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B I O P H Y S I C S

Design of intrinsically disordered protein variants with 
diverse structural properties
Francesco Pesce1*, Anne Bremer2, Giulio Tesei1, Jesse B. Hopkins3, Christy R. Grace2,  
Tanja Mittag2, Kresten Lindorff-Larsen1*

Intrinsically disordered proteins (IDPs) perform a broad range of functions in biology, suggesting that the ability to 
design IDPs could help expand the repertoire of proteins with novel functions. Computational design of IDPs with 
specific conformational properties has, however, been difficult because of their substantial dynamics and struc-
tural complexity. We describe a general algorithm for designing IDPs with specific structural properties. We dem-
onstrate the power of the algorithm by generating variants of naturally occurring IDPs that differ in compaction, 
long-range contacts, and propensity to phase separate. We experimentally tested and validated our designs and 
analyzed the sequence features that determine conformations. We show how our results are captured by a ma-
chine learning model, enabling us to speed up the algorithm. Our work expands the toolbox for computational 
protein design and will facilitate the design of proteins whose functions exploit the many properties afforded by 
protein disorder.

INTRODUCTION
Intrinsically disordered proteins and regions (from here on collec-
tively termed IDPs) represent a diverse class of proteins that carry 
out a wide range of functions and are characterized by extreme but 
often nonrandom structural heterogeneity (1, 2). Their distinct ami-
no acid composition and sequences (3) differ from those of natively 
folded proteins and prevent the formation of stably folded confor-
mations. Thus, IDPs are best described by ensembles of heteroge-
neous conformations that interconvert rapidly (4, 5). The disordered 
and dynamic nature of IDPs is often central for their biological and 
biochemical functions. They can be linkers separating functional 
domains, regulating the interaction between the latter (6), or they 
can play roles as spacers that impair undesirable protein-protein in-
teractions (7, 8). IDPs are often involved in mediating molecular 
interactions including via so-called short-linear motifs (9), and their 
large capture radius may give rise to faster binding kinetics com-
pared to that of folded proteins (10). Thus, IDPs are, for example, 
commonly found in signaling molecules (11) and transcription fac-
tors (12). Furthermore, the interactions within and between IDPs 
and other biomolecules have emerged as an important factor in the 
spatial organization of cellular matter. Through their ability to en-
code multivalent interactions, IDPs can aid in or drive the forma-
tion of membraneless organelles, which typically consist of a wide 
range of biomolecules and compartmentalize many biological pro-
cesses (13, 14). In vitro, many IDPs have been shown to undergo a 
phase separation (PS) process that leads to the coexistence of a 
protein-rich dense phase that separates from a dilute phase when 
the concentration of the protein reaches the so-called saturation 
concentration (csat) (14). Thus, at concentrations above csat, the pro-
tein is found in both a dilute phase and a coexisting dense phase that 

macroscopically may appear liquid-like and, at the molecular level, 
may behave as a fluid with viscoelastic properties (14, 15).

Similarly to the long-lasting quest for predicting the native struc-
ture of folded proteins from their sequences (16), a field that has re-
cently witnessed substantial advances (17–19), there is interest in 
understanding the sequence determinants for the conformational 
properties of IDPs (3, 20–26) and how these are related to their func-
tions (25, 27). For both folded and disordered proteins, the ability to 
predict structure(s) from sequences may help infer their functional 
properties. Accurate structure prediction may also support or some-
times replace the need for experimental studies of protein structure. 
Last, rapid structure prediction enables proteome-wide analyses and 
can aid in protein design.

In parallel with our continuously improving ability to predict 
structures of folded proteins, there has been substantial develop-
ment in our ability to design sequences that fold into specific three-
dimensional folded structures (28–30). Given the multitude of 
functions and properties of IDPs, there would be great potential in 
designing IDPs with targeted properties (31). Such proteins could 
potentially find applications as linkers in multidomain enzymes 
(32), signaling molecules, or using IDPs as biomaterials (33). In con-
trast to the developments for folded proteins, computational design 
of IDPs with specific properties remains more limited. This is be-
cause characterizing and predicting the structural properties of IDPs 
is a complicated task given that we know less about the sequence-
ensemble relationships for IDPs. The native structure of folded pro-
teins can be experimentally determined at atomic resolution, and 
the availability of many high-resolution structures has been one key 
driving force for understanding and predicting how sequences en-
code structures (17). On the other hand, characterizing the ensem-
ble of conformations that an IDP adopts generally requires the 
integration of experiments and simulation methods (4, 5). Collect-
ing such data is, however, difficult and their interpretation is often 
ambiguous. As a consequence, there are only limited examples of 
detailed structural characterizations (34). Thus, there are still many 
open questions about how the sequence of an IDP translates into a 
structural ensemble and function (35). Despite these limitations, a 
number of rules that govern the local and global conformational 
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properties of IDPs have emerged. For example, the content (21, 22) 
and patterning (36) of charged residues have been related to the glob-
al expansion of an IDP in solution (25, 26) as well as their propensity 
to undergo PS (37–39). Similarly, hydrophobicity and, in particular, 
the number and patterning of aromatic residues influence the com-
paction of an IDP and its propensity to phase separate (40–42). In 
some cases, the resulting sequence-ensemble rules have been used to 
modify sequences to change, for example, their level of compaction 
(43–45) or propensity to undergo PS (46, 47).

A number of different approaches have recently led to the develop-
ment of accurate yet highly computationally efficient physics-based 
coarse-grained models for molecular simulations of the global con-
formational properties of IDPs (48–53). These simulation methods 
make it possible to generate conformational ensembles from sequenc-
es on timescales that are compatible with screening a large number of 
sequences, e.g., all IDPs in the human genome (25). Building on these 
developments, we here present an algorithm to generate sequences of 
IDPs with predefined conformational properties. The central idea is to 
search sequence space and to use efficient coarse-grained simulations 
to link each sequence to conformational properties (54). Specifically, 
we use the CALVADOS (Coarse-graining Approach to Liquid-liquid 
phase separation Via an Automated Data-driven Optimisation Scheme) 
model, which has been optimized by targeting small-angle x-ray scatter-
ing (SAXS) and paramagnetic relaxation enhancement nuclear mag-
netic resonance (NMR) experiments on IDPs in solution (49) and 
which has been extensively validated using independent experimen-
tal data (25). In some aspects, our algorithm is conceptually similar 
to previously described approaches that sample sequence space us-
ing, for example, genetic algorithms; these sequences can then be 
evaluated using simulations to generate structures with, for example, 
a defined helical structure (55), properties correlated with propensities 
to PS (56, 57), or sensor peptides for curved lipid bilayer membranes 
(58). We show how the combination of a Monte Carlo algorithm, an 
efficient coarse-grained model, and alchemical free-energy calcula-
tions enables large-scale exploration of the sequence-structure space, 
and we validate the results experimentally.

