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01-938 Warsaw, Poland; agnieszka.kaminska@uksw.edu.pl

5 Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna,
1090 Vienna, Austria

6 Department of Laboratory Medicine, Division of Pathology, Karolinska Institute,
SE-141 86 Stockholm, Sweden; piotr.religa@ki.se

7 Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw,
02-091 Warsaw, Poland

* Correspondence: m.mickael@igbzpan.pl
† These authors contributed equally to this work.

Abstract: Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has
a low prevalence and a 2–4 year survival period. Various theories and hypotheses relating to its
development process have been proposed, albeit with no breakthrough in its treatment. Recently, the
role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated.
CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory
types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the
landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers
current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development.
These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease,
Tregs are highly capable of regulating the immune response. However, in the later stages of the
disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg
function. The reason why this occurs is not known. Several research groups have proposed that CD4+
T cells as a whole might experience aging. Others have proposed that gamma delta T cells might
directly target Tregs. Additionally, other research groups have argued that less well-known CD4+
T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing
granzyme B. We propose that the ALS landscape is highly complicated and that there is more than
one feasible hypothesis. However, it is critical to take into consideration the differences in the ability
of different populations of CD4+ T cells to infiltrate the blood–brain barrier, taking into account the
brain region and the time of infiltration. Shedding more light on these still obscure factors can help to
create a personalized therapy capable of regaining the balance of power in the battle between the
anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.
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1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal disease that affects the nerve cells in the
brain and spinal cord mortality [1–3]. Roughly one-third of ALS patients experience bulbar
symptoms such as dysphagia or dysarthria, while a smaller percentage have respiratory
issues. Moreover, nearly 50% of ALS patients have some form of cognitive impairment,
and up to 15% of patients meet the criteria for frontotemporal dementia [4,5]. The global
prevalence of this disease is around 5 per 100 thousand people, with an expected period of
survival of 4 years. Further stratification of patient data shows that 34.1% of ALS patients
die within 12 months, 50% die within 30 months of the onset of symptoms, and about 20%
of patients survive between 5 to 10 years after the onset of symptoms [6,7]. ALS includes
two main types: sporadic and familial [8,9]. Sporadic ALS accounts for the majority of cases
and occurs randomly with no known cause, while familial ALS is inherited and runs in
families [10,11]. The peak age at onset is reported to be between 58 and 63 years for sporadic
disease and 47 to 52 years for familial disease [6]. The genes controlling familial ALS are
diverse, with mutations in multiple genes associated with the disease. However, mutations
in four genes (C9orf72, SOD1, TARDBP, and FUS) account for 70% of the cases [12]. The
general inheritance pattern is in an autosomal dominant manner, where inheritance of one
copy of the ALS-associated mutated genes can result in a 50% probability of inheriting the
condition. However, both types share the same symptoms [13–15].

Currently, there is no cure for ALS [7]. Riluzole is the most widely used treatment.
It can increase the probability of one-year survival by 9%, highlighting the limited treat-
ment options available to ALS patients [12,16,17]. Although the riluzole mechanism of
action is not fully understood, studies have shown that it inhibits glutamate-induced neu-
ron damage by inhibiting its release [18,19]. Over 60 potential ALS treatments that offer
anti-inflammatory, antioxidant, and neuroprotective bioactivities have been investigated,
with most failing to demonstrate efficacy in clinical trials. In 2017, Edaravone was ap-
proved for treating ALS in Japan, South Korea, and the US. Edaravone is an antioxidative
compound that reduces oxidative stress by scavenging oxygen radicals within the central
nervous system, with patients showing reduced functional loss after 6 months [20,21]. Al-
ternative approaches, including RNA-based therapeutics targeting the most common ALS
genes—SOD1, C9ORF72, FUS, and ATXN2—using small activating RNAs (saRNA) [22].
The saRNA approach aims to modulate gene expression on the non-mutated allele [22].
These saRNAs can induce gene expression at a transcriptional level by targeting promoter
sequences or gene antisense transcripts [22]. Currently, there are no saRNA treatments
approved for ALS clinical trials. Other therapies include viral vectors such as adeno-
associated virus are gaining momentum [23–25]. However, these strategies could prove
risky for ALS patients [22,26].

