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Abstract: Myeloproliferative neoplasms (MPNs), encompassing disorders like polycythemia vera
(PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are characterized by clonal
hematopoiesis without the Philadelphia chromosome. The JAK2 V617F mutation is prevalent in
PV, ET, and PMF, while mutations in MPL and CALR also play significant roles. These conditions
predispose patients to thrombotic events, with PMF exhibiting the lowest survival among MPNs.
Chronic inflammation, driven by cytokine release from aberrant leukocytes and platelets, amplifies
cardiovascular risk through various mechanisms, including atherosclerosis and vascular remodel-
ing. Additionally, MPN-related complications like pulmonary hypertension and cardiac fibrosis
contribute to cardiovascular morbidity and mortality. This review consolidates recent research on
MPNs’ cardiovascular implications, emphasizing thrombotic risk, chronic inflammation, and vascular
stiffness. Understanding these associations is crucial for developing targeted therapies and improving
outcomes in MPN patients.

Keywords: myeloproliferative neoplasms; cytokines dysregulations; JAK 2 mutation; essential
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1. Introduction

Myeloproliferative neoplasms (MPNs) are malignant hematologic diseases charac-
terized by the clonal production of hematopoietic cells. These disorders encompass poly-
cythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) [1].
They share a common characteristic in that they lack the Philadelphia chromosome [2]. The
overall age-standardized incidence of MPNs was found to be 4.45 cases per 100,000 person-
years for all MPNs combined. Specifically, the incidence rates were 1.48 for PV, 1.60 for ET,
and 0.53 for PMF, with higher rates among older age groups [3]. The occurrence of the JAK2
V617F (Janus Kinase 2) mutation is notably high, up to 97% in individuals with PV and
approximately 60% in those with ET and PMF, with no significant difference between prefi-
brotic and overt PMF [4–7]. Furthermore, anomalies in the thrombopoietin receptor MPL
are observed in 5% of patients with ET and PMF but are absent in patients with PV [8,9].
For the majority of ET and PMF patients without mutations in JAK2 or MPL, Calreticulin
(CALR) variants are prevalent, occurring in 25% of cases [10,11]. However, some patients
are classified as triple-negative MPN, meaning they lack any of the genetic anomalies. In
these cases, epigenetic regulators (such as TET2, ASXL1), splicing factors, and DNA repair
proteins (such as tumor protein 53). Importantly, these alterations are also found in different
types of myeloid neoplasms [11]. Patients with these conditions are susceptible to leukemic
transformation or the development of myelofibrosis [12]. Essential thrombocytosis is gen-
erally a slow-progressing condition, with half of the patients still alive at 20 years from

Curr. Issues Mol. Biol. 2024, 46, 8407–8423. https://doi.org/10.3390/cimb46080496 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb46080496
https://doi.org/10.3390/cimb46080496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0009-0005-9111-6088
https://orcid.org/0000-0002-6646-1585
https://orcid.org/0000-0001-9198-353X
https://doi.org/10.3390/cimb46080496
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb46080496?type=check_update&version=1


Curr. Issues Mol. Biol. 2024, 46 8408

diagnosis [13]. Younger patients (<60 years) with ET show life expectancy that can extend
by up to 33 years. Compared to PV, essential thrombocytosis offers a better prognosis [1].
Despite its indolent nature, patients with essential thrombocytosis experience decreased
lifespan compared to the population at large, primarily due to the potential complications
of thrombotic events associated with the disease [14]. While the median survival of PMF
has improved in the past decade due to increased disease awareness and advancements in
treatment options, PMF still exhibits the lowest overall survival among the MPNs, with
a reported median survival that reaches 63 months (55–71 months) [15]. In PV, up to 25%
of patients experience thrombosis, both arterial and venous, at the time of diagnosis [16].
Following diagnostic assessment, the incidence of non-lethal and lethal thrombotic events
during follow-up is reported to be 10% and 5%, respectively [16]. Conversely, a recent
meta-analysis in primary myelofibrosis indicated that patients with CALR anomaly have
fewer thrombotic events. Nonetheless, CALR-mutated patients still face an elevated risk
of thrombosis compared to individuals without myeloproliferative neoplasms [17]. Heart
failure is recognized as a potential complication of myeloproliferative neoplasms (MPNs).
The JAK-STAT (Janus Kinase—Signal transducer and activator of transcription) cascade
induction, seen in these conditions, has been linked to myocardial fibrosis and restructuring
in animal models of hypertensive cardiomyopathy following administration of angiotensin
II infusion. Furthermore, current research indicates that the prevalence of pulmonary hy-
pertension ranges from 3% to 7% among MPN patients [18,19]. This condition is correlated
with a greater likelihood of heart-related death in MPN patients [20]. Patients diagnosed
with primary pulmonary arterial hypertension (PAH) often display elevated levels of circu-
lating proangiogenic precursor cells originating from the bone marrow. Additionally, they
may display similar traits with MPNs, such as early reticulin fibrosis, implying a potential
common disease mechanism with MPNs [21]. Other possible causes of PAH in MPN
patients could imply lung hematopoiesis and sinusoidal obstructive disease [22]. Chronic
inflammation is a paramount element in the development of arterial plaque buildup in the
general population [23]. In the context of myeloproliferative neoplasms (MPNs), chronic
inflammation appears to play a role in initiating and supporting the clone expansion in
leukocytes and platelets, which further release proinflammatory mediators [24]. These
cytokines, in turn, facilitate blood cell production, perpetuating the cycle loop that exacer-
bates the risk of premature atherosclerosis in MPN patients [25]. In patients with MPNs,
spleen and liver stiffness, evaluated using transient elastography (TE), has been linked
to bone marrow fibrosis. Specifically, spleen stiffness is notably higher in PMF and PV
compared to ET ultrasound shear wave elastography (SWE) and offers a means to assess
tissue stiffness, with point SWE (pSWE) and two-dimensional SWE (2D.SWE) being the
most commonly utilized techniques for this purpose [26].