We begin by studying four IDPs with different sequence composi-
tions and characteristics. Starting from each sequence, we design new 
sequences with different levels of compaction while keeping the ami-
no acid composition constant. The results show that—even with the 
restriction of having a fixed amino acid composition—it is possible to 
achieve conformational ensembles with highly diverse properties. We 
show that this is mainly, but not solely, due to differences in the pat-
terning of charged residues. We used the low complexity domain of 
hnRNPA1 (hereafter A1-LCD) to study the relationship between se-
quence patterning, single-chain properties, and the propensity to 
undergo PS. We selected five variants of A1-LCD for experimental 
characterization and find good agreement between the experiments 
and predictions. Together, our results show that the algorithm that 
we have developed is efficient and can be used to design IDP se-
quences with novel properties. The algorithm is fully general and can 
therefore also be used to design sequences with varying amino acid 
composition and for other target properties than chain dimensions.

RESULTS
Algorithm to design novel IDPs
To design IDP sequences with specific conformational properties, it 
is necessary to be able to predict these properties from sequences 

accurately and rapidly. Therefore, the first question that we address 
is if it is possible to use state-of-the-art simulation-based approaches 
to develop a generalizable method for IDP design. Recent studies 
have established efficient machine learning–based methods to pre-
dict average conformational properties from sequences (25, 26), but 
these methods do not predict full conformational ensembles and 
have not been tested experimentally on novel sequences. Instead, we 
employed a simulation-based approach where we use a coarse-
grained model to generate a conformational ensemble for a given 
sequence (Fig. 1).

We combine coarse-grained molecular dynamics (MD) simula-
tions using the CALVADOS model (49) with alchemical free-energy 
calculations in an algorithm that sequentially generates new se-
quences and characterizes their conformational ensembles in a 
time-efficient manner. While MD simulations with a coarse-grained 
model can rapidly produce conformational ensembles from which 
structural features can be directly calculated, screening a large num-
ber of different IDPs sequentially with only MD simulations would 
still be computationally difficult. Alchemical free-energy calcula-
tions, on the other hand, can predict conformational properties of 
newly proposed sequences from conformational ensembles gener-
ated by simulations of different sequences. Our algorithm thus com-
bines simulations and alchemical free-energy calculations in an 
optimization process that, in some ways, is analogous to what has 
been proposed in the context of force field optimization (59–61).

While the overall sequence composition of an IDP is known to 
affect its conformational properties (25), we here aimed to explore the 
more subtle and difficult-to-extract effects of sequence patterning (23, 
36, 41, 62–65). Therefore, we apply our design algorithm to generate 
sequences of IDPs with diverse structural properties while preserving 
the overall amino acid composition. In this way, we also test and pos-
sibly expand our understanding of how the patterning of specific resi-
dues in a sequence influences its conformational properties. Early 
pioneering studies focused on the role of charge patterning on confor-
mational properties and propensity to phase separate (36–38, 43). 
Other studies have linked the number and patterning of amino acids, 
in particular aromatic and arginine residues, to both conformational 
properties and propensity to phase separate (39, 41, 42, 66).

Nonetheless, even restricting the sequence space to sequences of 
fixed composition, the number of possible sequences is enormous; 
for example, there are ~10127 unique sequences with the amino acid 
composition of the disordered domain of the fused in sarcoma 
(FUS) protein. Thus, sampling even a tiny part of this space is unfea-
sible. To circumvent this problem, our algorithm drives the explora-
tion of the sequence space toward sequences resulting in a target 
conformational property. This is achieved via a Markov chain Monte 
Carlo (MCMC) sampling scheme that iteratively generates sequence 
variants and predicts their conformational properties (through MD 
simulations and alchemical free-energy calculations) in search of spe-
cific arrangements of amino acids that determine a certain structural 
feature (see Materials and Methods for a more detailed description 
of the algorithm and its components).

To exemplify and demonstrate the power of our algorithm, we 
generate variants of IDPs with either increased or decreased chain 
dimensions, measured by their radius of gyration (Rg), while keep-
ing a fixed amino acid composition. To this aim, at each iteration, 
the algorithm swaps the positions of two randomly selected residues 
to generate a variant (from here on called a swap variant). We com-
pare the Rg before and after the swap (evaluated from either MD 
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simulations or alchemical free-energy calculations), and the Monte 
Carlo move is accepted or rejected based on the Metropolis-Hastings 
criterion (Fig.  1). Although we here have focused on the difficult 
problem of changing conformational properties while keeping a fixed 
amino acid composition, the algorithm is versatile and other criteria 
can be used to propose changes in the sequences (e.g., single amino 
acid substitutions) as well as selecting for other structural features 
than the Rg.

Design of IDPs with conformational ensembles that vary 
in compaction
The second question that we address is: Starting from a natural IDP, 
how much more compact or expanded can it become when only 
changing the positions of the amino acids in its sequence? To answer 
this question, we selected four IDPs with different sequence compo-
sitions: α-synuclein (αSyn), the low complexity domain from hnRN-
PA1 (A1-LCD), the prion-like domain of FUS (FUS-PLD), and the 
R-/G-rich domain of the P granule protein LAF-1 (LAF-1-RGG) 
(Fig. 2A). We used our sequence design algorithm in a simulated an-
nealing protocol to let the sequences evolve in search of amino acid 

arrangements that result in more compact ensembles. The results 
show that we can generate sequence permutations of αSyn, A1-LCD, 
and LAF-1-RGG that are substantially more compact than the wild-
type (WT) sequence (Fig. 2B, green lines). In contrast, for FUS-PLD, 
we only find variants that are modestly more compact than the WT 
protein. To demonstrate that the algorithm can also find sequences of 
increased expansion, we began from the compact designs and instead 
targeted greater Rg values. For αSyn, A1-LCD, and LAF-1-RGG, we 
find that the algorithm quickly generates sequences with WT-like 
dimensions (Fig. 2B, orange lines). In all cases, the algorithm only 
finds sequences that are modestly more expanded than the WT se-
quence, although the algorithm was tuned to expand the protein as 
much as possible. We repeated these calculations starting also from 
the WT sequences and obtained similar results (fig. S1).