Studies show that CD4+ T cells play a fundamental role in ALS. Although several
theories have been formulated, the pathophysiology of ALS remains unclear. Such theories
are linked with mitochondrial dysfunction, superoxide dismutase gene mutations, and
abnormalities in neuronal glutamate transports, and some reports even postulated about
the role of viruses such as HIV [27–29]. Recently, several investigations have revealed
evidence of activated microglia, IgG deposits, and dysregulated cytokine expression in
the spinal cords of ALS patients, raising the possibility that the immune system, and
in particular CD4+ T cells, may play a proactive role in the disease process [30]. For
example, studies have observed increased peripheral CD4+ (and CD8+) T cells in ALS
patients compared to healthy controls. CD4+ T cells in ALS patients also exhibit increased
activation, which may coincide with impaired intrathecal regulation by CD56(bright) NK
cells, potentially contributing to increased disease progression [31]. Additionally mice
that lacked CD4+ T cells but had the mSOD1G93A mutation (i.e., mSOD1G93A/RAG2−/−)
showed an acceleration of the disease progression [32]. This review explores the current
body of evidence detailing the roles of CD4+ T cells in ALS and the hypotheses driving the
search for ALS treatment options.
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2. Current Understanding of CD4+ T Cells Populations

CD4+ T cells are a phenotypically diverse group of cells with different functions [33].
They are produced in the bone marrow, followed by maturation in the thymus [34–37].
Naive CD4+ T cells migrate to the periphery, where they differentiate. T cells can be
phenotyped based on the type of cytokines they produce. Interferon-gamma (IFN-γ) and
interleukin 2 (IL-2) are mostly secreted by type 1 T-helper cells (Th1 cells), whose function
is mediated by T-box transcription factor (Tbet) [38]. Th2 cells that primarily produce
IL-4, IL-5, and IL-13 are regulated by GATA Binding Protein 3 (GATA3) [39]. Organ-
specific autoimmune disorders are linked to Th1 cells, whereas Th2 cells are linked to
allergies. In the traditional model, Th1 cells target cancer cells and can trigger a delayed-
type hypersensitivity (DTH) skin response against bacterial and viral antigens, focusing on
fighting intracellular pathogens such as viruses [40]. Th2 cells, on the other hand, prioritize
defense against external pathogens, including multicellular parasites [41]. The Th1 pathway
tends to produce a pro-inflammatory response and thus is frequently described as being
the more aggressive of the two. Th2 cells appear to possess several anti-inflammatory
capabilities, suggesting that Th1 and Th2 regulate each other [42,43].

Similarly, T-helper 17 (Th17) cells and regulatory T cells (Tregs) are modeled as forming
the Th17/Treg axis. Th17/Treg axis formulation is based on the observation that, while
Th17 and Treg have a similar transcriptome, their functions are different [44,45]. The
transcription factor RAR-related orphan receptor-γ (RORγt) is the main regulator of Th17
cells [46,47]. Th17 cells are critical for the development of pathological autoimmunity [46].
Th17 cells generate various pro-inflammatory cytokines, such as IL-1, IL-6, IL-17A, TNFα,
and IFNγ. They have also been shown to play a key role in the pathophysiology of
various neurodegenerative diseases such as Parkinson’s and Alzheimer’s, as well as mental
disorders like depression [48]. Autoreactive T cells are thought to be suppressed by
FoxP3+ Treg cells, which are regulatory CD4+ T cells [49]. Treg cells can directly and
indirectly suppress other CD4+ T cells. Direct regulatory strategies involve the synthesis
of ICER, CD39, IL-4, and IL-10 [49]. One example of indirect techniques includes the use
of the expression of IL-2R (CD25) to consume IL-2, which is vital for other CD4+ T cells’
development [49].

