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Abstract: Erectile dysfunction (ED) is a prevalent condition affecting men’s sexual health, with
oxidative stress (OS) having recently been identified as a significant contributing causative factor.
This narrative review aims to elucidate the role of OS in the pathophysiology of ED, focusing on
impact, mechanisms, and potential therapeutic interventions. Key findings indicate that OS disrupts
endothelial function and nitric oxide (NO) signaling, crucial for erectile function. Various sources of
reactive oxygen species (ROS) and their detrimental effects on penile tissue are discussed, including
aging, diabetes mellitus, hypertension, hyperlipidemia, smoking, obesity, alcohol consumption,
psychological stress, hyperhomocysteinemia, chronic kidney disease, and sickle cell disease. Major
sources of ROS, such as NADPH oxidase, xanthine oxidase, uncoupled endothelial NO synthase
(eNOS), and mitochondrial electron transport, are identified. NO is scavenged by these ROS, leading
to endothelial dysfunction characterized by reduced NO availability, impaired vasodilation, increased
vascular tone, and inflammation. This ultimately results in ED due to decreased blood flow to penile
tissue and the inability to achieve or maintain an erection. Furthermore, ROS impact the transmission
of nitrergic neurotransmitters by causing the death of nitrergic neurons and reducing the signaling of
neuronal NO synthase (nNOS), exacerbating ED. Therapeutic approaches targeting OS, including
antioxidants and lifestyle modifications, show promise in ameliorating ED symptoms. The review
underscores the need for further research to develop effective treatments, emphasizing the interplay
between OS and vascular health in ED. Integrating pharmacological and non-pharmacological
strategies could enhance clinical outcomes for ED patients, advocating for OS management in ED
treatment protocols to improve patient quality of life.

Keywords: oxidative stress; erectile dysfunction; reactive oxygen species; nitric oxide signalling;
endothelial dysfunction; antioxidants

1. Introduction

Erectile dysfunction (ED) is a common condition that affects millions of men glob-
ally, profoundly influencing their quality of life and overall well-being [1]. Numerous
factors contribute to the pathophysiology of ED, including neurogenic, vascular, hormonal,
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and psychological elements, making it a complex condition [2]. Understanding these
mechanisms provides insights into ED etiology and potential therapies [3].

The mechanisms underlying penile erection are intricate and involve a delicate balance
between various physiological processes. Penile tumescence is primarily a neurovascular
event regulated by the central and peripheral nervous systems. It heavily relies on the
proper functioning of vascular and neural interactions. Nitric oxide (NO) plays a crucial
role in these processes by facilitating smooth muscle relaxation in the corpora cavernosa,
promoting vasodilation. This vasodilation is essential for the engorgement of the penis
with blood [4].

The literature extensively covers the physiological mechanisms of penile erection and
the impact of factors like endothelial dysfunction, reduced NO availability, and increased
oxidative stress on ED. Key areas well represented in the literature include the roles of
neurogenic, vasculogenic, hormonal, and psychological factors in ED pathophysiology, as
well as the impact of lifestyle factors such as smoking, obesity, and alcohol consumption.
Vasculogenic ED often stems from endothelial dysfunction, characterized by reduced NO
availability and increased oxidative stress, which impede normal blood flow to penile
tissue [5]. In contrast, neurogenic ED results from damage or dysfunction in the neural
pathways involved in erection, commonly due to conditions such as diabetes, spinal cord
injuries, or neurodegenerative diseases [6].

Oxidative stress, primarily due to the accumulation of reactive oxygen species (ROS),
impairs endothelial function, reduces NO bioavailability, and promotes vascular dysfunc-
tion, which conditions all amount to key mechanisms in ED onset and progression. Recent
studies have emphasized the significance of endogenous antioxidants in maintaining penile
health and mitigating oxidative stress. Antioxidants, including enzymes like superoxide
dismutase (SOD), catalase, and molecules such as glutathione, are vital in maintaining
NO bioavailability. Their effect is primarily achieved through shielding NO from being
scavenged by superoxide radicals [7].

Despite the existing body of literature, there are gaps and conflicting findings regard-
ing the role of oxidative stress and the effectiveness of antioxidant therapies in ED [8].
This article aims to fill these gaps by providing a comprehensive review of the current
literature on the role of oxidative stress in ED, its impact on endothelial and neural function,
and potential therapeutic interventions targeting oxidative stress. Innovative therapeutic
approaches, including high-dose antioxidants, hydrogen sulfide (H2S) and Angiotensin-
(1–7), which have shown promise preclinical models, are discussed [9,10]. By synthesizing
these findings, this review seeks to clarify the pathophysiological mechanisms of ED and
propose novel directions for future research and treatment development, highlighting the
groundbreaking nature of the literature search and findings.

2. Methods
2.1. Literature Search Strategy

The databases PubMed, Web of Science, Scopus, and Google Scholar were used to
conduct a literature search encompassing the period from January 2000 to May 2024.
The search was performed using specific keywords including “oxidative stress”, “erectile
dysfunction”, “reactive oxygen species”, “nitric oxide signaling”, “endothelial dysfunction”,
and “antioxidants”.

2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria

- Peer-reviewed articles published between 2000 and 2024.
- Studies focusing on the pathophysiology of erectile dysfunction.
- Research discussing the impact of oxidative stress on erectile function.
- Articles addressing potential treatments for erectile dysfunction related to oxida-

tive stress.
- Reviews, clinical trials, and meta-analyses related to oxidative stress and erectile dysfunction.
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2.2.2. Exclusion Criteria

- Non-English publications.
- Studies not focusing on the relationship between oxidative stress and erectile dysfunction.
- Articles lacking full-text access.
- Publications before 2000, unless they provide foundational knowledge.

2.3. Data Extraction and Synthesis

Three reviewers independently gathered data from each chosen study, including
information on study design, sample size, demographic characteristics, major results, and
conclusions. Any inconsistencies were addressed and resolved by reaching a consensus.
A comprehensive synthesis was performed on the results of each study to provide a
complete overview of the current understanding of oxidative stress and erectile dysfunction.
This synthesis includes information on prevalence rates, causes, clinical symptoms, and
prospective therapies.

2.4. Quality Assessment and Limitations

Each study included in the review was assessed for quality based on its design, sample
size, and relevance to the review objectives. Potential limitations of this review include
the presence of publication bias, scarcity of longitudinal data, and the use of small sample
sizes in some studies. Future research should focus on conducting prospective studies with
larger and more varied populations to better understand the progression and treatment of
erectile dysfunction associated with oxidative stress.

3. Mechanisms of Penile Erection and Erectile Dysfunction
3.1. Physiology of Penile Erection
3.1.1. Vascular and Neural Interactions

The erectile architecture of the penis consists of two chambers known as the corpora
cavernosa. These chambers are made up of interconnected, densely packed sinusoids that
span the length of the penis. They are encased by a semi-elastic membrane called the tunica
albuginea [11]. Penile erection is a complex neurovascular process involving the central
nervous system (CNS), peripheral nervous system, relaxation of corpora cavernosal smooth
muscles, and vasodilation of blood vessels [12]. The maintenance of the erect or flaccid
state is regulated by the relaxation or contraction of smooth muscle cells in the vicinity of
the corpora cavernosa [13].