Sequence features that determine the compaction of 
the designs
In the calculations above, we observed that, while thousands of swap 
moves are required for the algorithm to reach the most compact en-
sembles, a much smaller number of moves were required to recover 

Sequence evolution

IDP sequence

Force field

Designed variant

Fig. 1. Outline of our algorithm for designing sequences of IDPs with targeted conformational properties. As the starting point, we here use naturally occurring IDP 
sequences, although this is not a requirement of the approach. We use MD simulations with the coarse-grained CALVADOS force field to describe the IDPs and to generate 
a conformational ensemble. New sequences are proposed through an MCMC scheme. We evolve the sequences by consecutive swaps in positions between two ran-
domly selected residues and evaluate if the sequences get closer or further away from the design target—here chain compaction. During sequence optimization, we 
calculate the conformational properties for a given sequence by either direct simulations or alchemical calculations that rely on conformational ensembles of previously 
sampled sequences. The conformations shown have the same radius of gyration as the average of the conformational ensemble.
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sequences with WT-like dimensions (Fig. 2B). As the moves swap 
two randomly selected positions, we speculate that there is an entro-
pic barrier in sequence space in finding the arrangement of amino 
acids that determines compact ensembles. This suggests that com-
paction is driven by some kind of specific ordering of the amino acid 
sequences. The next question we addressed was therefore: What are 
the sequence determinants of IDP compaction in the generated se-
quences? As described above, we were able to generate substantially 
more compact variants for αSyn, A1-LCD, and LAF-1-RGG but not 
for FUS-PLD. We therefore aimed to identify which sequence fea-
tures led to this compaction and assessed if the same features were 
responsible in all three cases. We calculated a number of sequence 
features for the variants of αSyn, A1-LCD, and LAF-1-RGG and 
examined the correlation with the Rg (Fig.  3A and fig.  S2). In all 
cases, we observe a strong correlation between the patterning of 
the  charged amino acid residues, as captured by the κ parameter 
(Fig. 3A) (36) and Rg. The κ parameter captures if the positively and 
negatively charged residues are well mixed together (low κ) or if 
they tend to be found in blocks of like charges (high κ) (36). For all 
three proteins, we observe that the positively charged residues tend 
to be clustered in the N-terminal third of the sequence and the neg-
atively charged residues in the C-terminal third as the sequences get 
increasingly compact during the sequence design (Fig. 3B). Because 
the N terminus carries a positive charge and the C terminus carries 
a negative charge, it is likely that the charged termini contribute to 
the overall charge segregation. We stress that we did not directly 
drive this charge clustering during the sequence design algorithm 

but that the analysis shows that clustering of the charges occurs as 
the algorithm explores sequence space to generate compact struc-
tures. The formation of charge-clustered sequences is in line with 
the hypothesis above of an “entropic bottleneck” during the se-
quence design and that it is easier to disrupt such patterns than to 
generate them by randomly swapping amino acid residues.

We also examined other sequence features including patterning 
of aromatic and hydrophobic residues and found that they generally 
have a weaker correlation with the Rg (fig. S2). For LAF-1-RGG, we, 
however, found that the patterning of hydrophobic residues may 
also contribute to compaction similarly to the patterning of charged 
residues (fig. S2). This suggests that, while charge patterning cap-
tures most of the variation in compaction of the permuted sequenc-
es, it is difficult to find individual sequence descriptors that fully 
explain the chain dimensions of these IDPs and that combinations 
of features may be needed to predict compaction (25, 26, 65, 67). 
The importance of charge patterning also helps to explain why we 
were not able to obtain swap variants of FUS-PLD that are more 
compact than the WT because FUS-PLD has only two negatively 
charged and no positively charged residues.

Relating sequence, compaction, and propensity to phase 
separate of designed variants
Theory, simulations, and experiments show that the compaction of 
an IDP is related to its propensity to self-associate and to undergo 
different forms of phase transitions (68). Conceptually, this can 
be understood by the fact that the intramolecular interactions that 

Fig. 2. Designing sequences with varied compaction. (A) Pie chart of the sequence composition of αSyn, A1-LCD, LAF-1-RGG, and FUS-PLD. Amino acids are grouped 
as negative (D and E), positive (R and K), aromatic (Y, W, and F), polar (S, T, N, Q, H, and C), aliphatic (A, V, I, L, M, and P), and glycine. (B) Design of compact (green lines) and 
expanded (orange lines) variants for αSyn, A1-LCD, LAF-1-RGG, and FUS-PLD. Each accepted Monte Carlo step thus gives rise to a sequence that differs from the previous 
by the position of the two swapped residues. Each Monte Carlo step therefore corresponds to a different sequence, whose ensemble averaged Rg is evaluated by either 
MD simulations or alchemical free-energy calculations. The gray horizontal line indicates the Rg of the WT sequence.
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drive sequence compaction are the same as the intermolecular inter-
actions that drive self-association and PS. It would be useful to be 
able to design proteins with predefined propensities to undergo PS 
and participate in the formation of biomolecular condensates. 
Building on previous studies in this area (56, 57), the fourth ques-
tion that we sought to answer is: Are the changes in single-chain 
compaction of the designed swap variants accompanied by a change 
in their propensity to phase separate? To examine this question, we 
chose to study A1-LCD in more detail because the relationship be-
tween sequence and PS of A1-LCD has been studied extensively by 
experiments, theory, and simulations (39, 41, 49, 69).

To improve statistics, we performed nine additional runs of the 
design algorithm to generate a larger and more diversified pool of 
A1-LCD variants with different levels of compaction (fig. S3). We 
then grouped these sequences by their Rg (in bins of 0.05-nm width), 
clustered the sequences (see Supplementary Materials), and used 
the centroid of each cluster for further analyses. In this way, we re-
moved sequences that are very similar to each other (there are many 
similar sequences within each run of sequence design because the 
design algorithm evolves sequences by consecutive position swaps 
of two residues) and only use one representative sequence for each 
cluster. We then performed 1-μs-long simulations of each centroid 
sequence to reevaluate their Rg values. We do this to validate the ac-
curacy of the alchemical free-energy calculations in predicting the 
Rg of variants proposed by the design algorithm. In line with pre-
liminary tests (fig. S4; see Materials and Methods), we find an aver-
age error on the predicted Rg values of 1.5% (fig.  S5). We then 
rebinned the centroids based on the Rg from simulations, and for 
each bin, we selected up to 15 sequences that are diverse in the pat-
terning of charged and aromatic residues. In this way, we selected 
120 A1-LCD variants (including the WT) with diverse sequence fea-
tures and compaction (Fig. 4, A and B). Of the 119 swap variants, 
113 have less than 30% sequence identity to the WT protein (fig. S6).