There are various less-studied populations of CD4+ T cells. These include Th9 and
Th22 and several intermediate CD4+ T cells, such as Tr1 and RORγt+ FoxP3+ Tregs. Eome-
sodermin (EOMES)+ CD4 T cells are another less characterized type of CD4 T cells [50–52].
These less well-known populations have not been fully studied in the context of ALS. Fur-
ther investigations to dissect their contribution could yield valuable insights into disease
development.

Several studies have shown that CD4+ T cells can infiltrate the focally damaged
BBB [44,46]. One piece of evidence supporting the critical role of CD4+ T cells in ALS is the
status of the BBB, wherein ALS progression leads to significant focal damage, as defined
by the Zlokovic–Cleveland Model [53–55]. This model postulates that during ALS, edema
and serum protein leakage (e.g., albumin and immunoglobulins (Igs)) result in focal tissue
hypoxia. Red blood cell (RBC) extravasation releases neurotoxic haemoglobin (Hb)-derived
products focally in the spinal cord tissue [56]. Free Hb is directly toxic to motor neurons
through the generation of reactive oxygen species (ROS). It is hypothesized that focal Ig
leakage promotes the activation of microglia and astrocytes, contributing to cell death. The
leakage of Ig, which interacts with motor neuron antigens, also exerts direct toxic effects on
motor neurons [57]. The ability of CD4+ T cells to cross the BBB was shown in a rodent
SOD1ALS mouse model where their infiltration into the midbrain–interbrain region was
confirmed via a live magnetic resonance approach [58]. The T cell influx contributes to
the further activation of astrocytes; this is a hypothesis supported by animal and human
studies. For example, transgenic mSOD1G93A mice mated with immunodeficient mice,
and bone marrow transplantation (BMT) was utilized in selective reconstitution to clarify
the functions of T cells. These results showed that CD4 T lymphocytes activated microglia
and astrocytes. They also promoted neuroprotection by altering the glial balance between
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trophism and cytotoxicity. However, the authors did not examine the difference in the
effect of various CD4+ T cells [32].

3. Hypotheses Exploring the Role of CD4 in ALS

Building upon the information that CD4+ T cells are capable of infiltrating the BBB
during ALS, current research is focused on four feasible hypotheses that aim to form an
integrative model of how CD4+ T cells are involved in ALS.

3.1. The SWITCH Hypothesis

Recent research demonstrated that CD4+ T cell subtypes contribute differently to
ALS development. In their report, Ford et al. compared the levels of Th1-associated
cytokines, such as interleukin-12 (IL-12) and interferon-gamma (IFNγ), present in the
cerebrospinal fluid (CSF) of ALS patients with those of patients suffering from other
neurological diseases. All samples were below the detection limit for IL-12 and IFNγ [59].
Holmoy et al. challenged these findings by extracting and cloning CD4+ T cells from
ALS patients [60]. The cloned CD4+ T cells predominantly exhibited Th1-like behavior,
producing IFNγ. Th1 cells are known to induce a microglia pro-inflammatory phenotype
which can contribute to the inflammation status of the CNS in ALS patients, generating
pro-inflammatory molecules such as tumor necrosis factor-alpha (TNFα); interleukin IL-6,
IL-1β, and IL-12; and chemokine ligand-2 (CCL2) [61,62]. Microglia can also support the
activation of Th1 by playing the role of antigen-presenting cells [63]. It is worth noting that
astrocytes seem to increase Th1 differentiation [64]. However, the direct effect of Th1 on
astrocytes in the context of ALS is not yet clear.