The CNS, in reaction to sensory inputs and cognitive stimuli, triggers the production
of NO by neurons and endothelial cells surrounding the corpora cavernosa. Increased NO
causes smooth muscle relaxation and dilation of blood vessels. This allows arterial blood
flow into the penis to outpace the rate of venous outflow [14]. As a result, the obstructed
blood accumulates, causing physical enlargement of sinusoidal spaces, increased pressure
in the corpora cavernosa, and subsequently, tumescence of the penis [15]. The expanding
sinusoid vessels are constricted by the tunica albuginea, and their continuous swelling
compresses the walls of the draining venous structures. This further limits blood flow out of
the penis, resulting in final firmness and maintaining the erection [16]. Detumescence occurs
with reduced NO production, causing contraction of smooth muscle in the cavernosal
region. This decreases arterial blood flow to the sinusoids, restoring equilibrium [17].

3.1.2. The Crucial Role of Nitric Oxide (NO)

NO, a molecule crucial to erectile function, is produced by neuronal nitric oxide
synthase (nNOS, NOS1), endothelial nitric oxide synthase (eNOS, NOS3), and immunoacti-
vated macrophage-derived nitric oxide synthase (iNOS) [4,17]. Sensory reflexogenic and
psychogenic sexual stimulation activate nNOS, within nitrergic nerve fibers derived from
the major pelvic ganglia, which terminate in the penis [18]. The NO produced initiates the
vasodilatory process. As blood volume increases, eNOS located in the endothelial layer
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of penile blood vessels and sinusoids is stimulated, leading to the continuous release of
endothelial NO [18].

Following its synthesis, NO diffuses to adjacent smooth muscle cells in the penis
and blood vessels. Here, it stimulates the activation of soluble guanylate cyclase (sGC),
leading to the production of cyclic guanosine monophosphate (cGMP) [19]. The activation
of cGMP triggers a cascade of protein kinase G-I (PKG-I)-dependent reactions. These
reactions hyperpolarize and reduce calcium concentration in the cytosol of smooth muscle
cells, making the cavernosal sinuses more compliant and inducing vasodilation [20]. As a
result, blood flow to erectile tissue increases. The endothelium lining the sinusoid walls
detects this stretch, further activating endothelial NOS in a positive feedback loop. This
feedback is supported in part by the cyclic adenosine monophospate (cAMP) pathway in
the endothelium lining the cavernous sinusoids and nearby penile arteries [4]. This process
is illustrated in Figure 1, which shows the NO signaling pathway crucial for smooth muscle
relaxation and vasodilation in penile erection.
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Figure 1. Nitric oxide signaling pathway in penile erection. NO: nitric oxide, nNOS: neuronal
nitric oxide synthase, eNOS: endothelial nitric oxide synthase, iNOS: immunoactivated macrophage-
derived nitric oxide synthase, c-GMP: cyclic guanosine monophosphate, 5′ GMP: 5′-guanosine
monophosphate, GTP: guanosine triphosphate, PKG: protein kinase G, PDE5: phosphodiesterase
type 5, Ca2+: calcium ions.

The termination of penile erection is facilitated by the enzyme phosphodiesterase
type 5 (PDE5) which breaks down cGMP into inactive 5′-GMP. PDE5 inhibitors, such as
avanafil, sildenafil, tadalafil, and vardenafil, and blocks the action of PDE5, leading to
an increase in cGMP levels and thereby predisposing the system towards penile erection
(Figure 1) [13,21].

Moreover, NO regulates the generation of ROS and reactive nitrogen species (RNS)
by means of S-nitrosylation, a mechanism that chemically alters proteins, safeguarding
them from oxidative harm. This control aids in maintaining the redox equilibrium in penile
tissues. For example, NO may hinder the nicotinamide adenine dinucleotide phosphate
hydrogen (NADPH) oxidase complex, resulting in a decreased production of superoxide
anions and a reduction in the synthesis of peroxynitrite, which can be harmful to cells [22].
In conditions such as sickle cell disease (SCD), the diminished availability of NO leads
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to reduced expression of PDE5, disrupting the regulation of penile erection and causing
priapism. In such cases, treatments like haptoglobin therapy can increase NO availability
and restore PDE5 expression and lower oxidative stress, thereby preventing priapism [22].

3.1.3. Contractile Mechanisms in the Penis

The balance between contractile and relaxant factors in the penis determines the shift
between penile erection and detumescence. Contractile factors include norepinephrine,
endothelins, and angiotensins, while relaxant factors include NO, vasoactive intestinal
peptide (VIP), and prostanoids. This balance governs the degree of cavernosal smooth
muscle contraction and the status of the penis [23,24].

Penile smooth muscle contraction is regulated by mechanisms dependent on and
independent of calcium channel activity [25]. In the flaccid state, endothelial signals (mainly
prostaglandin and endothelin release) and direct sympathetic signaling (via norepinephrine
release from cavernous nerves) change ion channel activity, increasing cytosolic calcium
levels and causing tonic smooth muscle contraction [25]. Arousal induces NO release,
cGMP activation, and the PK1 cascade, which hyperpolarize smooth muscle cells and
reduce cytosolic calcium concentration. This reduction loosens the crossbridges between
actin and myosin, relaxing smooth muscle and inducing vasodilation [26].

When cytosolic calcium levels return to baseline, the calcium-independent pathway
becomes active. This pathway enhances calcium sensitivity without changing the amount
of calcium in the cytosol. It involves the activation of RhoA, which binds to Rho-kinase
(ROCK), leading to its activation. ROCK is crucial in regulating erectile function and
maintaining penile flaccidity [27,28].

Studies have shown that prostanoid receptors, particularly thromboxane (TP) recep-
tors, mediate the contraction of human trabecular smooth muscle and penile arteries,
highlighting their role in regulating penile smooth muscle tone [29,30]. Additionally, the
function of protein kinase C (PKC) is implicated in enhancing thromboxane receptor-
mediated responses as well as impairing endothelially mediated relaxation in the corpora
cavernosum, enhancing penile contractility [31].

3.2. Pathophysiology of Erectile Dysfunction

ED, as described by the Fourth International Consultation on Sexual Medicine, is the
consistent or recurring inability to achieve and sustain an erection adequate for a fulfilling
sexual experience [32]. ED is a common clinical problem worldwide, with an average
prevalence ranging from 14% to 48% [33,34]. By 2025, the global prevalence of ED is
estimated to exceed 300 million men [35]. ED pathophysiology is multifactorial, involving
vascular, as well as hormonal, neurological, and psychological components [2,36]. The
predominant molecular characteristics of ED are compromised production and function of
NO, as well as heightened oxidative stress [37].

3.2.1. Vascular-Related ED

ED often has a vascular component involving a decreased generation of vasorelaxant
messengers, increased vasoconstriction, and reduced vasodilatory response in smooth
muscle cells [38]. The primary contributing factor in vasculogenic ED is the decreased
availability of NO in the endothelium, coupled with oxidative stress [7]. Systemic endothe-
lial dysfunction can lead to reduced penile blood flow and subsequent erectile difficulties.
Various risk factors, including diabetes, aging, high cholesterol levels, high blood pres-
sure, high levels of homocysteine, lack of physical activity, sickle cell disease, smoking,
atherosclerosis, hypertension, and metabolic syndrome, and other factors which contribute
to endothelial dysfunction of vessels both inside and outside the penis, predispose indi-
viduals to the development of vasculogenic ED [39,40]. In vascular-related ED, increased
oxidative stress results in reduced endothelial function due to decreased NO availability
and heightened vasoconstriction.
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Endothelial dysfunction is often an initial phase of vascular damage that may progress
to more severe conditions like atherosclerosis in systemic vasculature. Clinically, this can
manifest in coronary, renal, cerebral, and peripheral artery disorders. Vasculogenic ED
is not only a covert indicator of cardiovascular and other systemic vascular illnesses but
also poses an independent risk of future cardiovascular events. The association between
vascular health and erectile function is well-established, with endothelial dysfunction being
a local manifestation of systemic vascular issues [37].