To examine the propensity of the designed A1-LCD variants to 
phase separate, we ran simulations of these variants (one at a time) 
consisting of 100 copies in a “slab” geometry and estimate their csat 
from the concentration of the dilute phase in the simulation box 
(70). As previously observed for a model system (37), we find a log-
arithmic relationship between Rg and csat, with compact variants 
showing a stronger propensity to PS (low csat) and expanded vari-
ants showing a weaker propensity to PS (high csat) (Fig. 4C). Despite 
this expected correlation between single-chain properties and the 
propensity to phase separate, we find some sequences with similar 
Rg values whose csat values differ by up to one order of magnitude. 
This observation suggests that, while the single-chain behavior can 
be very similar, other features encoded in the sequences of hetero-
polymers can cause diversity in the PS properties. Overall, this cor-
relation between Rg and csat not only further supports a strong link 
between single-chain properties and PS propensity that can be used 
to extrapolate PS propensity from single-chain compaction but also 
suggests that other sequence features that do not substantially 
change the single-chain Rg might have an effect on PS.

Experimental characterization of A1-LCD variants
Above we have described an approach for designing IDPs and exam-
ine how the arrangement of amino acids in the primary sequences 
can influence their behavior. While the coarse-grained model that 
we use in our algorithm (49) has been extensively validated on natu-
rally occurring proteins and variants thereof (25), it has not been 
used as a generative model and tested on novel, designed sequences. 
We thus asked if the accuracy of CALVADOS for predicting Rg and 
csat for natural proteins also extends to sequences that show little se-
quence identity to natural proteins and, for example, show substan-
tial charge patterning. Thus, a fifth question that we asked was: How 
accurate are our computational predictions of chain dimensions and 
propensity to phase separate for the designed variants?

Fig. 3. Charge patterning drives compaction. (A) Correlation between Rg and κ (a high κ indicates segregated clusters of residues with the same charge, and a low κ 
indicates that charges are well mixed along the sequence). (B) We divided the sequences of αSyn, A1-LCD, and LAF-1-RGG into three sections covering the N-terminal third 
(blue), the middle third (gray), and the C-terminal third (red) of the sequence and calculated the total charge in each of these sections.
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We therefore sought to test our predictions by experiments. We 
focused our experiments on 15 swap variants of A1-LCD, selected 
from the 120 sequences analyzed above, that represent a range of 
chain dimensions and sequence properties. We focused on A1-
LCD because the WT protein is already relatively compact and be-
cause its propensity to phase separate is rather strong for a protein 
of its length (39, 41). Thus, we speculated that the ability to make it 
even more compact and endow it with a lower csat without changing 
the amino acid composition would be a powerful test of our design 
algorithm and the CALVADOS model.

Out of the 15 variants that we selected, we successfully expressed 
and purified five variants (red points in Fig. 4 and fig. S7) and the WT 
A1-LCD protein. We ran new simulations of the selected variants 
under the conditions of the experiments and including a glycine-
serine pair at the N terminus that is present in the experimental con-
structs (table S1). We name these variants V1 to V5, sorted by their 
calculated Rg, with V1 predicted to be the most compact and most 
strongly phase-separating variant, with a marked segregation of pos-
itive and negative charges at the termini (Fig. 5A). We induced PS by 
adding 150 mM NaCl and visualized the resulting condensates by 
differential interference contrast (DIC) microscopy (Fig.  5B). We 
measured the csat of the five variants and the WT and compared the 
experimental results with those predicted from multichain simula-
tions. We find a high correlation between predicted and observed 
values of csat (Fig. 5C), with the only outlier being V5, which is the 
sole variant expected to be more expanded than the WT. To investi-
gate possible reasons for the discrepancy in PS propensity of V5, we 
ran additional simulations. The calculated csat values that we com-
pare to experiments (Fig. 5C) are averages over the csat values calcu-
lated from three independent simulations. We obtained comparable 
results from the three independent replicates, demonstrating that the 
differences are not due to lack of convergence of the simulations 
(fig.  S8). We also ran simulations with different setups: one with 
twice as many chains to address potential finite size effects and an-
other with the updated CALVADOS 2 model (53). All three simula-
tion setups gave comparable values for csat (fig. S8). We also repurified 
and remeasured csat values for V5 and obtained comparable results.

We used previously described methods to measure SAXS data 
for proteins close to their solubility limit (71) to test our predictions 

of chain dimensions for the designed variants. Like for csat, we find a 
high correlation between the Rg values derived from SAXS and 
those from simulations (Fig. 5D) and a good agreement between the 
experimental and calculated SAXS curves with χ2

r
 values around 1 to 

2 (fig. S9). Given the low csat of V1 (15 μM), we were not able to 
obtain a sufficient signal-to-noise ratio at a protein concentration 
below csat. We instead turned to diffusion NMR experiments at low 
protein concentrations to measure the hydrodynamic radius (Rh) of 
V1 and WT A1-LCD. We thus acquired NMR data for WT A1-LCD 
and V1 at 307 K, where the measured csat of V1 is 34 μM (compared 
to 15 μM at 298 K). At this temperature, we find that V1 is substan-
tially more compact than WT A1-LCD (Fig. 5E). We note that, for 
both Rg and Rh, there appears to be a small, but systematic, offset 
between the predicted and experimentally determined values. Some 
of these differences may indicate remaining errors in the CALVADOS 
force field but may also reflect uncertainty in how Rg and Rh are esti-
mated from experiments and simulations (72–75).

We find that both simulations and experiments show that V3 is 
more compact than V4 (Fig. 5D), while V4 has a lower csat than V3 
(Fig. 5C). Previously, it has been shown that changes in the formal 
net charge may break the correlation between Rg and csat (39, 49), 
but the case of V3 and V4 shows that certain sequence features can 
break this symmetry even without changing the amino acid compo-
sition and that this is captured by CALVADOS. Examining the se-
quence features of V3 and V4, we note that V4 has a greater value of 
κ (indicating that negatively and positively charged residues are not 
well mixed) (Fig. 4A), while the high value of ωaro in V3 shows that 
the aromatic residues are highly segregated (Fig. 4B), a feature that 
has previously been correlated with an increased propensity to form 
amorphous aggregates (41). If these or other sequence features cause 
the “symmetry breaking” between Rg and csat for V3 and V4 will be 
an interesting topic for future analyses.

