Although greater deposition of amyloid-beta and tau protein in the brain
parenchyma, as well as smaller hippocampal volume, thinner rim, and frontal cortex, and
poorer performance on tests assessing cognitive functions were observed in the study
group, no relationships between those changes and the KYN/TRP ratio were found [124].
On the other hand, a case-control study revealed elevated levels of QA and KYNA in both
plasma and cerebrospinal fluid in the AD patients compared to healthy subjects [125].

Dysregulation of the kynurenine pathway is already observed in the preclinical stage
of AD. In a pilot study employing PET using 18F-florbetaben, increased plasma levels
of kynurenine and anthranilic acid were found in women without established cognitive
deficits and with neocortical amyloid-beta load (NAL) [163]. These findings are consistent
with another study, in which the presence of NAL was connected to increased concentra-
tions of kynurenine pathway metabolites and amyloid-beta neurofilament light chain in the
plasma of patients with preclinical Alzheimer disease [164]. Current evidence strongly sug-
gests a role for Trp metabolism dysregulation in AD, but its exact role remains incompletely
elucidated. Despite these doubts, IDO inhibitors are taken into consideration as possible
therapy for AD [165,166]. In vitro studies have shown that amyloid-beta stimulates IDO
expression in neurons and, as a result, increases the production of neurotoxic kynurenine
derivatives [167].

Meta-analysis involving 22 studies with 664 patients diagnosed with AD showed
a trend of increased KYNA synthesis in CSF and thus decreased 3-HK concentration in
CSF. KYNA, being an NDMA antagonist, exhibits neuroprotective properties; it protects
against excitotoxicity mediated by excessive glutamate concentrations. On the other hand,
glutamate in physiological concentrations mediates synaptic plasticity, but this process is
inhibited at elevated KYNA levels. Intriguingly, there were no revealed differences in QA
levels between AD and cognitively healthy patients [168].

Overactivation of the kynurenine pathway also occurs in PCOS. In a Chinese pop-
ulation, increased levels of KYN, KYNA, and neurotoxic QA were described in PCOS
women. Shifts in the Trp catabolite profile (TRYCAT) positively correlated with AMH, LH,
and fasting glucose levels [126]. In another metabolomic study, the TRYCAT profile was
analyzed in the urine of patients with PCOS. Testosterone concentration, LH/FSH ratio,
and plasma free androgen index were positively correlated with all TRYCAT in the study
group compared to healthy individuals [127]. Additionally, the relationship between Trp
level and plasma androgen levels was also described in PCOS [128].

Derangement of the kynurenine pathway might be a contributing factor in the pres-
ence of mitochondrial dysfunction found in both PCOS and AD. IDO activity increases as
a result of immune cell stimulation mediated by pro-inflammatory cytokines. Therefore,
inflammation emerges as a common factor in AD, PCOS, and the overactivation of the
kynurenine pathway [169,170]. Taking into consideration that the main product of the
kynurenine pathway is NAD(P)H, crucial for proper mitochondrial function, it might be
suspected that dysregulation of the kynurenine pathway causes mitochondrial dysfunc-
tion [171,172]. Additionally, a positive correlation has been observed between increased
IDO mRNA expression and circulating extracellular mitochondrial RNA, which might
reflect damage to these organelles [173].

In vitro studies have demonstrated 3-HK increases the production of free radicals that
damage mitochondria [174] and leads to aberrant protein synthesis within these organelles,
thereby impairing their function. Consequently, an energy deficit appears and, if it becomes
a chronic process, may lead to cell apoptosis.

A higher level of 3-HK has been observed in the serum of patients with AD [175] but
not in the CSF [168] of patients with AD. No clear explanation of discrepancies between
studies related to serum and CSF 3HK level in patients with AD can be found in the
literature; however, all research indicates the significant role of the kynurenine pathway in
the course of AD. Damage to mitochondrial DNA caused by free radicals leads to aberrant
protein synthesis within these organelles, thereby impairing their function. This results in
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an energy deficit, which, if it becomes a chronic process, can lead to cell apoptosis [176,177].
PCOS is associated with increased oxidative stress, which may contribute to a higher
incidence of mitochondrial dysfunction in this group [178]. Additionally, mitochondrial
mtDNA mutations are more prevalent in individuals with PCOS, potentially rendering
them more susceptible to this pathology. It was established that PCOS patients were
significantly more likely to exhibit mt4977 DNA mutations, a marker of mtDNA damage
across the entire mitochondrion [179].