3.2.2. Neural-Related ED

Neurogenic ED arises from abnormalities in signal transfer between nerves that control
the smooth muscle responses in the penis. This condition can result from nerve damage
at any level of the nervous system, affecting both sensation and control. Conditions
contributing to centralized neurogenic ED include Alzheimer’s disease, Parkinson’s disease,
multiple sclerosis, stroke, and spinal cord injury. Meanwhile, peripheral causes may
be primarily attributed to surgeries for prostate, bladder, and colon cancer. Long-term
conditions such as diabetes can also damage neurons throughout the body, contributing to
the development of neurogenic ED [41–43].

The molecular basis for neurogenic ED is not yet completely elucidated; however, sev-
eral theories suggest potential causes. Key factors include impaired function of nNOS and
reduced availability of neuronal NO. In neural-related ED, increased oxidative stress leads
to dysfunctional neurotransmission and apoptosis of nitrergic nerves. Other contributing
factors include the decrease in blood flow to nerve tissues and deficiencies in neurotrophic
and growth factors [4,14].

4. Role of Oxidative Stress in Erectile Dysfunction
4.1. Oxidative Stress and ROS
4.1.1. Definition and Impact of OS and ROS

Oxidative stress is a condition characterized by an imbalance between the production
of ROS and the effectiveness of antioxidant systems in neutralizing these molecules [44].
ROS include free radicals like superoxide anions, hydroxyl, peroxyl, and hydroperoxyl
radicals, as well as nonradical species like hydrogen peroxide and other peroxides [45].
Under normal physiological conditions, ROS are produced in a controlled manner and act
as secondary messengers in various intracellular signaling pathways. However, excess ROS
produced under pathophysiological conditions damage proteins, lipids, and DNA. This
damage contributes to aging and various conditions, including cancers, vascular diseases,
neurological disorders, and ED [46,47].

Antioxidants play a crucial role in mitigating the effects of oxidative stress and can be
categorized into enzymatic and non-enzymatic types. Enzymatic antioxidants include SOD,
catalase, glutathione peroxidase (GPx), and glutathione reductase (GR). Non-enzymatic
antioxidants include vitamins A, C, and E, glutathione, uric acid, and polyphenols [48].
Enzymatic antioxidants are crucial in detoxifying ROS. Superoxide dismutase catalyzes
the dismutation of superoxide into oxygen and hydrogen peroxide, which is then broken
down by catalase and glutathione peroxidase [49]. Non-enzymatic antioxidants, such
as glutathione and vitamins A, C, and E, play pivotal roles in neutralizing free radicals
and protecting cellular components from oxidative damage [50]. This complex system
of antioxidants ensures the neutralization of excess ROS, thereby maintaining cellular
integrity and preventing oxidative damage.

4.1.2. Cellular Sources of ROS

Primary sources of ROS production within cells are the enzymes NADPH oxidase,
xanthine oxidase, the uncoupled form of eNOS, and the mitochondrial electron transport
chain. These sources can interact, with the activity of one enhancing the function of the
others [51–53].
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NADPH Oxidase (Nox) Family

The NADPH oxidases are a family of transmembrane enzymes crucial for generating
ROS within biological systems. These enzymes transfer electrons to molecular oxygen from
cytosolic NADPH, producing superoxide anions [54]. There are seven distinct NADPH
oxidase isoforms in mammalian cells. The prototypical NADPH oxidase contains cytosolic
components (p47phox, p67phox, and similar proteins) and membrane-bound components
(p22phox and gp91phox). Upon stimulation, these subunits come together to form the
activated enzyme complex [55,56].

NADPH oxidases can be activated by various stimuli, including angiotensin II, proin-
flammatory cytokines, vasoconstrictors, growth factors, hypoxia, mechanical cell stimuli,
and metabolic factors like hyperglycemia, advanced glycation end products (AGEs), ele-
vated free fatty acid levels, hyperinsulinemia, and even existing superoxide levels. ROS
generated by NADPH oxidases are essential for certain host defense mechanisms, such as
neutrophil function in eradicating pathogens [57]. However, excessive ROS production by
NADPH oxidases can cause oxidative stress, damaging healthy tissues and contributing
to inflammatory diseases like rheumatoid arthritis and inflammatory bowel diseases [58].
Additionally, these ROS are linked to aging and several disorders, including hyperten-
sion, diabetes mellitus, hypercholesterolemia, and SCD. Recent data indicate that NADPH
oxidase contributes to the pathophysiology of various ED conditions [59].

Xanthine Oxidase

Xanthine oxidase (XO) is an enzyme responsible for catalyzing the conversion of
hypoxanthine to xanthine, and subsequently to uric acid. During this process, it generates
ROS, including hydrogen peroxide and various superoxides [60,61]. This multifaceted
enzyme is involved in various physiological processes, including the generation of ROS
and the production of uric acid. While the molecular origin of XO is not fully understood,
elevated serum cholesterol, liver injury, general inflammation, and hypoxic conditions may
trigger heightened enzyme secretion by hepatic and other visceral mechanisms into the
bloodstream [62].

Once in general circulation, XO attaches to the surface of endothelial cells and triggers
superoxide generation. Endothelial cells, however, also produce endogenous XO [63].
Increased expression and activity of XO have been linked to endothelial dysfunction in ani-
mal model studies of SCD, hypertension, diabetes mellitus, and hypercholesterolemia [64].
Additionally, xanthine oxidase is linked to the regulation of nuclear factor of activated
T-cells 5 (NFAT5) target genes through ROS, regulating gene expression in different cellular
contexts [65].

The enzyme’s role in generating ROS within the vasculature has been found to be
integral to the endothelial component of the inflammatory process [66]. However, XO
involvement in cardiovascular disorders in humans remains a topic of debate. Similarly,
the precise role of ROS formed by xanthine oxidase in the penis is not well understood, and
investigation is necessary to ascertain whether it contributes to ED.

eNOS Uncoupling

Physiologically, NOS isoforms generate NO, which is vital for vasodilation, antioxida-
tion, and the maintenance of vascular homeostasis. However, in pathological situations,
NOS isoforms may transform into prooxidants, predisposing the body toward superox-
ide production rather than NO. This process, referred to as NOS uncoupling, describes a
transition in the activity of several NOS isoforms, including constitutive eNOS, nNOS, and
iNOS. NOS uncoupling results in reduced synthesis of NO and enhances the capability of
the enzyme to produce ROS [67].

eNOS uncoupling is particularly significant in the context of cardiovascular diseases,
where it leads to superoxide anion production instead of NO [68]. Several mechanisms
contribute to the uncoupling of eNOS, including deficiency of the cofactor tetrahydro-
biopterin (BH4), depletion of the substrate L-arginine, and accumulation of asymmetric
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dimethylarginine (ADMA), a competitive inhibitor of eNOS [69]. Additionally, the lack of
BH4, S-glutathionylation, as well as alterations in the eNOS dimer–monomer ratio have
been identified as key factors leading to eNOS uncoupling [70–72].

