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Abstract: Iron is crucial for the metabolism and growth of most prokaryotic cells. The ferric uptake
regulator (Fur) protein plays a central role in regulating iron homeostasis and metabolic processes in
bacteria. It ensures the proper utilization of iron and the maintenance of cellular functions in response
to environmental cues. Fur proteins are composed of an N-terminal DNA-binding domain (DBD)
and a C-terminal dimerization domain (DD), typically existing as dimers in solution. Fur proteins
have conserved metal-binding sites named S1, S2, and S3. Among them, site S2 serves as a regulatory
site, and metal binding at S2 results in conformational changes. Additionally, as a transcriptional
regulator, Fur specifically binds to a consensus DNA sequence called the Fur box. To elucidate the
structural and functional properties of Fur proteins, various structures of metal- or DNA-bound
Fur proteins or apo-Fur proteins have been determined. In this review, we focus on the structural
properties of Fur proteins according to their ligand-bound state and the drug development strategies
targeting Fur proteins. This information provides valuable insights for drug discovery.

Keywords: ferric uptake regulator; metal binding protein; DNA binding protein; drug discovery

1. Introduction

Iron, the fourth most abundant element in the solid outer crust, is crucial for the metabolism
and growth of most prokaryotic cells, except for Lactobacillus and Borrelia burgdorferi [1–4]. Mi-
croorganisms tend to have increased iron availability under anaerobic conditions but decreased
availability under aerobic conditions, as iron exists in the form of Fe3+, which is easily oxidized
and converted to insoluble hydroxides [5].

Iron availability is crucial because it affects various cellular processes, including
nitrogen fixation, energy metabolism, DNA synthesis, and oxygen transport, by providing
an enzymatic cofactor and participating in electron transfer reactions [6–8]. Iron deficiency
can cause stress and abnormal changes in cell metabolism and growth, while iron excess
can lead to toxicity due to the generation of reactive oxygen species via the Fenton reaction
and the production of hydroxyl free radicals through the Haber-Weiss process in cellular
metabolism [9]. Therefore, microorganisms have evolved complex mechanisms to regulate
iron levels to meet metabolic needs while minimizing the risk of toxicity. Among these
mechanisms, the ferric uptake regulator (Fur) is known to be the most important regulator
of iron levels [10,11].

Fur is a regulator found in most prokaryotes that mainly regulates iron response genes
and is involved in various aspects of prokaryotic metabolism [12]. The term “Fur” was
first used to name the outer membrane proteins FhuA, FecA, Cir, 76K, and 83K produced
in mutant strains by studying the genes related to the iron uptake system according to
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iron concentration in anaerobic conditions in Escherichia coli [13]. Additional studies have
indicated that several divalent metal ions can bind to the Fur protein similarly to iron,
thereby regulating the operon. This confirms the existence of several metalloregulators
in addition to Fur [14]. Therefore, the group of metalloregulators is referred to as the Fur
family, which can be classified into three main types based on their primary response:
metal availability, peroxide stress, and heme availability [15]. This review will focus on the
metal-binding and structural properties, functions, and applications in drug discovery of
Fur proteins among Fur family proteins.

This review aims not only to introduce the regulatory mechanism of Fur but also to
describe the structural conformational changes induced by metal binding. This analysis is
crucial for future targeted drug discovery involving the Fur protein and provides a new
perspective absent from previous reviews. While other review articles are available, they
typically focus on reporting phenomena and introducing related proteins. Even when
structural analysis is included, it is limited to fragmented descriptions of static states. In
contrast, this review emphasizes the structural differences based on ligand-binding states.
This specific focus on the structural properties of Fur proteins offers valuable insights for
drug discovery targeting the Fur protein.

2. The Roles of Fur

The classic role of Fur is generally known as a repressor. Apo Fur exists as a dimer in
solution. When iron is abundant, the Fur protein binds to Fe2+, causing a conformational
change. When a metal binds to the regulatory site, it causes the DBD to rotate relative
to the DD, increasing the space between the two DBDs, thereby allowing DNA to be
accommodated without steric hindrance [16,17]. The preformed dimers inhibit transcription
by binding to target promoters called Fur binding sites (Fur boxes) in their dimer state.
Conversely, when iron is deficient, Fur releases the bound Fe2+ and dissociates from the
target promoter, allowing the site to initiate transcription by binding RNA polymerase [18].