Designing variants with specific contact maps
Having demonstrated and experimentally validated that we can de-
sign sequences with specified levels of compaction, we asked the 
question if our algorithm could also be used to design sequences 
with conformational requirements that are more complex than the 
average chain dimension. We therefore implemented a version of 

Fig. 4. Characterization of the 120 A1-LCD variants. We show the relationship between Rg and (A) κ, (B) ωaro (patterning of aromatic residues; a high ωaro values indicate 
clustering of aromatic residues), and (C) the csat calculated from simulations of 100 chains in slab geometry. We highlight the WT sequence of A1-LCD in green and five 
variants selected for experimental characterization in red. Error bars of the average Rg are not shown as their size is negligible.
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our algorithm that targets a prespecified contact map during the se-
quence optimization. As above, we use simulations and alchemical 
calculations to score the agreement between the designed sequence 
and the target contact map.

As an example of this more complex design target, we selected 
the simulated contact map for the compact V1 variant of A1-LCD 
(Fig. 6A). Starting from the sequence of WT A1-LCD, we used the 
design algorithm to find sequences with the same composition as 
A1-LCD with predicted contact maps resembling V1. We selected 
the contact map of V1 as the target and the A1-LCD sequence as the 
starting point because the two proteins have substantially different 
contact maps (Fig. 6, A and B) but the same amino acid composi-
tion. Our results show that we can generate variants with a pre-
dicted contact map that is similar to that of the target (Fig. 6, C and 
D). We find that the sequences generated via this procedure also 
show increased charge segregation (compared to A1-LCD) and 
have increased sequence similarity to V1 (fig. S10).

Designed variants in the context of the human 
disordered proteome
The results described above show that we can design IDPs with spe-
cific conformational properties and that charge segregation emerges 

as an important determinant of compaction of the designed se-
quences. This result is in line with previous observations from theory, 
simulation, and experiments (36, 63, 68). Recently, we have performed 
simulations of all IDPs from the human proteome (the IDRome) 
and found that chain dimensions of this broad range of natural se-
quences is governed by a complex interplay between average hydro-
phobicity, net charge, and charge patterning (25). Motivated by these 
observations, we examined the sequences generated by our design 
algorithm in the context of the properties of natural disordered se-
quences in the human proteome.

The first aspect that we examined was inspired by our observa-
tion that we could generate more compact variants of αSyn, A1-
LCD, and LAF-1-RGG but not expand these proteins much (Fig. 2). 
As discussed above, we speculated that this observation was due to 
the fact that the charged residues in these proteins are well mixed so 
that it is possible to compact them by segregating positive and nega-
tive charges but more difficult to expand them by further mixing 
these charged residues. Similarly, we hypothesized that the small 
number of charged residues in FUS-PLD was the cause of the in-
ability to change the compaction substantially. These observations 
led us to hypothesize that it would be possible to increase the com-
paction of natural proteins with stronger charge segregation. We 

Fig. 5. Experimental characterization of WT A1-LCD and five designed variants. (A) Diagram of the arrangement of amino acids in A1-LCD and the five designed vari-
ants. Negative and positive charges are colored in red and blue, respectively. The neutral residues are colored by a gray scale that reflects their hydrophobicity (corre-
sponding to the λ parameter in CALVADOS), with the least hydrophobic residues in white and the most hydrophobic residues in black. (B) Visualization of condensates of 
WT A1-LCD and the five variants by DIC microscopy; these images are only meant to illustrate the formation of condensates and not necessarily differences between the 
variants. (C) Comparison of experimental and calculated values of csat at 298 K. (D) Comparison of experimental and calculated values of Rg for WT A1-LCD and V2 to V5. 
(E) Comparison of experimental and calculated values of Rh at 307 K for WT A1-LCD and V1. Error bars whose sizes are comparable to those of the markers are not shown.
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therefore turned to calculations of the z(δ+−) score, which is analo-
gous to the κ score for charge segregation but is defined in a way that 
makes it more appropriate for comparisons across sequences of dif-
ferent lengths and compositions (65). We thus examined the distri-
bution of z(δ+−) scores across the human IDRome (25) and find 
that, for example, A1-LCD has a well-mixed arrangement of charges 
as indicated by z(δ+−) ≈ 0 (Fig. 7A).

To examine if charge patterning and compaction of the designed 
variants reflect the same rules as for natural proteins, we turned to the 
calculation of apparent scaling exponents (ν) as a length-independent 
measure of compaction. For a so-called “ideal-chain” polymer, 
protein-protein, protein-water, and water-water interactions are 
balanced, and ν = 0.5; smaller values of ν indicate more compact 
sequences, and an expanded, excluded-volume random coil has ν ≈ 0.6. 
We calculated ν for the designed A1-LCD variants and find that they 
follow the overall general relationship between charge segregation 
[z(δ+−)] and sequence compaction (ν) observed for natural proteins 
(Fig. 7B). For a few proteins, we find nominal scaling exponents below 
the value of 0.33 expected for compact globules (76); these unusual 
values reflect that these proteins are not homopolymers and arise 
from how we calculate scaling exponents.

To explore these aspects further, we selected three naturally oc-
curring human IDPs (the disordered domains of HSFX4, FRAT2, 
and SFMBT1) whose compaction can be explained by their strong 
segregation of positively and negatively charged residues (Fig. 7C). 

Building on our hypothesis of why we could not expand the well-
mixed sequences of αSyn, A1-LCD, and LAF-1-RGG (Fig.  2), we 
asked if we could design sequences resulting in more expanded con-
formational ensembles if we started from these charge segregated 
sequences. When we applied our design algorithm with the WT 
sequences of HSFX4, FRAT2, and SFMBT1 as starting points, we 
were able to obtain substantially more expanded sequences as well 
as also modestly more compact sequences (Fig. 7D). Together, these 
results support the notion that—for fixed sequence composition—
modulation of the distribution of the positively and negatively 
charged residues is a key determinant of compaction and our ability 
to change this.

While charge segregation is important for fixed sequence compo-
sition, we previously found a more complex interplay between a 
wider range of sequence properties and chain compaction (25). 
These observations, in turn, enabled us to train a support vector re-
gression (SVR) machine learning model to predict scaling exponents 
from sequences (νSVR). Given that the SVR model was trained on 
natural sequences, we asked how well our machine learning model 
was able to predict chain compaction for designs that have properties 
that are less common in natural sequences. Overall, we find a high 
correlation between predicted (νSVR) scaling exponents and those 
obtained directly from simulations (ν) of the 120 A1-LCD variants 
(Fig.  7E). The average absolute error of the predictions (19%) is 
somewhat greater than the value found across the IDRome [2.3% 
(25)], although these values are not fully comparable due to the dif-
ferent ranges of scaling exponents in the two datasets. We again note 
that defining and calculating the apparent scaling exponents are 
most robust for proteins that behave more like long homopolymers 
and that the specific structural properties in the most compact se-
quences make the average scaling exponent less representative of the 
conformational ensemble.