Like in PCOS, dysregulation of the kynurenine pathway is also linked to insulin resis-
tance. In an obese population, metabolism within the kynurenine pathway was found to be
enhanced in individuals with type 2 diabetes compared to normoglycemic controls, with a
positive correlation observed between insulin resistance, assessed with the HOMA index,
and 3-HK levels [87]. Moreover, in vitro studies have demonstrated that metformin exerts
neuroprotective effects by preventing QA-induced excitotoxicity [180]. Additionally, this
drug reduces the phosphorylation of the tau protein [181]. These findings underscore the
importance of dysregulation within the kynurenine pathway, mitochondrial dysfunction,
chronic inflammation, and oxidative stress in the pathophysiology of both diseases.

5.4. Other Biomarkers

A cross-sectional study conducted in 2024 revealed significantly higher plasma levels
of amyloid precursor protein (APP), fibronectin (FN), and its fragments FN1.3 and FN1.4, as
well as APO-E and von Willebrand factor (vWF) in PCOS patients compared to non-PCOS
women. It is noteworthy that the concentration of these proteins is typically elevated
in patients with AD [9]. Both AD and PCOS exhibit elevated levels of microRNA-222;
however, the significance of this finding remains unclear [182].

Patients with PCOS have been found to have elevated serum leucine levels, which
correlate with the degree of insulin resistance [67]. Leucine, an amino acid, stimulates
protein synthesis in skeletal muscle. It competes with Trp and kynurenine for transport
across the blood-brain barrier (BBB) via the LAT1 transporter; administration of leucine to
rodents caused a reduction in the kynurenine/Trp ratio in CSF and mitigated symptoms of
inflammation-induced depression [183]. Therefore, it can be hypothesized that the increase
in leucine levels in PCOS reflects “leucine resistance”, found also in our analyses [58],
resulting in possible disturbances in the transport of particles involved in the kynurenine
pathway to CSF.

6. Conclusions

Numerous questions regarding the pathomechanisms underlying the two discussed
conditions remain unanswered. Current evidence shows that some dysregulation in PCOS,
such as metabolic syndrome and insulin resistance, along with excessive activation of LH-
secreting neuroendocrine circuits and accompanying chronic inflammation, are positively
correlated with amyloid-beta aggregation. These findings suggest that women with PCOS
might face a heightened risk of neurodegeneration. It seems that consideration should
be given to investigating the epidemiological relationship of the development of AD in
patients with previously diagnosed PCOS using archival cohort databases. Moreover, we
suggest that the role of kynurenine pathway dysregulation is underestimated in explaining
the pathogenesis of both discussed diseases (Figure 3).

Further research from this perspective could enhance our understanding of the pro-
cesses underlying amyloid-beta and tau protein deposition. Altered proportions of kynure-
nine pathway metabolites may serve as diagnostic markers for neurodegeneration or for
assessing the risk of its occurrence. Ultimately, the development of inhibitors targeting
specific enzymes within this pathway might lead to therapeutic interventions.



Biomolecules 2024, 14, 918 12 of 20

Biomolecules 2024, 14, x FOR PEER REVIEW 12 of 21 
 

the blood-brain barrier (BBB) via the LAT1 transporter; administration of leucine to ro-
dents caused a reduction in the kynurenine/Trp ratio in CSF and mitigated symptoms of 
inflammation-induced depression [183]. Therefore, it can be hypothesized that the in-
crease in leucine levels in PCOS reflects “leucine resistance”, found also in our analyses 
[58], resulting in possible disturbances in the transport of particles involved in the 
kynurenine pathway to CSF. 

6. Conclusions 
Numerous questions regarding the pathomechanisms underlying the two discussed 

conditions remain unanswered. Current evidence shows that some dysregulation in 
PCOS, such as metabolic syndrome and insulin resistance, along with excessive activation 
of LH-secreting neuroendocrine circuits and accompanying chronic inflammation, are 
positively correlated with amyloid-beta aggregation. These findings suggest that women 
with PCOS might face a heightened risk of neurodegeneration. It seems that consideration 
should be given to investigating the epidemiological relationship of the development of 
AD in patients with previously diagnosed PCOS using archival cohort databases. Moreo-
ver, we suggest that the role of kynurenine pathway dysregulation is underestimated in 
explaining the pathogenesis of both discussed diseases (Figure 3). 

 
Figure 3. Summary of factors that may contribute to the increased risk of neurodegeneration in 
PCOS. Arrows indicate the potential direction of the factor’s action. 

Further research from this perspective could enhance our understanding of the pro-
cesses underlying amyloid-beta and tau protein deposition. Altered proportions of 

Figure 3. Summary of factors that may contribute to the increased risk of neurodegeneration in PCOS.
Arrows indicate the potential direction of the factor’s action.

Both AD and PCOS are the subjects of in-depth scientific research focused on the
characteristics specific to these conditions. The aim of this review was to highlight broader
pathogenetic phenomena that may aid in understanding the mechanisms underlying the
development of PCOS and AD. Investigating the kynurenine pathway appears to offer
such possibilities.
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