In addition to the classical role of Fe-Fur repression described above, various models
describe Fur acting as Fe-Fur activation, apo-Fur repression, and apo-Fur activation [19]
(Figure 1). Fur functions as a repressor or activator depending on whether it is bound to Fe
under iron-rich conditions (Fe-Fur) or not bound to Fe under iron-deficient conditions (apo-
Fur). The difference between repression and activation lies in that repression prevents the
binding of RNA polymerase to Fur boxes near the transcription start site, while activation
facilitates binding [20].

In summary, the role of Fur as a repressor or activator is closely linked to the position
of the Fur box relative to the RNA polymerase binding site. Additionally, Fur’s regulatory
functions are further modulated by interactions with sRNAs, nucleoid-associated proteins,
co-repressors, or co-activators, as well as other regulatory mechanisms such as allosteric
regulation and feedback loops [18–20].

Each of the four models regulates different genes. For example, Helicobacter pylori Fur
utilizes all four models mentioned earlier [21]. Firstly, Fe-Fur represses the transcription
of iron uptake genes such as frpB by binding to promoters when iron is abundant [22].
Secondly, Fe-Fur has been found to activate the expression of oorDABC [23], nifS [24], and
cagA [25] under iron-rich conditions. Thirdly, apo-Fur inhibits the synthesis of prokaryotic
ferritin (Pfr), an iron storage protein, when iron concentration is low [26], and superoxide
dismutase (SodB), which converts toxic superoxide radicals into oxygen and hydrogen
peroxide, is expressed in iron-rich conditions but not in iron-limited conditions due to
apo-Fur repression [27]. Fourthly, when iron concentration is low, apo-Fur activation causes
mutations in the iron-binding site of Fur, leading to the activation of Fur transcription by
binding to the promoter (Pfur) as it oligomerizes regardless of iron presence [28].
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Figure 1. Iron-dependent transcription regulation by Fur. The concentration of Fe2+ affects the Fe-
bound state of the Fur protein, which exists as Fe-Fur bound to the S2 site at high Fe2+ concentrations 
and as apo-Fur with Fe2+ removed from S2 at low Fe2+ concentrations. In H. pylori, Fur proteins can 
act in four ways: apo-Fur activation, apo-Fur repression, Fe-Fur (holo-Fur) activation, and Fe-Fur 

Figure 1. Iron-dependent transcription regulation by Fur. The concentration of Fe2+ affects the Fe-
bound state of the Fur protein, which exists as Fe-Fur bound to the S2 site at high Fe2+ concentrations
and as apo-Fur with Fe2+ removed from S2 at low Fe2+ concentrations. In H. pylori, Fur proteins can
act in four ways: apo-Fur activation, apo-Fur repression, Fe-Fur (holo-Fur) activation, and Fe-Fur
repression. Apo-Fur can repress the transcription of genes such as prf and sodB or be involved in the
transcriptional activation of fur. Fe-Fur can repress the transcription of iron uptake-related genes
such as frpB or activate the transcription of genes such as oorDABC, nifS, and cagA.

In addition to its classic role as a transcription regulator, Fur exhibits significant
variability in its regulatory functions across different bacterial species. For instance, in
Salmonella, Fur regulates the Salmonella pathogenicity island (SPI)-1, facilitating bacterial
invasion, highlighting its role in virulence regulation [29]. In Edwardsiella piscicida, Fur
controls siderophore production and expression of other critical molecules, demonstrating
its involvement in iron acquisition and metabolic regulation [30]. Furthermore, in E. coli, Fur
influences the expression of 81 genes across 42 transcription units, linking iron homeostasis
with DNA synthesis, energy metabolism, and biofilm development, thus showcasing its
extensive regulatory network and adaptive responses to iron availability [31]. These diverse
roles underscore the importance of Fur in coordinating cellular processes related to iron
metabolism and stress responses, providing valuable insights for drug discovery targeting
Fur proteins across various bacterial pathogens.