Shi et al. investigated the presence of CD4+ T cells in 21 ALS patients, 14 spinocerebel-
lar degenerative disease control (DC) patients, and 16 healthy controls (HC) [65]. The only
T cell subset that showed significantly higher levels in ALS patients than in DC and HC
patients was the group known as CD4+ IL-13+ T cells. This subset is typically associated
with Th2 cells. CD4+ IL-13+ T cell frequency was negatively associated with the modified
ALS functional rating scale score while positively correlated with disease progression,
suggesting that IL-13 may play a role in ALS. These differences could result from variations
in the frequency of Th1 and Th2 cells among brain regions. Beers et al. showed that, in
SOD ALS mice, IL-4 levels were higher in the cervical than in the lumbar spinal cords. The
mRNA level of the transcription factor Gata-3 (regulating Th2 response) was elevated in
the cervical cord of ALS mice, whereas T-Bet (regulating Th1 response) was increased in the
lumbar cord [66]. However, the effect of Th2 on the CNS through the production of IL-4 is
debatable as the impact of IL-4 on astrocytes can vary, displaying either pro-inflammatory
or anti-inflammatory properties based on the different treatment methods and timing
conditions emplyoed [67].

Th17 cells play a crucial role in ALS development through the production of IL-
17 [68,69]. Interleukin-17, the main cytokine produced by Th17 cells, is upregulated in
the serum of both familial and sporadic ALS patients [70,71]. IL-17 and IL-23 are also
upregulated in the CSF of ALS patients [70]. One ALS mutation that leads to C9ORF72
deficiency is linked to increased IL-17A [72]. Compared to Alzheimer’s disease patients,
sporadic ALS (sALS) patients have significantly higher levels of IL-6 and sIL-6R in their
cerebrospinal fluid, which is needed for Th17 activation [73]. Further evidence supporting
the role of Th17 cells includes the finding that targeting CD40L, a crucial co-stimulator for
Th17 in SOD1 knockout mice, slows weight loss and paralysis and extends the survival
period [74]. A key characteristic of ALS is a high degree of astrogliosis [75–77]. We found
that Th17 infiltration into the brain is associated with astrogliosis [46]. Once inside the
brain, Th17 cells may induce astrogliosis through a cycle of the over-activation of astrocytes,
producing IL-6 and IL-1 [78,79].

Treg cells seem to play an anti-inflammatory role in ALS. The reconstitution of mSOD1
mice using ex vivo Treg cells from donor WT mice increased survival and postponed the
loss of motor function [80,81]. Luchi et al. examined the difference in the frequency levels
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of Tregs between SOD1+/+ and SOD1−/− mice at five weeks of age and could not identify
any significant difference [82]. Treg numbers increase at the early stages of the disease [3].
They also produce IL-4 and are associated with M2-mediated neuroprotection [83,84]. Rent-
zos et al. compared the number of Tregs in the blood samples of control subjects and ALS
patients. Their research showed that Treg numbers in ALS patients are significantly lower
than their control counterparts. They also observed that Treg cell numbers are negatively
correlated with the progression of the disease [85]. Increased levels of CD4+FOXP3−
effector T cells in the blood and CSF are linked to decreased survival, but increased levels
of activated Treg cells and the ratio of activated to resting Treg cells in the blood are linked
to increased survival [86]. These results are consistent with the findings of Mantovani
et al., who observed increased levels of CD4+ cells in the blood of ALS patients compared
to healthy controls. They also found that Treg levels were reduced in patients at a less
severe stage of the disease [87]. Regulatory T cells (Tregs) can regulate astrocyte reactivity
by suppressing the presence of C3-positive astrocytes associated with inflammation in
favor of promoting A2-like phenotypes, known for their neuroprotective properties [88].
One hypothesis is that Treg cells play a protective role by producing TGFβ and IL-10 and
suppressing Th1 and Th17 CD4+ T cells in ALS [3,89].