Oxidative stress, hypoxia, and reoxygenation all trigger xanthine oxidase-mediated su-
peroxide generation. This results in tetrahydrobiopterin depletion and S-glutathionylation,
ultimately leading to eNOS uncoupling [73]. Sub-optimal action of the complex regulatory
mechanisms governing the interplay between BH4 oxidation and glutathionylation of
eNOS cysteine residues may also induce eNOS uncoupling, highlighting the complex regu-
latory mechanisms involved in this process [74]. This dysregulation of eNOS uncoupling
has been implicated in various pathological conditions, including atherosclerosis, diabetes
mellitus, hypertension, ischemia–reperfusion injury, and heart failure [75].

Disrupted eNOS function is linked to endothelial dysfunction, highlighting the signifi-
cant impact eNOS uncoupling has on vascular health [76]. Specifically, eNOS uncoupling
has been linked to increased oxidative stress, inflammation, and vascular pathogenesis,
amounting to a key contributor to cardiovascular diseases [77]. Recent research has shown
that the uncoupling of eNOS in the penis also plays a major role in causing ED and regional
oxidative stress [78].

Mitochondrial Electron Transport

Mitochondria produce ROS as a byproduct of regular oxidative phosphorylation
and adenosine triphosphate (ATP) generation due to electron leakage [79]. This electron
transport chain (ETC), located in the inner mitochondrial membrane, involves the sequential
transfer of electrons through complexes I to IV, with molecules like ubiquinone mediating
electron transport and ATP synthesis [80]. The ETC is essential for generating the majority
of cellular ATP through oxidative phosphorylation. However, disruptions in electron flow
can lead to severe mitochondrial dysfunction and disease states [81]. Additionally, the
ETC regulates cellular oxygen availability and impacts the stabilization of proteins like
hypoxia-inducible factor-1α under hypoxic conditions [82,83].

Giacco and Brownlee conducted studies indicating that hyperglycemia-induced ox-
idative stress originating from mitochondria is the first step in the progression of diabetic
vascular problems [84]. However, due to the toxicity of mitochondrial inhibitors and the
absence of experimental animal models, our understanding of the contribution of exces-
sive mitochondrial ROS to in vivo disease is limited. Dysfunctional mitochondria may
produce insufficient ATP, high levels of ROS and proapoptotic factors, contributing to the
pathogenesis of various disorders, including neurodegenerative diseases [85].

The ETC is susceptible to damage during conditions such as ischemia and reperfusion,
where interruptions in mitochondrial respiration can exacerbate cardiac injury. Pharmaco-
logic inhibition of electron transport during early reperfusion reduces myocardial injury,
indicating the potential usefulness of modulating electron transport to safeguard cardiac
mitochondria [86]. The involvement of superoxide produced by mitochondria in erectile
dysfunction has not been extensively studied, suggesting a further avenue of research for
the pathophysiologic and therapeutic evaluation on ED.

4.2. Impact of Oxidative Stress on ED

Oxidative stress is linked to both vasculogenic as well as neurogenic ED, with the
former being more extensively studied. Superoxides produced by vascular sources within
the penis react with NO to create RNS like peroxynitrite, which causes oxidative DNA
damage and disrupts lipids and proteins [46]. This contributes to endothelial dysfunction
by impairing NO availability.

ROS produced in smooth muscle and endothelial cells can scavenge NO, influencing
the expression and activity of eNOS [47]. ROS also deplete cofactors necessary for NOS func-
tion, generate vasoconstrictors, reduce smooth muscle cell integrity, deactivate antioxidants,
and cause structural and functional alterations in blood vessels [11]. Elevated oxidative
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stress can contribute to atherosclerosis by oxidizing low-density lipoproteins (LDL), the
primary cholesterol transporter in the blood, and increasing superoxide production [87].

ROS impact the transmission of nitrergic neurotransmitters by causing the death of
nitrergic neurons and reducing the signaling of nNOS, leading to ED [6]. Figure 2 illustrates
the sources of ROS, including NADPH oxidase, xanthine oxidase, uncoupled eNOS, and
mitochondrial electron transport. NO is scavenged by these ROS, leading to endothelial
dysfunction characterized by reduced NO availability, impaired vasodilation, increased
vascular tone, and inflammation. This ultimately results in erectile dysfunction due to
decreased blood flow to penile tissue and the inability to achieve or maintain an erection.
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Outlined in the following sections are the established origins of ROS and the specific
areas in the penis where ROS exert their effects on vasculogenic and neurogenic ED related
to age and other medical conditions [88].

4.3. Influencing Factors and Their Molecular Mechanisms
4.3.1. Aging

Aging significantly contributes to age-associated ED through declining androgen
levels and increased OS, leading to endothelial dysfunction, smooth muscle cell apoptosis,
and inhibited NO production, all crucial factors in ED development [89]. Research shows
that endothelial and smooth muscle cells in the penis of elderly rats generate ROS [90–93].
Specific mechanisms stimulating ROS production in the aging penis remain largely un-
known, but evidence suggests that eNOS uncoupling plays a significant role. Sepiapterin,
a precursor in BH4 biosynthesis, can inhibit age-related ED and decrease OS by preventing
eNOS uncoupling [90]. Further research is needed to understand the exact mechanisms of
eNOS uncoupling and other ROS sources in age-related ED.

Disruptions in central and peripheral neurotransmission also contribute to reduced
corpora cavernosa relaxation with age. Central neuropathy involves excessive ROS genera-
tion and apoptosis in hypothalamic regions regulating penile erection, while peripheral
processes include degeneration of penile nitrergic nerve fibers and inhibition of nNOS [94].
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However, the exact origins of ROS and the mechanisms by which they damage nitrergic
neurotransmission in age-related ED remain unidentified.

4.3.2. Chronic Health Conditions
Diabetes Mellitus

Oxidative stress is a significant factor in diabetes mellitus-associated ED. Studies
show a high prevalence of ED in individuals with diabetes, with hyperglycemia and
hyperlipidemia enhancing ROS formation [95]. Penile tissue and blood samples from males
with diabetes-associated ED [96–99] and animals with type 1 diabetes (T1D) show elevated
superoxide levels [100–107]. OS hampers NO production by neurons and endothelial cells
in the penis, leading to increased apoptosis and fibrosis of cavernosal tissue [31,108–110]. It
also causes nerve injury through membrane lipid peroxidation [111]. DNA damage triggers
signaling molecules, resulting in increased production of proinflammatory chemicals
and suppression of eNOS activity [112,113]. Elevated expression of the NADPH oxidase
component p47phox in rats with T1D suggests its role in generating ROS [114].

Research on oxidative stress in type 2 diabetes (T2D) animal models is limited [115], but
studies reveal that rats and mice with T2D have reduced antioxidant levels in their penises,
suggesting increased oxidative stress [116]. Diabetes is also linked to gradual degeneration
of penile nitrergic neurons. In rats with T1D, an initial reversible drop in nNOS levels
is observed in nitrergic penile nerves. As diabetes progresses, advancing apoptosis of
the nitrergic nerves in the major pelvic ganglion (MPG) generally follows, attributed to
severe oxidative stress [117,118]. Various studies have explored using N-acetylcysteine,
an oxidative stress inhibitor, to improve diabetes-associated ED by inhibiting oxidative
stress [46].