3. Structural Characteristics of Fur

An analysis of PDB depositions as of 2024 reveals approximately 40 Fur proteins and
paralogs, including Mur, Nur, PerR, and Zur. Among these, thirteen Fur protein-related
structures from bacteria such as Campylobacter jejuni [32,33], E. coli [34], Francisella tularen-
sis [35], H. pylori [5], Magnetospirillum gryphiswaldense [36], Pseudomonas aeruginosa [37], and
Vibrio cholerae [38] have been identified through crystallographic analysis. These structures
reveal Fur proteins as dimers or tetramers, each with three putative metal-binding sites per
monomer (Table 1). Most structures are metal-bound, some are metal-free, and others are
DNA-bound [12].

Fur proteins are typically composed of two distinct domains: an N-terminal DBD and a
C-terminal DD, linked by a hinge loop [39,40] (Figure 2). All determined three-dimensional
structures of Fur proteins contain these two domains. The DBD includes a helix-turn-helix
motif and consists of four consecutive α-helices followed by two β-strands (α1-α2-α3-α4-
β1-β2), while the DD comprises a mixed α/β domain with α5 situated between β4 and β5
(β3-β4-α5-β5-α6). Dimerization of Fur occurs primarily through an antiparallel β-sheet
involving α5 and β5, resulting in a V-shaped dimer.
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Table 1. Structural information of Fur proteins.

Organisms PDB ID Metals per Monomer
Metal Binding Site

Bound DNA References
S1 S2 S3

C. jejuni
4ETS 2 Zn2+ Zn2+ Zn2+ [32]

6D57 Zn2+ Zn2+ [33]

E. coli 2FU4 [34]

F. tularensis
5NHK Fe2+, Zn2+ Zn2+ Fe2+

[35]
5NBC Mn2+, Zn2+ Zn2+ Mn2+

H. pylori 2XIG 3 Zn2+ Zn2+ Zn2+ Zn2+ [5]

M. gryphiswaldense

4RAY -

[36]
4RAZ 2 Mn2+ Mn2+ Mn2+

4RB3 2 Mn2+ Mn2+ Mn2+ feoAB1 operator

4RB1 2 Mn2+ Mn2+ Mn2+ Fur box

P. aeruginosa 1MZB 2 Zn2+ Zn2+ Zn2+ [37]

V. cholerae 2W57 2 Zn2+ Zn2+ Zn2+ [38]
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of purified and structurally determined Fur proteins are typically occupied by Zn2+ or 
other metal ions, despite Fur being a ferric uptake regulator responsive to iron. “Iron-
bound” Fur proteins have rarely been isolated from most bacteria. It is important to note 
that there has been no direct in vivo evidence of iron binding in Fur proteins in any bac-
teria. For instance, the iron-bound structure of F. tularensis Fur (PDB ID: 5NHK) has only 
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Figure 2. Overall structure of Fur with three metal-binding sites. The structure of H. pylori Fur (PDB
ID: 2XIG) was employed. Fur proteins typically exist as dimers, and the Fur protein monomer is
divided into two domains: the N-terminal DBD, shown in green, and the C-terminal DD, shown in
blue. The three metals (Zn2+ in this structure) present at the S1, S2, and S3 sites are shown in grey,
red, and yellow, respectively. The detailed interactions between the metal and ligands at each site are
presented in an enlarged view.