Efficient sequence design by machine learning
The results above demonstrate that we can design sequences of dis-
ordered proteins using an algorithm that combines molecular simu-
lations with a coarse-grained model and alchemical free-energy 
calculations. Although the coarse-grained simulations are efficient 
and the free-energy calculations decrease the requirements for sim-
ulations, the design algorithm still requires substantial computa-
tional resources. Thus, a single run of ~4500 iterations for a protein 
such as A1-LCD (Fig. 3) takes about 20 days on a machine equipped 
with a current graphics processing unit (see Materials and Methods).

As also described above, we have developed an SVR model 
that can predict scaling exponents directly from the sequence (25), 
and our results show that this model is relatively accurate for the A1-
LCD variants that we designed using molecular simulations (Fig. 6). 
This observation suggests that we could circumvent the computa-
tionally expensive simulations in the design of variants with changed 
compaction by using the scaling exponents from the SVR model in-
stead of evaluating chain compaction by simulations. It has previ-
ously been demonstrated that such proxies can be used to drive the 
design of disordered proteins with specific properties (43, 45, 55, 58).

We therefore developed an alternative design procedure that re-
places the MD simulations with the SVR model to predict chain 
compaction (ν). We demonstrate the utility of this model by de-
signing variants of the seven proteins we studied above (Figs. 2 and 
6) with either decreased or increased values of ν (fig. S11). The results 
recapitulate the observations from the simulation-driven designs, 

Fig. 6. Designing variants with a target contact map. (A) Contact map of the 
compact V1 variant of A1-LCD. (B) Contact map of A1-LCD. (C) Design of A1 variants 
targeting the contact map in (A). The similarity between contact maps is measured 
with the MSE. (D) Contact map of the variant with the lowest observed MSE.
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and simulations of the resulting sequences using CALVADOS con-
firm the accuracy of the SVR model in capturing chain compaction 
(fig. S11). Because of the efficiency of this approach, it can be run 
using easily available resources such as via Google Colab, for which 
we provide an easy to use implementation (see Materials and 
Methods).

DISCUSSION
IDPs play important roles in a range of biological processes and con-
vey functions that complement those of folded proteins. Thus, the 
ability to design disordered sequences could substantially expand 
our ability to design proteins with novel functions and properties, in 
the same way as biology exploits combinations of order and disorder 
(31). Combinations of experiments and simulations has led to an 
improved understanding of the conformational properties of IDPs, 
which, in turn, has enabled improved models to generate conforma-
tional ensembles directly from sequence via molecular simulations 
(48, 77). These models have enabled previous applications to design 

IDPs (55–58) and genome-wide studies of sequence-ensemble rela-
tionships (25, 26). Our understanding of sequence-ensemble rela-
tionships may, in some cases, be encoded in simple relationships 
between sequence properties and, for example, compaction, and 
these relationships have been used in sequence design (43–47).

Here, we describe a general approach for designing IDPs that ex-
ploits a computationally efficient simulation model. Instead of using 
rules for sequence-ensemble relationships, our design algorithm is 
based on MCMC sampling of sequence space, where each sequence 
is structurally characterized by combining CALVADOS-based MD 
simulations (49) and alchemical free-energy calculations (78). In 
some aspects, our algorithms are similar to others previously used 
to generate sequences with specified conformational or functional 
propensities (43–47, 55–58). Our MCMC sampling guides the se-
quence toward a design target, here compaction or contact maps, 
and uses the MD simulations and alchemical calculations to predict 
the conformational ensembles of candidate sequences. Together, 
this leads to an efficient algorithm that we have successfully used to 
generate a wide range of sequences with diverse structural features.

Fig. 7. Designed swap variants in the context of the IDRome. (A) Histogram of the sequences in the IDRome grouped based on their charge clustering. We use z(δ+−) 
to compare the degree of charge clustering for sequences of different lengths and composition, with high values of z(δ+−) indicating high segregation (65). z(δ+−) for the 
WT A1, HSFX4, FRAT2, and SFMBT1 are indicated in green, blue, red, and pink, respectively. (B) Comparison of 120 swap variants of A1-LCD (orange) with the IDRome by 
compaction (ν) and charge clustering [z(δ+−)]. (C) Diagram of the sequences of disordered regions in HSFX4, FRAT2, and SFMBT1 that we extracted from the IDRome as 
representative naturally occurring IDPs that show strong charge clustering. Negative and positive charges are colored in red and blue, respectively. The neutral residues 
are colored by a gray scale that reflects their hydrophobicity (corresponding to the λ parameter in CALVADOS), with the least hydrophobic residues in white and the most 
hydrophobic residues in black. (D) Design of more expanded and more compact swap variants starting from the WT sequences of the disordered domains of HSFX4, 
FRAT2, and SFMBT1. (E) Comparison of ν calculated from MD simulations [with CALVADOS 2 (53)] and predicted via an SVR machine learning model (νSVR) (25) for 120 
representative A1-LCD variants.
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We experimentally characterized five designed variants of A1-
LCD and find good agreement between experiments and simula-
tions in terms of both the target property (compaction) and the 
propensity of the sequences to undergo PS. These findings are, in our 
view, important. First, we selected A1-LCD because it is one of the 
most compact IDPs that have been characterized experimentally, 
and thus making it even more compact is, we thought, nontrivial. 
Second, we restricted our optimization algorithm to maintain se-
quence composition and show that we can find substantially more 
compact sequences even with this restriction. Third, the high corre-
lation between the experimental and calculated radii of gyration 
demonstrates that CALVADOS remains accurate even for highly un-
natural sequences whose properties are well outside those it has pre-
viously been trained and benchmarked on. This is a strong validation 
of our approach of using a physics-based model to drive the sequence 
design algorithm. We note, however, that the CALVADOS force field 
we used could have been readily reparameterized to improve predic-
tions of single-chain compaction, in case our experiments had re-
vealed discrepancies with simulation predictions (49, 59). Fourth, 
we show that our designs not only match the experiments for the 
design target (compaction) but also have propensities to phase sepa-
rate that generally match the predictions from simulations. We note, 
however, that V5 appears to be an outlier because its experimental 
csat value is lower than the prediction from CALVADOS and deviates 
from the observed trend of increasing csat with increasing Rg. The 
origin of the discrepancy for the csat value is unclear, and we note that 
we accurately predict the Rg of V5.