Hypertension

Research has revealed a high prevalence of ED in individuals with hypertension,
with around 30% of male patients being affected [119]. Angiotensin II is a powerful
vasoconstrictor involved in the development and maintenance of high blood pressure.
When Angiotensin II binds to the angiotensin I (AT1) receptor in the arterial wall, it triggers
the activation of NADPH oxidase, leading to the formation of ROS [120]. Hypertensive
rats have elevated levels of lipid peroxidation in the corpora cavernosa [121–123]. The
protein levels of NADPH oxidase subunits p47phox [124] and gp91phox [123] are elevated
in the penis of hypertensive rats, alongside increased oxidative stress and ED. Additionally,
apocynin, a NADPH oxidase inhibitor, has been found to reduce oxidative stress while also
enhancing normal erectile function in hypertensive rat models [124]. ROS and NADPH
oxidase contribute to the pathophysiology of ED, suggesting that oxidative stress is directly
causal in hypertension-associated ED [125].

Hyperlipidemia

Hyperlipidemia significantly increases the risk of developing vasculogenic and neuro-
genic ED. Oxidative stress is a major contributing factor to the development of vasculogenic
ED associated with hyperlipidemia [126]. Tissue from the corpora cavernosa of animals
on a high-cholesterol diet showcases increased ROS production [127,128]. In the penile
tissue of mice, hypercholesterolemia leads to increased expression of the NADPH oxidase
subunits p47phox, p67phox, and gp91phox [129]. Meanwhile, in the same models, NADPH
oxidase inhibition using compounds such as diphenyleneiodonium chloride and apocynin
reduces the production of ROS and has a protective effect on erectile function [129]. In
penile tissues of animals with hypercholesterolemia, experiments indicate that eNOS un-
coupling [129,130] acts as a further ROS source but xanthine oxidase does not [131]. LDL
oxidation is a major factor in the development of ED in hyperlipidemia, with high levels of
oxidatively modified LDL (oxLDL) observed in penile tissue from patients [132] and animal
models [130]. In systematic vasculature, oxLDL increases the production of superoxides
by inducing the uncoupled form of eNOS, the enzymes NADPH oxidase and xanthine
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oxidase, and the mitochondrial electron transport chain; however, its local function in
penile vasculature has yet to be elucidated [133]. Experimental studies have indicated
therapeutic potential in the compound sodium tanshinone IIA sulfonate for attenuating
ED in rat models of hyperlipidemia [134]. This compound improves endothelial function,
reduces oxidative stress, and modulates lipid metabolism, contributing to its efficacy in
managing ED in the context of hyperlipidemia.

Chronic Kidney Disease (CKD)

CKD is significantly linked to ED, affecting up to 70% of men with CKD, especially
those on dialysis or who have had a kidney transplant [135]. CKD causes endothelial
dysfunction by reducing NO production and increasing oxidative stress, which impairs
vasodilation and blood flow to penile tissue [136]. Accumulation of uremic toxins in CKD
can lead to peripheral and autonomic neuropathy, affecting nerve signals required for erec-
tions [137]. CKD-related disruptions in the hypothalamic–pituitary–gonadal axis result in
decreased testosterone levels, reducing sexual desire and erectile capability [138]. Impaired
renal clearance may also elevate prolactin levels, further hindering gonadotropin-releasing
hormone (GnRH) function and exacerbating hypogonadism [139]. Furthermore, the chronic
nature of CKD, along with its symptoms and activity restrictions, can cause psychological
stress, depression, and anxiety, which all contribute to ED in and of themselves. The
interconnectedness of these factors clearly underscores the complexity of ED management
in CKD patients [140].

4.3.3. Lifestyle and Behavioral Factors
Smoking

Smoking cigarettes releases substantial quantities of chemical components, including
NO, ROS, peroxynitrite, and free radicals derived from organic molecules. On entering
systemic circulation, these components can subsequently stimulate the generation of ROS
in blood vessels [141]. More specifically, within the circulatory system, cigarette smoking
increases the production of superoxide mediated by uncoupled eNOS and NADPH oxidase
in smooth muscle as well as endothelial cells. Additionally, the release of proinflammatory
cytokines increases, while also stimulating RhoA/ROCK pathways that lead to muscular
contraction. Consequently, there is a decrease in the availability of nitric oxide, increase in
blood vessel constriction, and overall impairment of endothelial function. Both active and
passive cigarette smoking are considered risk factors for ED [142,143].

Emerging scientific research indicates that smoking-related ED is linked to a decrease
in the availability of NO caused by heightened oxidative stress. Long-term exposure
to cigarette smoke hampers the brain’s capacity to regulate penile erection and reduces
the availability of NO [144]. In cigarettes, nicotine has been identified as the component
primarily responsible for the vascular consequences resulting from persistent smoking [145].
Nicotine induces NADPH oxidase, increasing superoxide production in rabbit cavernosal
smooth muscle cells [146].

Obesity

Obesity is a major risk factor for ED, involving multiple physiological processes
including oxidative stress, inflammation, and endothelial dysfunction [147]. Obesity leads
to the release of pro-inflammatory substances like tumor necrosis factor alpha (TNF-α),
interleukin-6 (IL-6), and C-reactive protein (CRP), which induce the generation of ROS,
resulting in elevated oxidative stress [148]. Increased ROS is associated with decreased NO
levels, and impaired endothelial cell function. This endothelial dysfunction, characterized
specifically by reduced NO production, decreases blood vessel dilation and blood flow to
penile tissue, contributing to ED [149].

Obesity also alters hormone levels by converting androgens into estrogens, leading
to decreased testosterone. Low testosterone (hypogonadism) is common in obese males
and can diminish sexual desire and impair erectile function [150]. Additionally, obesity
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increases the risk of insulin resistance and T2DM, both of which predispose individuals
toward ED by exacerbating oxidative stress and endothelial dysfunction [88].

Alcohol Consumption

Excessive alcohol use is a significant contributor to ED through oxidative stress,
endothelial dysfunction, hormonal imbalances, and neurovascular changes [151]. Chronic
alcohol use stimulates ROS generation, leading to oxidative stress that harms endothelial
cells and overall vasoconstriction, resulting in restricted blood flow to the penis [152].
Furthermore, cytochrome P450 2E1 (CYP2E1) plays a crucial role in alcohol metabolism
and increases ROS production, contributing to endothelial dysfunction [153]. Prolonged
alcohol use is also linked to hormonal imbalances, including lower testosterone and higher
estrogen levels, resulting in hypogonadism and reduced sexual drive [154].

Additionally, oxidative stress from alcohol use may harm the nervous system, im-
pairing the neural mechanisms responsible for erection by damaging neurons involved in
NO release [155]. Multiple studies have demonstrated a clear correlation between alcohol
intake and ED. Most notably, a meta-analysis revealed a J-shaped correlation, indicating
that moderate alcohol use might be protective, but excessive consumption significantly
increases ED risk [156]. This effect may be substantiated by another study, which, hav-
ing found a high prevalence of ED in men with alcohol use disorder (AUD), identified
significant improvement after a month of abstinence [157].

Psychological Stress

Psychological stress activates the hypothalamic–pituitary–adrenal (HPA) axis, result-
ing in elevated cortisol levels, disrupting the balance of sex hormones essential for libido
and erectile function [158]. It also activates the sympathetic nervous system, releasing
catecholamines, chiefly adrenaline, which causes vasoconstriction, reducing penile blood
flow and complicating erection maintenance [159].