This review aims to compile and analyze recent research examining the relationship
between myeloproliferative neoplasms (MPNs) and cardiovascular risk. It focuses on vari-
ous aspects, including thrombotic risk, atherosclerosis, and vascular rigidity. Additionally,
it explores the underlying role of chronic inflammation in these complications. A key aspect
of this review is the discussion of emerging research on microRNAs (miRNAs) and their
potential role in influencing cardiovascular risk in MPNs. By synthesizing current findings,
the review seeks to provide a comprehensive understanding of how MPNs contribute to
heightened cardiovascular risk and the mechanisms driving these associations and outlines
the future potential of miRNA research in advancing our knowledge in this field.

2. Cytokine Dysregulations in MPNs

Inflammation is a vital physiological response that combats invading pathogens, in-
juries, and toxins by activating the host defense system to promote healing. However,
when inflammation becomes prolonged, it becomes long-term inflammation, maintain-
ing the body in constant awareness. This persistent inflammation can lead to genomic
instability, which may contribute to the development of neoplasms [27,28]. Both cancerous
and healthy cells associated with MPNs produce various inflammatory mediators that
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significantly contribute to the development of constitutional symptoms. Among these cy-
tokines, Interleukin-1 beta (IL-1β) is a crucial modulator of the inflammatory response [29].
When deregulated, IL-1β is directly linked to MPN progression [30]. This cytokine is
released by a few numbers of cells, including monocytes, scavenger cells, and dendritic
cells. IL-1β is pivotal in mediating systemic inflammation and stimulates the production of
various additional molecules such as IL-6, TNF-α, and colony-stimulating factor (G-CSF),
thereby orchestrating the inflammatory response [31,32]. NLRP3 inflammasome genes
are upregulated in the hematopoietic cells of MPN patients [33]. Additionally, neutrophil
granulocyte-associated lipocalin (NGAL) is often increased in subjects with PV, ET, and
PMF in contrast with normal individuals [34]. In a murine model, individuals carrying
JAK2-V617F mutation were found to trigger LCN2 activity, leading to DNA strand breaches
and apoptosis in adjacent normal cells by generating free radicals and amplifying oxidative
stress [35]. Notably, increased plasma levels of TNF-α (tumor necrosis factor-alpha) were
significantly associated with the JAK2-V617F allelic load [36]. Numerous studies on MPNs
have demonstrated that TNF-α promotes the proliferation of neoplastic cells while inhibit-
ing the growth of normal cells. Reports showed that across different MPNs, including PV,
ET, and PMF, high levels of TNF-α were detected [25].

In addition to the increased amounts of proinflammatory mediators, molecules such as
IL-4 and IL-10 were also present in higher levels in MPN patients. These anti-inflammatory
cytokines are pivotal for mitigating the dysregulated immune state [37].