Since the initial observation of P. aeruginosa Fur, most three-dimensional structures
of Fur proteins have been found in metal-bound forms. The first metal-free structure was
identified in M. gryphiswaldense Fur (PDB ID: 4RAY) [36]. Notably, the metal-binding sites
of purified and structurally determined Fur proteins are typically occupied by Zn2+ or
other metal ions, despite Fur being a ferric uptake regulator responsive to iron. “Iron-
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bound” Fur proteins have rarely been isolated from most bacteria. It is important to
note that there has been no direct in vivo evidence of iron binding in Fur proteins in any
bacteria. For instance, the iron-bound structure of F. tularensis Fur (PDB ID: 5NHK) has
only been observed through in vitro reconstitution with iron, not in vivo [35]. The lack
of direct in vivo evidence of iron binding in Fur proteins might be due to the transient
nature of metal binding and the dynamic changes in intracellular metal concentrations.
Given that the intracellular iron level is regulated by Fur, it is challenging to elevate the
intracellular free iron concentration in bacteria without deleting Fur [41]. Additionally,
the metal-binding study of E. coli Fur reported the dissociation constants ranging from
0.14 nM to 24 µM, with the order of Zn2+ > Co2+ > Fe2+ > Mn2+ [42]. Another study on the
binding of E. coli Fur to Mn2+ or Fe2+ revealed the dissociation constants of 1.15 µM and
1.25 µM, respectively [43]. The relatively weak binding affinity of E. coli Fur to Fe2+ might
also contribute to the absence of the iron-bound Fur in vivo [44,45].

4. Metal Binding Sites of Fur and Its Roles

The initial Fur structure identified was a two-metal-bound structure from P. aeruginosa [37],
and most subsequent structures were also two-metal-bound forms. The first structure
identified with three metals bound was from H. pylori Fur [5]. In addition to H. pylori,
other paralogs of Fur family proteins, which exhibit three metal-binding sites, include
Streptomyces coelicolor Zur [46] and Mycobacterium tuberculosis Zur (FurB) [47]. These metal-
binding sites are labeled S1, S2, and S3, and the sites are highly conserved in sequence, as
shown in Figure 3.
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Figure 3. Sequence alignment of Fur proteins. The secondary structures are indicated at the top
of the alignment. The highly conserved residues are highlighted in red boxes. The metal-binding
ligands of sites S1, S2, and S3 are indicated by grey, red, and yellow boxes, respectively, below the
residues. Multiple sequence alignment and visualization were conducted using Clustal Omega [48]
and ESPript 3.0 [49], respectively.

Site S1 is coordinated by four sulfur atoms from two pairs of cysteines in CX2C motifs.
It connects the short C-terminal helix α5 to the β-sheet (β3-β4-β5) of the dimerization do-
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main (Figures 2 and 3). Site S1 is known to be of significant importance for maintaining the
structural integrity of the protein and dimerization in Fur proteins. In E. coli, reconstitution
of the dimer from the Fur monomer requires the reduction of the Cys92-Cys95 disulfide
bridges and coordination of Zn2+ [50]. Among the Fur structures, only those of C. jejuni,
F. tularensis, and H. pylori Fur proteins have Zn2+ bound to site S1. It can be concluded that
no metal is present in site S1 of M. gryphiswaldense and P. aeruginosa Fur proteins, due to the
absence of the two Cys residues in the C-terminal CX2C motif.

Site S2 is a nitrogen/oxygen-rich site with ligands such as His on the loop between
α2 and α3 and Glu on β2, two His on β3, and Glu on β4. Site S2 connects the DBD, which
provides two ligands (His and Glu) (Figures 2 and 3), and the DD, which provides two to
three ligands (two His and Glu). The following bacteria have been shown to possess the
site S2-bound metal: F. tularensis, H. pylori, M. gryphiswaldense, P. aeruginosa, and V. cholerae
(Table 1). In contrast to site S1, which demonstrated the ability to bind solely Zn2+, site S2
exhibited the property to bind Fe2+ or Mn2+ besides Zn2+, depending on the organisms. The
conserved residues His and Glu, which are involved as ligands for the metal ion, exhibit
different coordination properties depending on the bacterial species. This location is crucial
for maintaining the overall structure of the protein. In the case of P. aeruginosa Fur, the
absence of zinc binding to this site may result in the partial unfolding or aggregation of the
protein, which could consequently impair its function [37].

The significance of the observed variations in geometry at site S2 is crucial for regulat-
ing the function of Fur proteins across diverse bacteria. For instance, while in some bacteria
site S2 binds exclusively to zinc; in others, it can also bind to different metals, such as iron
or manganese. This allows Fur proteins to adapt to varying metal ion concentrations in the
bacterial environment, thereby regulating cellular iron levels. The reason for this variation
in metal binding is believed to be related to the specific structural environment in which
each metal ion exists most securely. Thus, the interaction of Fur proteins with specific metal
ions can vary depending on how these ions bind to the S2 site [5,37].