Chronic psychological stress is linked to increased production of ROS and inflamma-
tory cytokines, leading to endothelial dysfunction in time. This endothelial dysfunction, in
turn, impairs the release of NO, which is essential to the appropriate perfusion of penile
tissue with blood [160,161]. Furthermore, stress-related anxiety and depression negatively
impact mood, motivation, and overall mental well-being, leading to decreased libido and
performance anxiety, exacerbating ED [162].

4.3.4. Genetic Disorders
Hyperhomocysteinemia

ED is associated with elevated homocysteine levels in both human and animal stud-
ies [163]. It has been observed that in the rabbit corpora cavernosa, hyperhomocysteinemia
impairs relaxation by reducing the availability of endothelial NO and increasing the pro-
duction of superoxide [164,165]. Nevertheless, the specific processes by which hyperhomo-
cysteinemia triggers ROS generation and the specific ROS origins remain unidentified.

Sickle Cell Disease

SCD is characterized by the production of aberrant sickle hemoglobin (HbS), causing
red blood cells to become stiff, impairing blood circulation and reducing penile blood
supply [166]. This dysfunction is characterized by anomalies in the availability of NO,
heightened reactions to vasoconstrictors, and increased oxidative stress [167–169]. Pri-
apism, a prevalent vascular disorder associated with SCD, affects around 40% of male SCD
patients [170,171]. Research in mice with SCD and rats with priapism found increased
protein oxidation and lipid peroxidation in the corporal tissue [172].

To provide a comprehensive overview, Table 1 below summarizes the primary sources
of ROS and their mechanisms, associated conditions, and relevant clinical and experimental
models in the context of ED.
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Table 1. Summary of ROS-generating sources in the context of ED conditions.

ROS-Generating
Sources

Function and
Mechanism Conditions Clinical and

Experimental Models

NADPH oxidase

- Generates ROS by
transferring electrons from

NADPH to O2 [54]
- Comprises cytosolic

(p47phox, p67phox) and
membrane (p22phox,

gp91phox) components
[55,56]

Diabetes Mellitus,
Hypertension,

Cigarette Smoking,
Sickle Cell Disease,

Hyperhomocysteinemia,
Obesity,

Psychological Stress
[57]

- Diabetes (rats) [114,117,118],
- Hypertension (rats) [123,124],

- Smoking (mice) [142,143],
- Sickle Cell Disease (mice) [172],

- Hyperhomocysteinemia (rabbits)
[164,165],

- Psychological Stress (rats) [161],
- Obesity (human) [88]

eNOS uncoupling

- NOS isoforms (eNOS, nNOS,
iNOS) typically

produce NO
- Under pathological
conditions, produce

superoxide (uncoupling) [67]

Aging,
Diabetes Mellitus,
Hyperlipidemia,

Sickle Cell Disease,
Cigarette Smoking,

Chronic Kidney Disease
[75]

- Aging (rats) [90],
- Diabetes (mice) [112,113],

- Hyperlipidemia (mice) [129,130],
- SCD (mice) [172],

- Obesity (human) [88],
- Smoking (mice) [142,143],

- Chronic Kidney Disease (mice) [135]

Mitochondrial ROS

- Produced during oxidative
phosphorylation [79]

- ETC in inner mitochondrial
membrane transfers electrons
through complexes I–IV [80]

Diabetes Mellitus,
Hyperlipidemia

[84]

- Diabetes Mellitus (mice) [84]
- Hyperlipidemia (rats) [134]

Xanthine oxidase

- Converts hypoxanthine to
xanthine, then uric acid

- Generates ROS (hydrogen
peroxide, superoxides)

[60,61]

Diabetes Mellitus,
Hyperlipidemia,

Sickle Cell Disease
[64]

- Diabetes (rats) [64],
- Hyperlipidemia (rats) [134],

- Sickle Cell Disease (mice) [172]

ROS: reactive oxygen species, NADPH: nicotinamide adenine dinucleotide phosphate, eNOS: endothelial nitric
oxide synthase, iNOS: inducible nitric oxide synthase, nNOS: neuronal nitric oxide synthase, ETC: electron
transport chain.

5. Antioxidants and Therapeutic Strategies for Erectile Dysfunction
5.1. Endogenous Antioxidants in Penile Health

Endogenous antioxidants are essential for maintaining penile health and function
by reducing oxidative stress, a significant factor in the development of ED. Superoxide
dismutase (SOD) is crucial for dismutating superoxide radicals into hydrogen peroxide,
thereby protecting NO from being scavenged. Catalase then converts hydrogen peroxide
into water and oxygen, further reducing oxidative stress. Glutathione (GSH) acts as a
major antioxidant by directly neutralizing reactive oxygen species and regenerating other
antioxidants, which are crucial for preserving the bioavailability and functionality of NO
by protecting it from being scavenged by superoxide radicals [173].

Rat penile endothelial and smooth muscle cells have a reservoir of antioxidants,
including reduced glutathione, catalase, glutathione peroxidase, and SOD3 [174–176].
Cavernosal blood and tissue also contain antioxidants such as glutathione, vitamin C,
bilirubin, albumin, and uric acid [177]. However, studies have yielded conflicting findings
regarding levels of natural antioxidants in affected penile tissue. In some animal models of
ED, the concentration of reduced glutathione drops, while cytoplasmic SOD expression
increases. In contrast, extracellular levels of SOD protein, SOD activity, and RNA expression
remain constant [91,92].

In individuals with diabetes, penile tissue contains reduced levels of catalase mRNA,
while levels of glutathione vary, being either lowered or elevated [99,107,178]. Meanwhile,
in diabetic rat penises, mRNA expression of SOD2 is reduced, though the activity of SOD
remains constant [178]. Hypertensive rats further demonstrate reduced SOD activity in the
corpora cavernosa [121–123], whereas animals on a high-cholesterol diet exhibit enhanced
SOD activity as well as unaltered glutathione peroxidase and catalase activity [179]. Up to
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this point, however, there is a lack of reliable and clear evidence on the penile antioxidant
status as related to ED.

5.2. Therapeutic Strategies to Mitigate Penile Oxidative Stress
5.2.1. Role of Antioxidants in Penile Oxidative Stress Reduction

Antioxidants effectively counteract oxidative stress, protecting penile function [88,180].
High doses of vitamins C and E may reverse some of the adverse effects associated
with smoking, particularly regarding NO levels [181,182]. Antioxidants also help regress
Peyronie’s disease plaques and reduce penile fibrosis [183]. Long-term treatment with
Angiotensin-(1–7) has been found to reduce penile fibrosis by attenuating oxidative stress [184].
Hydrogen sulfide (H2S) supports penile function by scavenging ROS or stimulating antiox-
idant defenses [185].

The impact of antioxidants on ED has been extensively assessed in various animal
models. Introducing SOD by gene transfer in elderly mice decreased the production of
superoxide anions and restored normal erectile function [92,186]. Antioxidants such as SOD,
ascorbic acid, vitamin E, melatonin, alpha-lipoic acid, peroxynitrite decomposition catalyst,
and gamma-linolenic acid have been identified as attenuating autonomic neuropathy and
diabetic vasculopathy in the penis, thereby improving overall erectile function to various
extents [186–191]. SOD and catalase have been further found to mitigate superoxide
generation in the penis caused by hyperhomocysteinemia [164,165].