PMF, PV, and ET each exhibit distinct cytokine signatures that help differentiate these
myeloproliferative neoplasms. PMF is defined by increased levels of IL-17, TIMP-1 (Tissue
Inhibitor of Metalloproteinases 1), CCL4 (Chemokine (C-C motif) ligand 4), and IGFBP-2
(Insulin-like Growth Factor Binding Protein 2) [38]. Additionally, PMF patients display
increased amounts of TNF-α, IP-10, and IL-8 relative to different MPNs, and PMF has the
highest overall cytokine production among the three main subtypes of MPNs [39]. PV
is distinguished by increased levels of TGF-α (Transforming Growth Factor Alpha) and
IL-23 [36,40]. Specific cytokines that are particularly elevated in PV include IL-8, IL-11,
leptin, SF (scatter factor), chemokine (C-C motif) ligand 2 (CCL2), IL-10, and IL-22 [41].
Finally, ET is marked by higher levels of eotaxin, EGF (Epidermal Growth Factor), and
GRO-α (Growth-Regulated Oncogene Alpha) [36].

The link between clinical presentation and particular inflammatory molecules revealed
that elevated IL-8 is linked to general symptoms and increased white blood cells (WBCs).
High levels of IL-2R and IL-12 are associated with an increased need for transfusions. SF and
MIG (monokine induced by interferon-gamma) are connected to marked splenomegaly [42].
In PV, IL-12 levels were related to HCT levels, IL-1β with WBCs numbers, and IFNα/IFNγ

(interferon alpha/gamma) with high platelet count. CCL4 was strongly linked with reduced
survival. Additionally, current research revealed that elevated levels of GRO-α were
connected to a higher probability of ET conversion to MF (myelofibrosis) [36,43].

3. Relation between Inflammation and Thrombosis in MPNs

The overproduction of cytokines leads to the activation of thrombocytes, leukocytes,
and endothelial cells. This activation leads to mixed leukocyte–platelet aggregates, which
disrupt normal coagulation and cause thrombosis and tissue ischemia (Figure 1D) [44].
Evidence suggests that chronic inflammation may precede the onset of myeloprolifera-
tive neoplasms (MPNs), producing a beneficial setting for the extension of the neoplastic
cells. Additionally, prior autoimmune conditions are connected to an elevated hazard of
MPNs [45]. The JAK2-V617F variant has also been identified in endothelial cells (ECs),
where it has been shown that WBCs attach more firmly to JAK2-V617F-mutated ECs than
to regular ECs. One study found that numerous genes associated with inflammation and
thrombogenic cascades are upregulated in JAK2-V617F-mutated ECs [46,47]. Aberrant
secretion of inflammatory cytokines contributes to thrombosis through a variety of cytolog-
ical processes involving the amplification of VCAM-1 (vascular cell adhesion molecule 1)
and ICAM-1 (Intercellular Adhesion Molecule 1) receptors on ECs, activation of integrins
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and neutrophil enrollment, generation of neutrophil extracellular traps (NETs), thrombo-
cytes activation and aggregation, and tissue factor (TF) release [48]. NF-κB signaling is
induced by free radicals, which enhances immune response by promoting the production
of proinflammatory cytokines and chemokines [49]. It is known that oxidative stress is
more pronounced in patients with ET patients with the JAK2V617F variant who have
experienced a thrombotic episode compared to those who have not [50].
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Figure 1. Cardiovascular complications associated with MPNs. (A) Lu/BCAM (Lutheran /Basal Cell
Adhesion Molecule)-mediated red cell adhesion independently of the erythropoietin receptor (EpoR),
utilizing the Rap1/Akt pathway in patients with JAK2 V617F mutation increases thrombotic risk;
(B) JAK2 V617F mutated endothelial cells (ECs) secrete higher amounts of von Willebrand Factor
(vWF), which enhance CD 40 expression on ECs and CD40L on JAK2 V617F platelets increasing
platelets adhesion; (C) JAK2 V617F mutated granulocytes express abnormal levels of β1/2 integrins
that interact with selectins on ECs increasing thrombotic risk; (D) JAK2 V617F mutated granulocytes
secrete high amounts of cytokines (TNF-α, IL1-β, IL-6 and G-CSF), and there is a high activity of
NLPR3 and absent melanoma 2 (AIM2) inflammasome; neutrophil–platelets aggregates are highly
adherent to ECs; neutrophil extracellular traps (NETs) are a mixture of DNA, protein, and enzymes
that facilitate thrombosis in MPNs.

A report has shown that 40% of PV subjects suffered a prior thrombotic event upon
diagnosis, most of them being arterial in nature [51]. Similar events occur in ET subjects car-
rying the JAK2-V617F anomaly [52]. Typical events reported in a German study on MPNs
were phlebothrombosis, coronary events, strokes, and splanchnic vein thrombosis [53].