Site S2 is the iron-sensing site and serves as a regulatory site, responsible for triggering
the conformational change required to activate the Fur protein, enabling it to bind specifi-
cally to DNA sequences [5,11]. The overlay of the identified Fur structures reveals a high
degree of structural overlap. However, the structures lacking metal in the site S2 do not
overlap with the structure mentioned above.

The structures of Fur proteins from C. jejuni, H. pylori, M. gryphiswaldense, P. aeruginosa,
and V. cholerae exhibited a metal-binding site S3. Site S3 is located towards the DD of
Fur proteins, between the β3, β4, and β5 strands and helix α5 (Figures 2 and 3). The
residues His and Asp on β3, Glu on α5, and His on β5 are typically involved in metal
ion coordination. In this site, it was found that Zn2+ was bound to the Fur proteins, with
the exception of M. gryphiswaldense Fur, which was found to be bound to Mn2+. The
coordination of metal ions at site S3 also varies, with the coordination geometry being
either tetrahedral (H. pylori and V. cholerae Fur) or octahedral (C. jejuni, M. gryphiswaldense,
and P. aeruginosa Fur). Although metal bound in site S3 is not essential for DNA binding,
metal binding at this site significantly enhances the affinity for DNA [5].

Recent studies have demonstrated that Fur proteins can bind to [2Fe-2S] clusters via
the conserved Cys93 and Cys96 (corresponding to Cys102 and Cys105 in the case of H. pylori
Fur) when the intracellular free iron content is elevated. The following order of binding
affinity for the [2Fe-2S] clusters was observed: H. influenzae Fur, E. coli Fur, V. cholerae Fur,
and H. pylori Fur. M. gryphiswaldense Fur, which lacks residues Cys93 and Cys96, is unable
to form a complex with [2Fe-2S] clusters [51]. The binding of Fur to the [2Fe-2S] cluster
was found to be unstable, with iron being rapidly released upon reduction. This indicates
that Fur binds reversibly to the [2Fe-2S] cluster, contingent on the concentration of free
iron within the bacterial cell [51]. Further experiments utilizing E. coli and H. influenzae
Fur constructs have demonstrated that the C-terminal domain of Fur binds a [2Fe-2S]
cluster [52]. Typically, [2Fe-2S] clusters are involved in the active form of the Fur protein,
and their binding is regulated by intracellular iron levels. Therefore, the association with
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[2Fe-2S] clusters is expected to play a crucial role in Fur’s function and intracellular iron
level regulation. Moreover, the binding of [2Fe-2S] clusters generally regulate Fur’s DNA
binding ability, which is also associated with intracellular iron levels. Thus, it is anticipated
that the ability of cluster-bound Fur to bind to DNA will vary depending on intracellular
iron levels and other conditions.

Under conditions of iron hyperaccumulation, holo-Fur binds to the repressor site to
inhibit further iron uptake. However, the binding affinity of Fur with Zn2+ at the S1 site is
nearly 50 to 100 times stronger than that of Fur binding to repressor sites [45]. This disparity
is cautiously thought to overcome the affinity difference due to the constant remodeling of
the protein at the sensory site, potentially creating an artifact of the condition.

5. Structural Transition of Fur According to Its Metal Binding State and DNA Binding

Fur proteins are generally dimers in solution. However, Fur proteins can exist in a
dynamic oligomeric state that varies depending on factors such as metal binding, DNA inter-
actions, and protein-protein interactions. Some Fur proteins, such as those from P. aeruginosa,
F. tularensis, and Legionella pneumophila, can form stable tetramers in solution [53,54]. Tetramer
dissociation may be required to generate dimers capable of binding DNA [55]. From a struc-
tural perspective, while sometimes crystal packing can make the dimer of dimer form appear
to exist in solution, its physiological significance may be ambiguous.