One hypothesis that aims to put together the pieces of the puzzle is the “SWITCH”
model. The critical aspect of this model is the function of time, where it is assumed
that Treg can exert a sufficient protective role in ALS, but only at the earlier stages of
the disease. However, as the disease progresses, Treg cells can be overwhelmed by the
massive infiltration of pro-inflammatory CD4+ T cells into the CNS (Figure 1). Henkel et al.
demonstrated that FoxP3 protein expressions were decreased and had an inverse correlation
with the rates of advancement of the disease [83]. These findings were also validated for
other anti-inflammatory mRNAs, such as TGF-β, and IL-4 [90–92]. These findings were
also validated for other anti-inflammatory mRNAs, such as TGF-β and IL-4. The SWITCH
model was further supported by analyzing chemokine profiles that showed a switch
between the neuroprotective response associated with Treg to a more neurotoxic immune
response. For example, pro-inflammatory chemokine/cytokine expression was increased
in ALS sera, while anti-inflammatory chemokines/cytokines remained unchanged or
decreased [93]. Recently, a study examined the immune profiles of 73 ALS patients and
48 healthy controls in peripheral blood and cerebrospinal fluid samples [94]. The results
showed that, as the disease progressed, a shift towards pro-inflammatory Th1 and Th17 cells
was seen in peripheral blood, while the levels of anti-inflammatory Th2 and T regulatory
cells decreased. Pro-inflammatory serum cytokines increased, while the presence of anti-
inflammatory cytokine IL-10 decreased. Correlation analysis showed moderate negative
correlations between Th1 and Th17 with the ALS functional rating scale revised and forced
vital capacity.

3.2. The CD4+ T Cell Aging Hypothesis

Multiple studies have shown that CD4+ T cells are significantly affected by natural
aging. A key characteristic associated with aging is thymus involution, in which both the
size and function of the thymus are reduced [95,96]. These changes cause a shift in the ratio
between naïve and memory CD4+ T cells. This shift can be attributed to a reduction in the
thymic output of de novo naïve immune cells and the fact that some existing naïve immune
cells acquire a memory cell phenotype [97]. Additionally, T cell receptor excision circle
(TREC) molecules—extrachromosomal circular DNA fragments formed as a byproduct
of the rearrangement process that creates the T cell receptor (TCR)—are also significantly
reduced [98,99]. While the number of regulatory T cells (Tregs) has been reported to increase
with age, the overall inducibility of Tregs decreases along with the general functionality of
the immune system, resulting in chronic inflammation and a higher risk of autoimmune
diseases [100–103].
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In the context of late-stage Amyotrophic Lateral Sclerosis (ALS), there is growing
evidence that CD4+ T cells infiltrating the blood–brain barrier exhibit signs of advanced
aging (Figure 1). Shir Zaccai et al.’s study of the CD4+ T cell profile in the SOD1G93A
mouse model of late-onset ALS showed that a high proportion of activated CD4+ T cells
expressed PD-1 and LAG-3, known markers of aging in CD4+ T cells [104]. In humans, the
level of PD-1 was found to be significantly higher in ALS patients compared to the controls,
suggesting that aging in CD4+ T cells might contribute to their behavior in ALS cases [105].
However, several questions remain unanswered. First, what drives the aging process in
CD4+ T cells? Second, why does the aging process of CD4+ T cells progress rapidly in ALS?
Moreover, how does this model align with the SWITCH model, which suggests a decrease
in the number of Tregs in later stages of ALS. Future research exploring these aspects may
provide a better understanding of the complex role of CD4+ T cells in ALS [104].