The JAK2-V617F mutation induces abnormal activation of leukocyte β-1 and β-2
integrins, which significantly contributes to pathological thrombus formation [54]. Us-
ing intra-vital two-photon microscopy, studies have shown that JAK2-V617F-mediated
stimulation of neutrophils led to abnormal interactions with the ECs. Remarkably, coun-
teracting β-1 and β-2 integrins reversed the thrombogenic risk in JAK2-V617F transgenic
mice [55]. These findings underscore the crucial role of neutrophils in the development of
phlebothrombosis induced by JAK2-V617F mutation (Figure 1C) [55].
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NETs, consisting of mesh-like components made up of nucleic acids, nucleoproteins,
and enzymes combined with antimicrobial proteins that are secreted to trap and kill
pathogens, are frequently observed in patients with MPNs. Normally, NETs are pivotal
to pathogens defending and inborn immune response, but they also contribute to sterile
inflammation [56,57]. During NETosis, neutrophils undergo uncoiling of their DNA, nu-
clear proteins, and enzyme-like peroxidase into the extracellular environment. NETs have
been shown to directly affect platelet function; studies indicate that lipopolysaccharide-
stimulated and isolated NETs induce thrombocyte clustering when incubated [58]. These
findings highlight the significant role of intrinsic neutrophil activity in promoting thrombo-
sis. Although research on NETs in MPNs remains limited, murine research revealed that
elevated JAK2 kinase function correlated with NETs release in MPNs, while targeted ther-
apy significantly reduced thrombogenic risk [59]. The enzyme peptidyl arginine deaminase
4 (PAD4) plays a critical role in chromatin unpacking, disrupting the lobular form of neu-
trophils and causing nuclear membrane rupture. During both vital and suicidal NETosis,
PAD4-mediated histone citrullination is believed to enhance NET formation by promoting
chromatin uncoiling and facilitating the release of chromosomal DNA. Therefore, PAD4 is
indispensable for NET formation, as demonstrated by studies showing that PAD4-deficient
mice are unable to release NETs [60,61]. A study found that patients with MPNs exhibited
a relatively increased neutrophil-to-lymphocyte ratio (NLR) compared to normal subjects.
This elevated NLR was associated with increased carotid plaque scores, indicating a higher
prevalence of carotid artery plaques in MPN individuals. Results like these emphasize the
central function of neutrophils in the pathophysiology of MPNs [62].

The inflammatory environment associated with MPNs can lead to increased expres-
sion of tissue factor (TF) in monocytes. Elevated levels of cytokines, such as tumor necro-
sis factor-alpha (TNF-α) and interleukin-6 (IL-6), are commonly observed in MPNs and
can stimulate monocytes to upregulate TF expression [63]. In vitro experiments using
lipopolysaccharide (LPS) stimulation demonstrated a significant increase in TF expression
on monocytes from all study subjects compared to non-stimulated monocytes (p < 0.05
for all groups). Notably, monocytes from patients with PV and ET showed higher levels
of TF expression compared to control subjects [64]. Clonal platelets and micro-vesicles
release excessive amounts of tissue factor (TF) following tissue and vascular damage. This
excessive TF release activates the coagulation cascade, leading to increased thrombin gener-
ation. Thrombin acts as a protease that activates protease-activated receptors (PARs) on
platelets and other cells. The activation of PARs has several key effects: it facilitates the
conversion of fibrinogen into fibrin by diminishing the binding sites on platelets (PFR), pro-
motes vasoconstriction, and enhances platelet activation. Additionally, thrombin-induced
signaling interacts with the TGF-beta pathway, which contributes to inflammation and
fibrosis [65,66].

4. Platelets and Erythrocytes Effect on Thrombosis in MPNs

Thrombocytes still play an equivocal role in thrombogenic risk linked with JAK2-
V617F positive MPNs. Studies on transgenic mice, which examined platelet involvement in
different thrombosis models, have yielded mixed findings. In ET, the abnormal function
of the PI3 kinase/Rap1/integrin αIIbβ3 cascade has been linked to low thrombocyte
reactiveness [67]. Additionally, thrombocytes from CALR ET subjects exhibit reduced
reactivity when stimulated with ADP (adenosine diphosphate) in contrast to normal
subjects or JAK2 variants of ET [68]. There is significant debate surrounding the function
of high platelets count in thrombogenicity since no association between elevated platelets
and thrombotic accidents has been shown [69]. In fact, platelets with counts exceeding
high levels (>1500 × 109/L) are more prone to hemorrhagic events rather than thrombotic
accidents. In subjects with ET experiencing extreme thrombocytosis, leukocytosis enhances
the thrombotic risk [70]. However, cytoreductive therapy aimed at reducing platelet
counts has been shown to help prevent both thrombotic and bleeding complications [71,72].
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Current guidelines recommend maintaining platelet counts below 400 × 109/L to mitigate
these risks [73].