Fur proteins bind to specific DNA sequences known as the “Fur box” or “Fur-binding
sites.” The general architecture of Fur boxes is conserved across bacteria, enabling Fur
proteins to recognize and bind to these regulatory regions to control gene expression
related to metal homeostasis and other cellular processes [56]. In E. coli, the Fur box is
a 19 base pair (bp) consensus palindromic sequence (5′-GATAATGATAATCATTATC-3′)
overlapping the -35 and -10 sites at the promoters of Fur-repressed genes [56–58]. It was
proposed that the 19 bp inverted repeat consists of three GATAAT hexamers in a head-to-
tail (6-6-1-6) orientation [59]. However, subsequent studies utilizing Bacillus subtilis Fur
have demonstrated that the sequence can be viewed as two overlapping 15 base pair (7-1-7)
inverted repeats [60].

When bound to DNA, the complex involving Fur proteins can consist of a single
dimer, a dimer-of-dimers, or even an extended array of bound proteins. This DNA-bound
complex is essential for Fur to exert its transcriptional regulatory functions by interacting
with specific DNA sequences. In the case of the M. gryphiswaldense Fur-DNA complex,
structures were determined in two forms of Fur [36] (Figure 4). One form is a dimer of Fur
bound to the Fe2+ transporter protein feoAB1 operator, which contains the 7-1-7 consensus
site. The other is two dimers of Fur bound to the E. coli (or P. aeruginosa) Fur box, which has
two overlapping 7-1-7 consensus sites.

DNase I foot printing experiments highlight the different regulatory functions of H. pylori
Fur in its dimeric and tetrameric (a dimer-of-dimer) forms. Under iron-deficient conditions,
apo-Fur predominantly exists as a dimer, binds to a Fur operator named fOPII, but fails to
activate. Under iron-sufficient conditions, Fur mainly exists as dimers with some tetramers,
allowing Fur tetramers to bind to fOPII and induce activation. In conditions of excess iron,
Fur predominantly forms tetramers, which bind to fOPIII and induce repression [61]. These
different oligomeric states play a crucial role in the regulatory functions of Fur proteins in
controlling metal homeostasis and gene expression in bacterial cells.

The Fur proteins exhibited conformational changes in accordance with the binding
of metal ions (Figure 4). M. gryphiswaldense Fur underwent conformational changes of
N-terminal DBDs and hinges upon the binding of two Mn2+ ions to sites S2 and S3. This
binding resulted in the dimeric DD holding the DBD in a state that is optimal for binding
the target DNA. Upon DNA binding, there is no significant structural rearrangement
compared to metal-bound Fur [36].
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Figure 4. Structural differences according to the ligand binding state. In M. gryphiswaldense Fur, a
comparison of the apo- and holo-Fur structures reveals that the dimer in holo-Fur is more symmetrical.
Metal binding to site S2 of Fur causes a conformational change in the DBD, facilitating DNA binding.
Different conformations of the Fur protein can be adopted for DNA binding. The M. gryphiswaldense
Fur protein was observed to bind to the feoAB1 operator with the 7-1-7 consensus site as a single
dimer and to the Fur box, which contains two overlapping 7-1-7 consensus sequences, as two dimers.

With regard to C. jejuni Fur, two kinds of metal ion-bound structures were identified
in the dimeric state. One of the identified structures involves the binding of two metal ions
per Fur monomer to the sites S1 and S3 [32], while the other involves the binding of a single
metal ion per Fur monomer to the S1 site [33]. Although additional binding of metal to site
S3 did not result in significant structural alterations, it was demonstrated that the DBD can
undergo asymmetric reorganization when the S3 site lacks metalation.

6. Fur Proteins Targeted Drug Discovery

Fur proteins are transcriptional regulators of genes involved in iron homeostasis,
which is crucial for bacterial survival during infection [62]. Given that Fur regulates the
production and uptake of siderophores, which chelate iron, Fur could be considered a ther-
apeutic target, especially in conjunction with strategies to disrupt siderophore action [63].
Fur proteins have demonstrated various roles [20], including those related to virulence
and colonization [64,65], quorum sensing [66], type III secretion [67], resistance to oxida-
tive stress [68], and pH homeostasis [69]. Inactivation of the fur gene in various bacterial
pathogens has been shown to decrease virulence in animal infection models [64,65,68,70,71].
One of the novel strategies for developing treatments for infectious diseases is the modu-
lation of bacterial virulence. Consequently, targeting Fur, which is absent in eukaryotes,
represents a novel approach to combating bacterial infections.