However, a further fundamental scientific and clinical investigation is necessary to
elucidate the size of the effect of antioxidant treatments for oxidative stress affecting the
penis, with the aim of establishing a solid scientific foundation for potential therapeutic
use [186]. Currently, antioxidant treatments are not considered suitable to treat ED. There
is growing awareness within the scientific community that interventions which scavenge
ROS in a non-specific manner do not necessarily reverse disease effectively. This has been
demonstrated in the case of ED and various cardiovascular pathologies [47].

Multiple randomized clinical studies have shown that long-term use of antioxidants,
such as vitamins E and C, does not consistently prevent cardiovascular events and may
even elevate the risk of heart failure in individuals with pre-existing vascular diseases [192].
This ineffectiveness may be due to the antioxidants being insufficiently available in the right
place at the right time, or due to their unintended disruption of physiological functions
controlled by ROS [193].

In conclusion, controlled and targeted ROS scavenging by antioxidant interventions
represents a critical avenue for therapeutic strategies aimed at mitigating penile oxidative
stress. Reducing oxidative stress potentially preserves penile function, prevents fibrosis,
and improves overall penile health. However, further research is needed to optimize the
delivery and efficacy of antioxidant treatments for ED and other oxidative stress-related
penile conditions.

5.2.2. Targeting NADPH Oxidase in Penile Tissue
PDE5 Inhibitors and Their Mechanisms

PDE5 inhibitors, such as sildenafil citrate, tadalafil, avanafil, and vardenafil hydrochlo-
ride, are widely recognized for their effectiveness in treating ED by enhancing penile
erection during sexual stimulation [194,195]. They accomplish this by inhibiting the break-
down of cGMP catalyzed by PDE5, thereby facilitating smooth muscle relaxation, enhancing
blood flow to the penis, and sustaining erection [196].

Recent studies have expanded the understanding of PDE5 inhibitor effects, revealing
their additional benefits in reducing ROS generation and inhibiting ROS-mediated upreg-
ulation of penile PDE5 [197]. Multiple animal studies indicate that PDE5 inhibitors can
significantly reduce oxidative stress in penile tissues. For example, sildenafil citrate has
been shown to decrease the formation of superoxide in mouse models of ED caused by
secondhand smoking exposure [198]. Similarly, sildenafil reduces oxidative stress in the
smooth muscle of rabbit penile blood vessels exposed to substances which induce ROS pro-
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duction such as TNF-α, nicotine, homocysteine–copper combination, and the thromboxane
A2 mimic [146,199,200]. This effect is believed to result from sildenafil’s ability to inhibit
NADPH oxidase by reducing the protein production of its component p47phox [200].

Furthermore, PDE5 inhibitors prevent the PDE5 upregulation following oxidative
stress in the penis, which would otherwise lead to ED via depletion of cGMP levels.
The development as well as the activity of PDE5 in penile blood vessels is enhanced by
oxidative stress [201]. In studies with animal models experiencing increased oxidative
stress, the use of sildenafil prevented PDE5 overexpression via NADPH oxidase inhibition.
Therefore, the therapeutic advantage of PDE5 inhibitors is partly achieved by inhibiting
PDE5 overexpression as well as reducing NADPH oxidase-derived oxidative stress, both
mechanisms impairing normal erection [146,199,202].

As regards other sildenafil derivatives, in rabbits with hypercholesterolemia, the
derivative sildenafil nitrate (NCX 911), which acts as a NO donor, has been shown to
suppress superoxide generation via NADPH oxidase more effectively than sildenafil cit-
rate [131]. This enhanced effect is attributed to the antioxidant properties of externally
introduced NO [203]. Additionally, ACS6, another sildenafil derivative which acts as a
hydrogen sulfide donor, prevents the production of superoxides in the erectile tissues of
rabbits with hypercholesterolemia, blocking the subunit p47phox of the enzyme NADPH
oxidase as well as activating pathways, including PKA and PKG [202]. Tadalafil also posi-
tively impacts the cardiovascular system by decreasing oxidative stress levels in individuals
with ED [204,205]. Studies suggest that combining PDE5 inhibitors with vasorelaxant drugs
effectively reduces oxidative stress and enhances the erection compared to PDE5 inhibitors
as monotherapy [202,206].

In summary, PDE5 inhibitors not only enhance NO signaling and cGMP levels but also
significantly contribute to the mitigation of penile oxidative stress [207]. This dual action
makes them an essential therapeutic step for improving erectile function by addressing
both the biochemical pathways and oxidative damage underlying ED.

Angiotensin-Converting Enzyme Inhibitors and AT1 Receptor Blockers

Angiotensin II contributes to endothelial dysfunction, causing oxidative stress by
NADPH oxidase activation (via the AT1-receptor). AT1-receptor blockers and ACE-
inhibitors reduce oxidative stress by inhibiting NADPH oxidase activity and enhancing
ROS removal [208]. Several clinical studies have indicated that inhibiting angiotensin II
signaling positively impacts endothelial function in hypertensive individuals and those
with metabolic syndrome, leading to decreased mortality, myocardial infarction, and
stroke [209,210].

Numerous studies have demonstrated that anti-hypertensive treatments using ACE
inhibitors and AT1 receptor blockers positively impact erectile function, both in male
individuals and animal models with ED [211]. AT1-receptor blockers like losartan and
irbesartan reduce ROS formation and enhance NO production in penile tissues of elderly
rats and mice with hypercholesterolemia, independently of their impact on blood pres-
sure [212,213]. This suggests that improved erectile function might be directly attributed to
suppressed ROS formation.

These agents also influence the activation of Cu/Zn-containing superoxide dismutase,
an enzyme involved in scavenging ROS in hypertensive conditions [214]. By affecting
the activity of ROS-scavenging enzymes, ACE-inhibitors and AT1-receptor blockers re-
duce oxidative stress within penile tissues, potentially improving erectile function and
overall penile health. Additionally, these agents benefit the cardiovascular and renal
systems, highlighting their role in mitigating oxidative damage and improving organ func-
tion [215,216]. They have shown promise in regressing left ventricular hypertrophy and
preventing aging-related endothelial dysfunction, supporting their potential in combating
oxidative stress-related complications.

The ability of ACE-inhibitors and AT1-receptor blockers to modulate the renin–
angiotensin system and affect various cellular responses, including ROS production, sug-
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gests a broader impact on oxidative stress beyond the cardiovascular system. By targeting
specific points in the renin–angiotensin system, these agents reduce the detrimental effects
of oxidative stress on penile tissues.

In conclusion, ACE-inhibitors and AT1-receptor blockers present valuable potential
therapeutic interventions for mitigating penile oxidative stress. By elucidating the mecha-
nisms whereby these agents influence organ function through oxidative stress, the approach
contributes to a more comprehensive understanding of the role of pharmacological inter-
ventions in preserving penile health, and improving erectile function can be achieved.

Statins and Their Effects on Penile Oxidative Stress

Statins evince beneficial effects beyond their cholesterol-reducing properties by im-
proving endothelial function through reducing oxidative stress and increased eNOS activity.
Statins achieve these benefits by upregulating antioxidants such as SOD3 and catalase by
preventing superoxide generation in endothelial cells [217–219]. This is accomplished by
suppressing NADPH oxidase and preventing eNOS uncoupling [219,220].