In the prothrombotic context of MPNs, platelet interactions with leukocytes are criti-
cal. Thrombocytes attach to granulocytes through proteins like P-selectin that encounter
its ligand PSGL-1, GPIIa, and GPIIbIIIa (by fibrinogen), each of them interacting with
CD11b/CD18 (Mac-1). Higher amounts of P-selectin are directly connected with high
thrombocytes–granulocytes clusters in MPNs [74–76]. This platelet–leukocyte interaction
activates both cell types, contributing to a heightened prothrombotic state. Endothelial acti-
vation in MPNs is well-documented, indicated by increased levels of vWF (von Willebrand
factor), thrombomodulin, and selectins [77,78]. Stimulated ECs display prothrombotic
traits, enrolling platelets and leucocytes. The discharge of vWF leads to platelet activa-
tion, causing CD40 ligand (CD40L) to surface on platelets and bind to endothelial CD40.
Cleaved CD40L forms a dissociated fragment (sCD40L), often elevated in MPN subjects
(Figure 1B) [78]. Interestingly, the JAK2V617F variant was detected in adult ECs from
certain structures, including the spleen of patients with PMF and the liver of PV patients
with Budd–Chiari syndrome. This suggests a possible connection of ECs with the neoplastic
cells [79,80]. ET patients exhibit numerous streaming microparticles derived from platelets,
ECs, and leukocytes, the former being more prevalent. These microparticles are abundant
with tissue factors and carry platelet-related mediators, intensifying the inflammatory and
prothrombotic potential of platelets [81].

Thrombosis and cardiovascular complications are notably more prevalent in PV com-
pared to other myeloproliferative disorders. Studies indicate that nearly 40% of PV patients
experience either minor or major thrombotic events, with vascular-related deaths account-
ing for 35% to 45% of all fatalities in PV cases [82]. Accurately assessing the thrombotic
risk in PV is critical for making informed treatment decisions. PV patients are typically
stratified into two risk groups: high-risk (patients aged over 60 years or with a history of
previous thrombosis) and low-risk (patients without these risk factors) [82].

In one study, hypertension was identified as a significant predictor of overall thrombo-
sis, major thrombosis, and arterial thrombosis in patients with MPNs treated with anagre-
lide. However, hypertension did not predict microvascular or venous thrombotic events
based on univariate analysis. In multivariate regression analysis, hypertension emerged
as the strongest predictor of arterial thrombotic events, with an odds ratio of 1.813 (95%
CI 1.295–2.538, p = 0.001) [83]. Another study also investigated the relationship between
cardiovascular risk factors (CVRFs) and thrombosis in MPN patients. Among 403 MPN pa-
tients (165 with PV and 238 with ET), hypertension was the most prevalent cardiovascular
comorbidity, affecting approximately 64% of individuals in both subgroups [84].

Drug-induced hypertension is frequently underrecognized in clinical practice. For
instance, in the RESPONSE-2 trial, 9% (n = 7) of the 74 PV patients receiving ruxolitinib
experienced hypertension as a non-hematological adverse event. Among these, hyperten-
sion was more commonly observed as a grade 3–4 adverse event (grade 3: 5%, n = 4; grade
4: 1%, n = 1) compared to grades 1–2 (3%, n = 2). In contrast, PV patients receiving the
best available treatment experienced hypertension only as a grade 3 adverse event (4%,
n = 3) [85].

One of the primary criteria for diagnosing polycythemia vera (PV) is the occurrence of
increased hematocrit (HCT) due to raised numbers of erythrocytes. The thrombogenicity
of high HCT in PV is well documented [86,87]. Studies indicate that subjects who uphold
an HCT lower than 45% are less prone to vascular events, in contrast with individuals
with an HCT maintained between 45% and 50%. The plasticity of red blood cells (RBCs)
is crucial for blood flow dynamic, and even a small decline can significantly heighten
vascular stream resistance and blood viscosity, potentially leading to clot formation. Re-
search using laser-assisted techniques to study PV RBC morphology has demonstrated
a notable reduction in RBC deformability [88]. Furthermore, elevated activity levels of
glucose-6-phosphate dehydrogenase and acetylcholinesterase in PV RBCs have been docu-
mented. These findings, along with elevated levels of glutathione and malondialdehyde,
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may contribute to the increased rigidity observed in PV RBCs [89]. Regarding the throm-
bogenic potential of elevated HCT, evidence shows MPNs surpass secondary causes such
as lung conditions. Research has demonstrated that the JAK2-V617F mutation can acti-
vate Lu/BCAM-mediated red cell adhesion independently of the erythropoietin receptor
(EpoR), utilizing the Rap1/Akt pathway. This pathway is believed to be pivotal to the
atypical interplay between blood cells and ECs in PV individuals, potentially contributing
to thrombotic events (Figure 1A) [90].