3.3. The Network of Various CD4+ T Cells Interaction Hypothesis

The development of ALS involves the role of less-understood CD4+ T cells, such as
Eomes+ T helper cells. These T helper cells are cytotoxic and express the T-box transcription
factor Eomesodermin (Eomes). Deleting the Eomes gene in T cells has improved the prog-
nosis of late-onset experimental autoimmune encephalomyelitis (EAE). This unique group
of cells is abundant in the cerebrospinal fluid (CSF) of multiple sclerosis patients [106,107].
Studies have demonstrated that Eomes+ T helper cells can release granzyme B. Once
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granzyme B has been internalized by other cells, its presence can induce apoptosis by
activating caspases (e.g., caspase-3) [108,109]. The flow cytometry analysis of immune cells
from the brain tissue of postmortem progressive multiple sclerosis individuals revealed
a high frequency of Eomes+ CD4+ T cells [108]. The recent phenotyping of 28 peripheral
blood samples from ALS patients found that the frequency of Eomes+ T helper cells was
significantly increased in ALS compared to age-matched healthy controls, especially during
the initial phase of the disease [110]. Additionally, granzyme B production by these T
helper cells was higher in the patient group when compared to the controls. These in-
triguing findings open the door for further research into the relationship between various
CD4+ T cells, the timing of their entry into the central nervous system (CNS), and disease
progression. Moreover, the molecular pathways employed by Eomes+ T helper cells within
the CNS microenvironment—including interactions with neural cells and other CD4+ T
cells—remain to be elucidated.

3.4. The γδ T Cell Hypothesis

Among the other lines of research that investigators have been exploring is the role of
the γδ T cells in ALS [111]. This peculiar group of cells is mostly CD4−CD8−, and their
γδ T cell TCR complex includes two protein chains, γ cell, and δ instead of the traditional
α and β that appear on the surface of other T cells [112–114]. γδT cells can recognize a
wide variety of antigens, and they do not require antigen presentation by MHC I or MHC
II as they can recognize antigens in a non-MHC-restricted manner [115]. One of the main
molecules substituting for the function of antigen presentation by MHC to the gamma
delta cells is CD1 [116]. There are five CD1 isoforms in humans (CD1a, CD1b, CD1c, CD1d,
and CD1e), each with a different distribution and antigen presentation profile [117,118].
Among the different CD1 isoforms, CD1d has been shown to present glycolipid antigens
to γδ T cells [118]. γδ T lymphocytes can kill Tregs through CD1d [119]. CD1 is expressed
by immune cells in the brain. A recent study by Xiaoyan Li et al. examined γδ T cell
association with ALS [111]. The authors used mass cytometry to analyze the immune
profile of cells isolated from ALS patients [111]. They found that γδT cells were associated
with the fast-progressing form of ALS. However, these findings raise more questions; for
example, the exact function of the γδ T cells in ALS is still unknown, and their interaction
with the CD1 molecular complex within the ALS context has not yet been proven. We
hypothesize that Treg loss in ALS could be related to the targeting of Tregs by γδ T cells.
Furthermore, uncovering the antigens that activate the function of this group of cells can
help to identify the link between ALS and autoimmune disorders.

4. Current Therapy Targeting CD4+ T Cells in ALS

Currently, various clinical trials are exploring hypotheses (Table 1) [120]. Thonhoff et al.
demonstrated that an autologous Treg infusion in ALS patients effectively slowed down the
disease progression [121]. However, the study’s sample size was limited to three patients,
which affected its generalizability [122]. Subsequently, another trial with eight patients
treated with Treg and IL-2 showed similar results [123,124]. A phase II trial using low-dose
IL-2 achieved comparable outcomes [125]. Ongoing trial study topics that include the
use of fecal microbiota transplants to enhance Treg production [126]. A potential research
avenue yet to be explored would be targeting Th17 migration in the initial disease phase
and subsequently enhancing Treg function in the later phase. Henderson et al. investigated
the safety of anti-CD19, but did not specifically assess its impact on CD4+ or its phenotype.
Rapamycin has been explored as a clinical treatment for ALS, with reported effects on Th1
frequency [127]. However, its specific impact on each CD4+ T cell subpopulation remains
undocumented.
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Table 1. Selected Clinical Trials on ALS.