We initially selected 15 variants of A1-LCD for experimental 
characterization. Ten of these variants (table S2) could not easily be 
expressed in Escherichia coli, and further investigation will be neces-
sary to shed light on sequence features that might impair either tran-
scription or translation of such synthetic constructs. We did not find 
sequence features related to patterning of charged and aromatic resi-
dues that differed clearly between the variants that expressed and 
those that did not (fig. S7), and sequences with similar properties 
are also found among naturally occurring disordered proteins (25). 
Many of the compact designed sequences have large charge segrega-
tion including stretches of positively charged amino acids, and we 
note that such polybasic regions may slow down translation (79); 
however, we also note that V1 contains seven consecutive basic (ly-
sine or arginine) residues so that this property does not alone explain 
which proteins could be expressed.

In addition to developing an algorithm to design IDPs with dif-
ferent levels of compaction, our work also sheds light on sequence-
ensemble relationships that can help us understand how natural 
evolution shapes IDPs. We found that we could generate more com-
pact structures for proteins with the same composition as αSyn, A1-
LCD, and LAF-1-RGG, but not for FUS-PLD, and that we could not 
generate substantially more expanded conformations for protein 
sequences with any of these compositions. Our results show that 
these effects are mainly due to the number and patterning of charged 
residues in these proteins. Thus, while global sequence composition 
may be an important factor in the evolution of IDPs (80–82), our 
results support the notion that patterning also plays a key role. The 
results from these analyses are in line with previous bioinformatics 
analyses that show that most natural IDPs have relatively high mix-
ing of positively and negatively charged residues (83). Nevertheless, 
we and others have previously shown that some natural IDPs are 
compact due to strong segregation of positively and negatively 

charged residues (25, 26, 36, 84), and we show that, for sequences 
such as the disordered domains of HSFX4, FRAT2, and SFMBT1, we 
can generate more expanded sequences by disrupting this charge 
patterning. If the high mixing of charged residues is due to entropic 
effects in sequence space together with the fact that IDPs have a large 
tolerance for sequence variation (85–88) or is due to effects, e.g., on 
solubility or preventing erroneous interactions, is an interesting 
question for future studies.

Looking ahead, our results show that the accuracy of CALVADOS 
appears to extrapolate also to outside of the realm of natural proteins 
and variants thereof, on which the model was trained. This suggests 
that even more extensive sampling of sequence space might be use-
ful. While our MCMC-based approach enables a fine-grained and 
substantial sampling of the sequence space, it may be combined 
with or replaced by other approaches to guide the sequence design. 
We and others have recently shown that it is possible to encode the 
sequence-ensemble relationships from coarse-grained simulations 
in machine learning methods (25, 26, 67); we suggest that such 
methods for predicting properties from sequences may be used to-
gether with, for example, reinforcement learning (89, 90) or Bayesian 
optimization (91) to explore sequence space even more efficiently. 
Such rule-based methods have previously been used, for example, to 
design sequences with modified chain dimensions (43, 44) or pro-
pensity to undergo PS (46, 47). We here provide an initial proof of 
principle of this approach using our SVR model to drive the se-
quence design algorithm; similar ideas have recently been presented 
in related works using a machine learning model to drive the se-
quence design of disordered proteins (45, 58).

We expect that combinations of machine learning and simulations 
will, in particular, be important when designing for structural observ-
ables that are more complex than single-chain compaction, where 
simulations could be more expensive and alchemical free-energy cal-
culations might be less efficient. Our algorithm can be applied to de-
sign for other structural features than single-chain dimensions and 
can be adapted to other ways of sampling sequence space. As an initial 
proof of principle, we here have also demonstrated that it is possible 
to design sequences with a target contact map. The range of applica-
tions can therefore be extended to studies focused on understanding 
the effect of the patterning of specific residues or groups of residues or 
to design for, e.g., binders for disordered therapeutic targets.

In summary, we have developed, applied, and validated an al-
gorithm for designing disordered sequences with specified con-
formational properties. We show that we can design IDPs with 
substantially increased compaction even with fixed amino acid 
composition and find that our algorithms mostly exploit the rela-
tionship between charge patterning and compaction. We also explain 
why some sequences are difficult to expand when the positively and 
negatively charged residues are well mixed. Our experimental vali-
dation highlights the accuracy of the coarse-grained model with 
prospective testing of novel sequences. Together, our results show 
that it is now possible to design sequences of disordered proteins, 
thus expanding our toolbox for designing proteins with novel or im-
proved functions.

MATERIALS AND METHODS
MCMC sampling for IDP design
We used an MCMC algorithm to generate sequences of IDPs. We 
here targeted the compaction of the chain (as quantified by the Rg) 
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and kept the composition constant during the sequence sampling 
by using swaps of a randomly selected pair of residues as our MCMC 
move (92). We evaluated the Rg of the new sequence, either by run-
ning an MD simulation or by reweighting (see below) and used the 
Metropolis-Hastings criterion to evaluate the probability of accep-
tance (Ak−1→k)

Here, ∣ΔRg,k∣ is the cost function that quantifies the absolute dif-
ference between the Rg of the sequence at the MCMC step k and a 
target Rg (∣ΔRg,k∣ = ∣Rg,k − Rg,target∣), and c is a control parameter. 
Rg,target is set to 0 nm to design for more compact IDPs and to 10 nm 
to design for more expanded IDPs. The starting value for c is 0.014, 
corresponding to Ak−1→k = 0.5 for ∣ΔRg,k ∣ − ∣ ΔRg,k−1∣ = 0.01 nm. 
We apply simulated annealing using an approach where c is de-
creased by 1% every 2l MCMC steps, where l is the number of amino 
acids in the IDP sequence.

We used the same scheme as above for designing sequences tar-
geting a contact map. For targeting contact maps, the starting value 
for c was set to 0.049. As the cost function, we use the mean square 
error (MSE) to the target contact map. We calculate the contact map as

Here, N is the number of simulation frames and dij,n is the dis-
tance between interaction sites i and j in the nth simulation frame. 
We excluded neighboring residue pairs from the MSE calculations.

Although, in this work, we focus on the specific application of 
generating variants with fixed amino acid composition, the algo-
rithm and our software accommodates other user-specified MCMC 
moves (e.g., single-site or multisite amino acid substitutions, substi-
tutions restricted to specific positions and specific residue types). 
Furthermore, other observables that can be calculated from the 
simulations can be used as the design target. A scheme of the design 
algorithm is shown in fig. S12.