Several studies have focused on developing antibacterial agents targeting Fur. Specifi-
cally, anti-Fur peptide aptamers have been employed to target E. coli Fur. Using a yeast
two-hybrid assay, a 20-million peptide library was screened to discover E. coli Fur inhibitors.
As a result, four peptide aptamers, denoted F1 to F4, were selected for interacting with
E. coli Fur [72]. To reduce the size of the aptamers, 13 amino acid-long linear peptides pF1
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to pF4, corresponding to the variable loops of peptide aptamers F1 to F4, were investigated.
Cissé et al. utilized the first anti-Fur linear peptide, pF1, and investigated the interaction
between pF1 variations and E. coli in silico and in vitro experiments [73]. A more recent
study by Mathieu et al. reported the inhibitory properties of pF1 to pF4, which prevent
the binding of DNA to Fur [74]. In particular, pF2 showed a submicromolar dissociation
constant (≤0.49 ± 0.10 µM), indicating its superior inhibitory capacity with E. coli Fur
compared to pF1. The model structure of anti-Fur peptide inhibitors with the E. coli Fur
complex obtained by docking exhibited the peptide inhibitors aligned through the valley
of the V-shaped FUR dimer. Tyr56, Arg70, and Lys77 of E. coli Fur, conserved through
homologs, were important in the DNA-binding structure of homologs (P. aeruginosa Fur-Fur
box DNA, E. coli Fur-33mer DNA, M. gryphiswaldense Fur-feoAB1 DNA). In the docking
model of the peptide inhibitor of E. coli Fur, these residues were shown to be involved.

To enhance the activity and cell permeability of peptide inhibitors, methods such as the
α-helix stapling technique can be utilized to alter the α-helical content of linear peptides [75].
While this may not be applicable in all cases, optimization through stapling modifications
has been reported to dramatically reduce minimum inhibitory concentration values, among
other efficient applications [76,77]. Moreover, to optimize the interaction between Fur and
potential inhibitors, employing thermodynamic profiling can yield improved results [78].
The thermodynamics of binding are influenced by multiple factors, including hydrogen
bonding, hydrophobic interactions, desolvation, residual mobility, dynamics, and the local
water structure. By utilizing thermodynamic profiling, we can consider these various
elements to optimize a drug candidate to have desirable physicochemical properties.

Targeting Fur proteins in antibacterial drug discovery could involve exploring Fur
homologs across species and designing advanced and selective Fur inhibitors using exist-
ing structures and computational techniques, including modeling and virtual screening.
Additionally, evaluating the identified Fur inhibitors in combination therapies would be
considered. These efforts could lead to innovative treatments and contribute significantly
to addressing antibiotic resistance.

7. Conclusions

The Fur proteins serve as central regulators of iron homeostasis and metabolic pro-
cesses in bacteria. Of the three metal-binding sites, S2 and S3 are highly conserved among
bacteria, while S1 is absent in some species that lack the necessary cysteine residues. These
differences may reflect variations in DNA binding among homologs and adaptations to
specific environmental conditions. The role of Fur as a ferric uptake regulator, essential for
bacterial survival, and its absence in eukaryotic cells make it an attractive drug target.

Consequently, peptide inhibitors have been explored to interfere with the DNA bind-
ing activity of Fur, utilizing peptide aptamers. In addition to peptide aptamers, peptide
mimetic molecules or small molecules may also be employed in inhibitor development.
Apart from, direct inhibitors of Fur-DNA binding, Fur can be considered a therapeutic
target in conjunction with strategies to disrupt siderophore action. This approach is vi-
able because Fur regulates siderophore production and uptake, as well as controlling the
expression of genes that remove excess iron or directly absorb iron from heme.

Structural and functional studies of bacterial Fur proteins will provide critical infor-
mation for the development of antibiotics, thereby contributing to the creation of effective
drugs to overcome antibiotic resistance.
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