Another contribution to thrombosis is Lysyl Oxidase (LOX), an enzyme released in
the interstitium, which plays a crucial role in collagen and elastin fibril maturation by
facilitating crosslink formation [91]. Recent evidence supports the existence of high serum
concentrations of LOX in MPN individuals [92]. Beyond its role in collagen crosslinking,
recent findings associate LOX with MPN evolution, especially PMF and thrombogenic.
Increased LOX levels have been shown to enhance platelet–collagen interaction, leading to
their activation [93,94]. Additionally, this enzyme may play a role in cardiac comorbidi-
ties via platelet-derived growth factor (PDGF) receptor oxidation, which, in turn, could
lead to a higher affinity of PDGF to its receptor, reducing the clearance of molecules in-
volved in the PDGFR signaling cascade, enhancing proliferation and fibrosis. Furthermore,
LOX may increase extracellular matrix stiffness, thereby impacting vascular integrity and
function [95].

5. Complementary Role of JAK 2 Variants and Clonal Hematopoiesis of Indeterminate
Potential (CHIP) in Cardiovascular Risk

JAK2 belongs to cytoplasmic tyrosine kinase family members responsible for me-
diating signal transduction from cell surface cytokine receptors like erythropoietin and
thrombopoietin receptors [96]. Upon ligand binding to the receptor, JAK undergoes au-
tophosphorylation and transphosphorylates the receptor, creating binding sites for signal-
ing molecules such as STAT proteins. Phosphorylated STATs then translocate to the nucleus
to influence target gene transcription. For instance, the interaction of erythropoietin with its
receptor (EpoR) triggers the phosphorylation of JAK2 and STAT5, as well as the activation
of other effectors, including the MAP kinase and PI3K/Akt pathways [97,98]. Patients with
myeloproliferative neoplasms (MPNs) often carry additional mutations associated with
heightened inflammation, including those in the TET2, DNMT3a, and ASXL1 genes [99].
While individuals with CHIP, in most cases, might not acquire hematological malignancies,
they are most likely susceptible to cardiac comorbidities and enhanced arterial plaque
buildup [100]. The association with JAK 2 variants is particularly concerning, as it poses a
maximum risk for coronary syndrome, as evidence shows that this scenario counts for 20%
of the patients with CHIP and myocardial infarction [100]. In young adults, JAK2 variants
nearly quadruple the risk of myocardial infarction. Furthermore, evidence suggests that
CHIP is a deciding factor regarding overall outcomes in individuals with heart failure [101].
Another study demonstrated that CHIP significantly increased cardiovascular disease risk,
with the highest risk associated with the JAK2V617F mutation. Neutrophils from both
mice and humans with the JAK2V617F mutation are more prone to undergoing NETosis
compared to wild-type cells, suggesting that JAK2V617F may exacerbate conditions like
superficial erosion by promoting NETosis [102].

Patients with CHIP, characterized by anomalies in DNMT3A, TET2, ASXL1, or JAK2
genes, are susceptible to inflammatory-associated conditions like ischemic cardiac disease.
CHIP is considered to precede MDS and reflects the presence of mutations that are also
implicated in MDS pathogenesis, thus linking these genetic alterations to inflammatory
and cardiovascular outcomes [103,104].

6. Impact of MPNs on Atherosclerosis

Plaque formation is a dynamic process influenced by various mechanisms, includ-
ing cholesterol expulsion, that could alleviate or potentially reverse plaque develop-
ment [105,106]. This process is clinically significant in reducing cardiovascular events.
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The initial step of cholesterol expulsion requires the efflux of cholesterol from the arterial
wall into the liver initiated by ApoA1 (apolipoprotein A1) attachment to ABCA1 (ATP-
binding cassette transporter A1) on foam cells, facilitating cholesterol efflux and HDL
(high-density lipoprotein) expansion. The latter can also interact with various receptors
that could lead to further cholesterol expulsion. Cholesterol is then either transported to
ApoB or straight to the liver through scavenger receptors (SRB1) [106,107].