MD simulations
We ran coarse-grained MD simulations using the CALVADOS M1 
(49) Cα-based model. Instead, when comparing ν from simulations 
to ν predicted with the SVR model, we used the CALVADOS 2 (53) 
model because the SVR model was trained on CALVADOS 2 simu-
lations. Single-chain simulations in the design algorithm were run 
for 500 ns with a 10-fs time step. Simulation conditions were set to 
reproduce 298 K, 150 mM ionic strength, and pH 7. Other single-
chain simulations that are not in the context of the design were run 
for 1 μs and, when simulations are compared to experiments, under 
the experimental conditions.

Multichain simulations to study the PS propensity of the A1-LCD 
variants were performed in slab geometry with the CALVADOS M1 
model. One hundred chains were assembled in a simulation box 150 nm 
long and with a cross section of 15 nm × 15 nm. Multichain simula-
tions were run for 20 μs. For multichain simulations of experimental 
constructs, three replicates were run for a total simulation time of 
120 μs (one replicate 20 μs long and two replicates 50 μs long).

The cutoff used for nonbonded nonionic interactions was 4 nm 
for single-chain simulations and 2 nm for multichain simulations 
(53). Charge-charge interactions were truncated and shifted at a 
cutoff of 4 nm in all simulations.

Alchemical free-energy calculations with MBAR
When proposing a new sequence, the design algorithm attempts to 
predict the Rg by reweighting simulations generated at previous 
steps of the MCMC algorithm using the multistate Bennett accep-
tance ratio (MBAR) method (78). Because the simulations are per-
formed with a Cα-based coarse-grained model, changing the amino 
acid type in a position of the sequence simply means changing the 
force field parameters and possibly the charge of the bead repre-
senting the residue at that position. Thus, it is easy to evaluate the 
per-frame potential energy of a new sequence for an ensemble of 
conformations sampled with another protein sequence. MBAR takes 
as input an energy matrix defined by frames coming from n simula-
tions of different sequences (MBAR pool) and the potential energy 
functions from each sequence. We calculate the potential energies of 
the frames of the simulations for a new sequence proposed by the 
MCMC algorithm and use MBAR to obtain the Boltzmann weights 
to estimate the weighted average of the Rg of the new sequence 
without running a new simulation.

The reweighting is most accurate when there is substantial overlap 
between the potential energy functions of the simulations in the 
MBAR pool and that of the new sequence. We quantify how much 
the energies of the frames from the simulations in the MBAR pool are 
compatible with the potential energy function of the new sequence 
by calculating the number of effective frames (Neff) that contributes 
to the averaging

where N is the total number of frames from the simulations in the 
MBAR pool and wi is the weight of the ith frame obtained from 
MBAR to calculate the Rg of the new sequence. By generating test 
datasets where we compare the simulated Rg with the predicted Rg 
from MBAR weights, we assessed the relationship between Neff 
and the accuracy of the predicted Rg (fig. S4). In light of this analy-
sis, we set a threshold for Neff to 20,000. When the weights ob-
tained by MBAR result in a Neff below this threshold, the algorithm 
initiates a new simulation and uses the Rg from this simula-
tion  when evaluating the acceptance probability in the MCMC 
sampling scheme.

The ability to estimate the Rg of new sequences by reweighting 
makes the design algorithm more efficient as it decreases the num-
ber of MD simulations that are needed. Because of the large size of 
the energy matrix, we still need to keep the number of simulations 
in the MBAR pool relatively low so that the calculations are efficient. 
With a test dataset, we also assessed how the efficiency of the algo-
rithm would change varying the size of the MBAR pool. In general, 
the larger the pool, the less simulations are required by the algo-
rithm (i.e., it occurs less frequently that the Neff drops below 20,000). 
In light of these observations, we set the maximum size of the MBAR 
pool to 10 (fig. S4). When the size of the pool is at its maximum and 
the Neff drops below the threshold, a new simulation is performed 
and added to the pool, while the oldest simulation is discarded from 
the MBAR pool.
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Small-angle X-ray scattering
SAXS experiments (fig. S13 and table S3) were performed at Bio-
CAT (beamline 18ID at the Advanced Photon Source, Chicago) 
with in-line size exclusion chromatography to separate protein from 
aggregates, contaminants, and storage buffer components, thus en-
suring optimal data quality (fig. S14) as previously reported (39, 41, 
71). Samples were loaded onto a Superdex 75 Increase 10/300 GL 
column (Cytiva), which was run at 0.6 ml/min by an AKTA Pure 
FPLC (GE), and the eluate, after passing through the ultraviolet 
monitor, was flown through the SAXS flow cell. The flow cell con-
sisted of a 1.0-mm inside diameter quartz capillary with ~20-μm 
walls. All protein solutions were measured at room temperature in 
20 mM Hepes (pH 7.0), 150 mM NaCl, and 2 mM dithiothreitol. A 
coflowing buffer sheath was used to separate the sample from the 
capillary walls, helping to prevent radiation damage (93). Scattering 
intensity was recorded using an Eiger2 XE 9M (Dectris) detector, 
which was placed 3.685 m from the sample, giving us access to a q 
range of 0.0029 to 0.42 Å−1. Exposures of 0.5 s were acquired every 
1 s during elution, and data were reduced using BioXTAS RAW 
2.1.4 (94). Buffer blanks were created by averaging regions flanking 
the elution peak and subtracted from exposures selected from the 
elution peak to create the I(q) versus q curves (scattering profiles) 
used for subsequent analyses. RAW was used for buffer subtraction, 
averaging, and Guinier fits. Scattering profiles were additionally fit 
using an empirically derived molecular form factor (95) (used to 
calculate the experimental Rg values in Fig. 5).

Diffusion-ordered NMR spectroscopy
We carried out diffusion-ordered spectroscopy experiments (96) at 
307 K to measure translational diffusion coefficients for WT A1-
LCD and the V1 variant by fitting intensity decays of individual sig-
nals selected between 0.5 and 2.5 parts per million (97) with the 
Stejskal-Tanner equation (98). Spectra were recorded on a Bruker 
600-MHz spectrometer equipped with a cryoprobe and Z-field gra-
dient and were obtained over gradient strengths from 5 to 95% (32 
points) for A1-LCD and from 5 to 75% (16 points) for V1 (γ = 
26,752 rad s−1 G−1) with a diffusion time (Δ) of 50 ms and a gradient 
length (δ) of 6 ms. We used 1,4-dioxane (0.10% v/v) as the internal 
reference for the Rh [2.27 ± 0.04 Å (75)]. We acquired 80 scans for 
A1-LCD and 480 scans for V1. Translational diffusion coefficients 
were fitted in Dynamics Center v2.5.6 (Bruker) and were used to 
estimate the Rh for the proteins (99), with error propagation using 
the diffusion coefficients of both the protein and dioxane.
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