Research has demonstrated that certain statins, including rosuvastatin and ator-
vastatin, can improve ED associated with diabetes, metabolic syndrome, and hyperten-
sion [221]. These statins inhibit RhoA/ROCK signaling in penile tissue, thereby increasing
the efficacy of sildenafil. However, clinical studies examining the effects of statins in men
with ED yield inconsistent results. Some studies indicate that atorvastatin can enhance
erectile performance in men, both alone and in conjunction with sildenafil [222–224], while
other studies do not support this finding [225,226].

The precise mechanisms underlying the positive effects of statins on erectile function,
specifically, whether they are due to cholesterol reduction or other mechanisms, remain
unclear. In addition, the potential reduction in oxidative stress in the penis due to statin
therapy has yet to be extensively studied. More fundamental and clinical research is
needed in determining whether statins enhance erectile performance through mitigation of
oxidative stress and improved penile endothelial function. Furthermore, specifics of the
mechanisms behind these potential benefits require further investigation.

Figure 3 identifies therapeutic targets to reduce oxidative stress in penile tissue, high-
lighting therapeutic strategies to improve erectile function. Antioxidants neutralize ROS,
protecting NO from being scavenged. PDE5 inhibitors enhance NO signaling and reduce
NADPH oxidase activity. ACE inhibitors and AT1 blockers inhibit angiotensin II signal-
ing and enhance NO production. Statins increase eNOS activity, upregulate antioxidant
enzymes, and prevent superoxide generation.
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5.2.3. Targeting eNOS Uncoupling to Improve Penile Function

Tetrahydrobiopterin (BH4), a crucial cofactor for NOS, and its precursor sepiapterin,
are frequently used as inhibitors of oxidative stress and eNOS uncoupling [227]. They also
contribute to the prevention of cardiovascular diseases [227]. Several extensive clinical
studies are currently assessing the effectiveness of oral BH4 in treating systemic hyperten-
sion, peripheral arterial disease, coronary artery disease, pulmonary arterial hypertension,
and SCD. Additionally, researchers are testing numerous medications on their potential to
enhance BH4 bioavailability, which is considered a superior treatment approach for eNOS
coupling compared to direct BH4 supplementation [228].

Current therapeutic agents in cardiovascular medicine, including statins, erythropoi-
etin, folic acid, insulin, ascorbic acid, and angiotensin II signaling inhibitors, restore eNOS
function by promoting BH4 binding to NOS, increasing BH4 production, or protecting BH4
from oxidation [229]. However, data supporting improvement in erectile function through
specifically targeting eNOS uncoupling are insufficient.

Administering folic acid to diabetic rabbits has been demonstrated to reduce oxidative
stress within cavernosal tissue [103]. Recent research indicates that supplementation with
sepiapterin can prevent penile oxidative stress and maintain normal penile erection in
older rat models [90]. Further research is necessary to investigate the potential therapeutic
benefits of regulating eNOS uncoupling on penile erection in individuals with medical
conditions and ED.

5.2.4. Natural Antioxidant Beverages and Erectile Function Enhancement

Various beverages, including red wine, green tea, pomegranate, blueberry, cranberry,
and orange juice, are believed to be beneficial to erectile function in the context of ED by
contributing to effective ROS scavenging [230,231]. In animal models of arteriogenic ED,
pomegranate juice has demonstrated potential, reducing oxidative stress and enhancing
erectile function, although it does not fully restore normal performance [232]. The beneficial
effects of pomegranate may likely be attributed to its primary active components, most
characteristically polyphenol antioxidants [233].

Resveratrol, a natural polyphenol predominantly present in red wine and grapes, has also
demonstrated promise in animal models, restoring penile function in hypercholesterolemia-
or diabetes-associated ED [234]. eNOS activation and improved endothelial function
are the primary mechanisms to which the cardiovascular protective effects of resveratrol
are attributed [71]. However, additional scientific and clinical research is required to
comprehensively elucidate the specific mechanisms and effects of these commercially
available antioxidants on penile oxidative stress and erectile performance.

6. Future Directions in Erectile Dysfunction Research

Future research into ED ought to investigate several key sites to enhance disease
understanding and improve therapeutic approaches. One critical area involves the specific
mechanisms that regulate the formation of ROS in the penis. By studying these mechanisms,
researchers can gain valuable insights into the pathways responsible for oxidative stress-
induced erectile dysfunction, potentially leading to the development of targeted therapies
aimed at reducing oxidative damage and preserving erectile function [129].

Another promising direction for future research involves exploring the impact of
environmental factors, such as PM2.5 exposure (Particulate Matter 2.5 µm or smaller), on
oxidative stress and inflammatory responses in individuals with ED. Understanding how
these environmental variables contribute to ED could uncover new therapeutic targets and
strategies for managing the condition through environmental interventions [7].

The efficacy of antioxidants in reducing oxidative stress in ED is another area that
requires further investigation. By assessing the impact of dietary antioxidants and plant
extracts on arteriogenic ED, researchers could develop effective antioxidant-based treatment
strategies. This approach may offer significant benefits to patients by mitigating oxidative
stress and improving erectile function [231].
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Furthermore, a deeper exploration of the relationship between nitric oxide signalling,
oxidative stress, and endothelial dysfunction is crucial for a comprehensive understanding
of ED. Future research should focus on the regulation of soluble guanylate cyclase and
nitric oxide pathways, as this could lead to novel treatments that address the underlying
mechanisms of ED [235].

Additionally, studying markers of oxidative stress and the structural integrity of nerves
in chronic penile ischemia may provide insights into the neurodegenerative processes
underlying ED. Understanding the effects of oxidative stress on penile neuropathy could
reveal the underlying causes and lead to new treatment approaches that address these
neurodegenerative aspects [174].

Finally, future research should examine the correlation between psychological factors,
such as stress, depression, and cognitive interference, and oxidative stress in ED. By gaining
a comprehensive understanding of how psychological factors influence oxidative stress
levels, researchers can contribute to the adoption of a more holistic approach to managing
ED, integrating both physiological and psychological interventions [236].

7. Conclusions

This study underscores the significant role of oxidative stress in the development and
progression of ED, particularly through its impact on endothelial function and NO bioavail-
ability. Key findings highlight that OS leads to endothelial dysfunction, smooth muscle cell
apoptosis, and impaired NO production, which are crucial factors in the pathophysiology
of ED. The analysis of various conditions such as aging, diabetes mellitus, hypertension,
hyperlipidemia, chronic kidney disease, obesity, smoking, alcohol consumption, psycho-
logical stress, hyperhomocysteinemia, and sickle cell disease reveals a common pathway
of increased ROS production contributing to endothelial dysfunction and reduced NO
bioavailability.

Preclinical models demonstrate that antioxidants like glutathione, SOD, and catalase
are crucial in mitigating oxidative damage. Therapeutic interventions, including high
doses of vitamins E and C, hydrogen sulfide, and Angiotensin-(1–7), have shown promise
in improving erectile function by countering oxidative stress and preventing fibrosis.
However, the clinical application of antioxidant therapy faces challenges due to the non-
specific action of antioxidants and their limited availability at target sites. Current evidence
indicates that while antioxidant strategies have significant potential, their effectiveness in
reversing ED is restricted. Further research is necessary to optimize antioxidant therapy,
focusing on precise targeting of oxidative stress pathways without disrupting physiological
functions. Refinement of antioxidant treatments to ensure their proper administration and
delivery is crucial for developing robust therapeutic protocols.
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