Title Study Status Intervention Proposed Target

Study in ALS With
Abatacept & IL-2 NCT06307301 Phase I

Drug: Abatacept injection
[Orencia] and Proleukin

(aldesleukin)
CD28 on T cells

Gilenya in Amyotrophic
Lateral Sclerosis (ALS) NCT01786174 Phase I Drug: Gilenya

Other: placebo

Sphingosine 1-phosphate
receptor on Lymphocyte

migration to the BBB

Immuno-modulation in
Amyotrophic Lateral

Sclerosis- a Phase II Study of
Safety and Activity of Low

Dose Interleukin-2

NCT02059759 Phase II
Drug: 1.0 MIU IL-2 per day
Drug: 2.0 MIU IL-2 per day

Drug: placebo

T cells and T regulatory
cells

Regulatory T Cells for
Amyotrophic Lateral

Sclerosis
NCT05695521 Phase I Biological: CK0803

Other: excipient
TGFβ1 and TGFβ2;

enhances Tregs

Immunosuppression in
Amyotrophic Lateral

Sclerosis (ALS)
NCT01884571 Phase II

Drug: Basiliximab
Drug: Methylprednisolone

Drug: Prednisone
Drug: Tacrolimus

Drug: Mycophenolate
mofetil

Functional inhibition of
IL-2

Rapamycin Treatment for
ALS NCT03359538 Phase II Drug: Rapamycin

Drug: placebo oral tablet
Disrupts cytokine-induced

T cell differentiation

Nebulized RNS60 for the
Treatment of Amyotrophic

Lateral Sclerosis
NCT02988297 Phase II Drug: RNS60

Drug: placebo

Mitochondrial biogenesis,
neuroprotection, reduction

in inflammation, and
increase in Tregs

Phase II/III Randomized,
Placebo-controlled Trial of

Arimoclomol in SOD1
Positive Familial

Amyotrophic Lateral
Sclerosis

NCT00706147 Phase II/III Drug: Arimoclomol
Drug: placebo

Increase in heat shock
protein (HSP-70) levels

with anti-apoptotic action

HEALEY ALS Platform Trial
- Regimen B Verdiperstat NCT04436510 Phase II/III Drug: Verdiperstat

Drug: matching placebo

Reduction in oxidative
stress and

neuroinflammation

Perampanel for Sporadic
Amyotrophic Lateral

Sclerosis (ALS)
NCT03019419 Phase II A Drug: Perampanel

Drug: placebo

A non-competitive
selective antagonist of

postsynaptic ionotropic
alpha-amino-3-hydroxy-5-

methyl-4-
isoxazolepropionic acid

(AMPA) glutamate
receptor

Another method of targeting Tregs is chimeric antigen receptor (CAR) technology [128].
CAR T cell technology involves constructing chimeric proteins composed of three main
parts: a single-chain variable fragment derived from an antibody, a transmembrane domain,
and an intracellular domain [129,130]. The single-chain variable fragment targets and binds
to specific extracellular antigens, while the transmembrane domain stabilizes the structure
of the complex [131,132]. The intracellular domain, such as CD3ζ, activates the T cell
once the chimeric complex recognizes unique antigens [133,134]. One advantage of this
technology is that it does not rely on MHC activation, allowing it to target various anti-
gens [135]. Graber et al. constructed a unique CAR (DG05-28-3z) comprising a single-chain
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variable fragment that targets human SOD1, a transmembrane domain, a co-stimulatory
domain, and a CD3ζ signaling domain [128]. The DG05-28-3z-expressing Tregs produced
IL-10 when cultured with aggregated hSOD1G93A proteins or spinal cord explants from
hSOD1G93A transgenic mice, but not when cultured with lung or liver tissue explants from
the same mice. Co-culturing DG05-28-3z CAR Tregs with human monocytes/macrophages
inhibited the production of TNF-α and ROS. However, neither in vivo nor human trials
have been reported that use this approach. One possible modification to this method could
involve designing CAR Tregs that specifically target the Th17 and Th1 cells migrating to
the brain during ALS. This approach could reduce the expression of pro-inflammatory
cytokines caused by pro-inflammatory CD4+ T cell migration.