In a study involving LDL-R, knocked-out mice infused with medullary aspirate from
JAK V617F positive mice with increased atherosclerosis with greater and unstable plaques
were observed [108]. JAK 2 V617F variant was associated with higher activity of the AIM2
(absent in melanoma 2) signaling pathway and IL1-β. Blockade of the latter mediator could
decrease necrotic core extension and fibrous plaque shrinking in various experimental
atherosclerosis studies on mice [109]. Most patients with PV harbor the JAK2V617F muta-
tion. Macrophages with this mutation exhibit impaired efferocytosis, leading to enlarged
necrotic cores. Additionally, JAK2V617F-mutated macrophages display enhanced phagocy-
tosis of RBCs in contrast to normal subjects, which leads to iron discharge from hemoglobin
disintegration and release of free radicals [110,111]. Furthermore, JAK2 deficiency has been
shown to accelerate atherosclerosis primarily as a result of deficient cholesterol export.
Results like these have important therapeutic consequences for patients with MPNs with
prolonged JAK-STAT signaling blockade since this is linked to an elevated cardiovascular
risk. Therefore, careful clinical assessment is essential for managing cardiovascular risk in
these patients, as it may be adversely affected by JAK2 inhibition [112].

One research examined the evolution of carotid artery rigidity between JAK2 mutated
ET subjects and regular patients. The findings revealed that those with the JAK2 mutation
experienced a more rapid increase in carotid artery stiffness, which served as a surrogate
marker of arterial plaque buildup relative to normal individuals [113]. On the other hand,
another study assessing carotid arterial stiffness and digital endothelial function found no
significant differences between ET subjects and normal patients regarding these features.
Additionally, the same report revealed that coronary calcium burden was relatively higher
in ET patients, which could contribute to cardiac events, an aspect that was not estimated
by the Framingham risk score [23]. Abdominal aortic calcification (AAC) is prevalent in ET
patients and is linked to arterial thrombotic events [114].

Myeloproliferative neoplasms may induce distal embolism from unstable atheroscle-
rotic plaques by promoting a prothrombotic condition. These distal ischemic events were
often the initial indication of ET, leading to its diagnosis. Notably, in ET, thrombotic events
can occur even when the platelet count is normal. This was observed in cases of foot
ischemia, where microvascular thrombosis associated with ET coincided with a proximal
ulcerating atherosclerotic plaque [115].

Beyond inflammatory cytokines, various molecules like TGF-β (transforming growth
factor) and several others are likely involved in promoting atherothrombosis in MPNs [37].
Studies have shown that MPNs are linked to higher TGF-β concentrations in plasma [116].
Increased TGF-β signaling in ECs has been linked with coronary injury in patients with
cardiac ischemic disease [117]. Moreover, a report on peritoneal dialysis showed that
higher plasma concentrations of the same molecule were related to the carotid intima-
media ratio [118]. Although elevated TGF-β in MPNs promotes arterial plaque expansion,
the function of this molecule is not clearly defined, making it a promising area of research
in perspective [99]. TGF-β also plays a role in cell phenotype switch, an event contributing
to oncogenesis and, potentially, to both atherogenesis and fibrosis within the bone marrow
niche [119]. Recent studies underscore the pivotal roles of bone marrow precursors, stem
cells, and immune cells in cardiovascular disease (CVD) initiation and progression. Genetic
analyses have revealed that clonal hematopoiesis, marked by proliferation of bone marrow
progenitor and stem cells with somatic mutations, is prevalent in about 10% of the general
population, increasing with age. This condition, which is distinct from the cumulative
risk of blood cancers, is now recognized as a significant risk factor for CVD. Among the
most critical mutations in clonal hematopoiesis are JAK2V617F and Tet methylcytosine
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dioxygenase 2 (TET2) [120]. These mutations in hematopoietic cell clones are linked to the
pathogenesis of CVD. These findings highlight the significant role of CHIP in association
with MPNs [120].