5. Challenges to Current Hypotheses

The hypotheses presented above seem plausible. However, several aspects need to be
investigated further. First, the temporal order of the CD4+ T cell infiltration of the BBB role
can be disputed. Recent research challenges these findings. Andrés-Benito et al. investi-
gated altered the expression of inflammation-associated transcripts in the peripheral blood
of early-stage ALS patients [136]. They analyzed the RNA expression levels of 45 genes in
22 sALS patients and 13 age-matched controls using RT-qPCR, while concurrently assessing
serum and clinical parameters. Surprisingly, sALS cases exhibited the downregulation
of certain chemokines (CCL5 and CXCR5), anti-inflammatory cytokines (IL-10, TGFB2,
and IL-10RA), pro-inflammatory cytokines (IL-6), and T cell regulators (CD2 and TRBC1).
Moreover, genes involved in leukocyte extravasation (ITGB2, INPP5D, SELL, and ICAM1)
and extracellular matrix remodeling (MMP9 and TIMP2) were upregulated. Additionally,
during the early disease phase, Tregs may encounter difficulty penetrating the blood–brain
barrier (BBB), known for its limited permeability compared to Th17 cells [44]. Furthermore,
Beers et al. highlighted Treg dysfunction in both slowly and rapidly progressing ALS
patients [137]. These findings contradict the SWITCH model of Treg, which shows a higher
ability to infiltrate the BBB in the early stages of the disease.

One solution to this dilemma could be related to the location of the infiltration; the
blood–brain barrier is not uniform in permeability, and some regions have a stronger
barrier than others. There might be favored areas for penetration of pro-inflammatory and
anti-inflammatory CD4+ T cells, based on the resistance imposed on them and their mode
of infiltration or dispersion. For example, Th17 cells are known to prefer a paracellular
route, while Th1 and possibly Treg cells follow a transcellular route [44,78].

Another solution could lie in the variability of cytokine effects on ALS development. IL-
6 appears to play a crucial role in the pathogenesis and progression of ALS [138]. However,
Martinez et al. conducted an intriguing study investigating the cytokine networks involved
in disease progression [139]. Their findings revealed that, in progressive cases, IL-4 and
IL-6 were negatively associated with disease progression, whereas in patients with longer
survival times concentrations of these cytokines were positively correlated with disease
progression. This information suggests that clustering patients based on disease type can
uncover additional mechanisms influenced by the Th17/Treg axis in the context of ALS.

One of the major obstacles to understanding the role of CD4+ T cells in ALS is using
the most appropriate animal model. Transgenic SOD1 rodent models have been used to
study ALS biology and potential therapeutics, but translation into human clinical trials has
been poor [140]. TDP-43 rodent models show distinct disease phenotypes from human ALS
patients, but no correlation exists between rodent and human symptoms. FUS rodent mod-
els offer insights into FUS-ALS pathology but do not reproduce human neuropathological
features [141]. Wobbler mice share phenotypic features with human ALS [142]. Alternative
animal models for ALS, such as pigs and primates, are being explored for disease charac-
terization and the development of therapy. Pigs show severe ALS-like phenotypes and the
mislocalization of TDP-43, while primates reveal protein interactions not seen in rodent
models [143,144]. Other options that could also be used include induced Pluripotent Stem
Cells (iPSCs) and olfactory stem cell cultures [145,146]. The extensive investigation of CD4+
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T cells using one or more variants of the animal models may yield a better understanding
of ALS development and progression.

6. Conclusions

ALS development is a function of a large matrix of complex networks of molecular
interactions that are largely affected by CD4+ T cell dysfunction. In ALS, the BBB loses
its integrity, thus giving CD4+ T cells the opportunity to invade areas of the CNS that
were previously privileged. Upon entry, CD4+ T cells are shifted toward dysfunctional
phenotypes, leading to direct damage to neurons or indirect damage via the inhibition of
the function of anti-inflammatory Tregs. Future therapies might need to address the critical
battle between anti- and pro-inflammatory CDD4+ T cells in the CNS of ALS patients in
order to achieve greater success.
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