7. Additional Factors Contributing to Cardiovascular Risk in MPNs

The role of systemic renin–angiotensin system (RAS) induction in arterial plaque for-
mation among MPN subjects is still presumptive and requires supplementary research [99].
Inappropriate RAS activation has numerous harmful effects, including promoting atheroscle-
rosis, causing endothelial damage, inducing insulin resistance, and having prothrombotic
effects. It also stimulates vascular smooth muscle cell and monocyte proliferation. The RAS
exacerbates coronary heart disease (CHD) progression through angiotensin-II, which im-
pacts vascular cells both directly and indirectly by increasing free radicals production and
decreasing nitric oxide (NO) in ECs [121]. Intensified RAS function could be a consequence
of heightened JAK/STAT signaling in precursor and stem cells from the hematogenic
marrow of MPN individuals [99]. Studies have found that PV and ET exhibited distinct
patterns of major RAS components in bone marrow compared to normal bone marrow,
closely linked to the JAK2V617F mutation rather than the disease type. Campbell et al. cat-
egorized ET into two subtypes based on the JAK2 mutation, with the JAK2V617F-positive
subtype resembling PV phenotypically [122]. This finding was supported by the similarity
in expression patterns of major RAS components between JAK2V617F-positive ET and
PV groups [123]. Additionally, ACE (angiotensin-converting enzyme) blockade in PV
individuals optimized HCT levels and reduced the reliance on cell-reducing therapy [124].
In experimental myelofibrosis models in mice, ACE inhibitor administration led to spleen
size reduction and alleviated fibrous transformation of bone marrow [125].

Pulmonary hypertension (PAH) and right ventricular impairment are known compli-
cations of MPNs, although the prevalence of the former within this patient group remains
poorly characterized [126,127]. The numerous hemangioblasts present in the bloodstream
might be an important factor in PAH pathophysiology in MPN subjects [128]. Studies
indicate that hemangioblasts, identifiable in adult bone marrow by their CD133 expression
on a subset of CD34-positive hematopoietic stem cells, play significant roles in blood cell
formation [129,130]. While their contribution to postnatal endothelial development remains
uncertain, CD34+CD133+ progenitors are recognized for their proangiogenic effects on
endothelial cells during angiogenesis [131]. Additionally, elevated angioblasts in the blood-
stream are a common finding in Primary PAH individuals. Furthermore, these patients also
exhibit MPN-like traits such as reticulin fibrosis in the bone marrow, indicating a potential
common disease mechanism [21,132]. Persistent thromboembolic pulmonary hypertension
is rarely found in MPN subjects, and it is most likely a consequence of reoccurring emboli
and other possible genetic factors [133].

8. Other Biological Markers Associated with Cardiovascular Disease in MPNs

MicroRNAs play crucial roles in human diseases, including cardiovascular conditions.
MicroRNA-155, a versatile molecule, is involved in blood precursor cells maturing, immune
response, and vessel restructuring, and it is related to conditions like ischemic heart disease,
heart failure, and cardiac complications of diabetes. However, its role in atherosclerosis is
complex, with studies showing that it can both promote and inhibit the disease, highlighting
its multifaceted nature [134,135]. In a study, an inverse relationship was identified between
the numbers of miR-155 transcripts and certain gene expression.

miR-221 and miR-203 were highly expressed in JAK2V617F negative ET subjects
and act as ligands for SOCS 1 (Suppressor of Cytokine Signaling 1) and SOCS 3 proteins,
respectively. These proteins act as modulators for different pathways, reducing JAK/STAT
cascade activity with immunological and proliferative consequences [136,137].

miR-28 acts as a regulator of the thrombopoietin receptor MPL by inhibiting its trans-
lation, leading to a reduction in thrombocyte count. Research has indicated a connection
between miR-28 and wild-type ET. This link suggests that JAK-STAT pathway activation
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might lower miR-28 levels, which could explain the higher thrombocyte counts observed
in wild-type JAK2 ET patients [122,138].

A recent investigation of peripheral blood CD34+ cells in PV patients found that
miR-196b is downregulated in both male and female patients. This deregulation of stem-
progenitor cell miRNAs might play a role in the clonal expansion of JAK2V617F. Continued
research in this area could provide deeper insights into MPN pathogenesis and help identify
potential targets for therapies aimed at eradicating the disease [139].

Glycoprotein YKL-40 is released by different cells during the inflammatory process,
such as neutrophils and macrophages, as well as cancerous cells. In the bone marrow
of healthy individuals, this molecule is deposited in the vesicles of precursor granulo-
cytes [140–144]. Emerging evidence suggests that YKL-40 may promote atherosclerosis
by contributing to endothelial dysfunction through different mechanisms, with the most
important being endothelial injury-induced organ restructuring. Furthermore, YKL-40 is
overexpressed in scavenger cells and myocytes within arterial plaques [145]. MPN subjects
displayed relatively higher concentrations of plasma YKL-40 compared with healthy con-
trols and were indicative of a high inflammatory state, reduced functional status, general
symptoms, and cardiovascular disease. In MF patients, higher concentrations of YKL-40
were related to anemia degree, presence of blasts, and clinical scores [146].

Table 1 summarizes the information about myeloproliferative neoplasms and the
association with cardiovascular risk and complications.

Table 1. International Consensus Classification 2022 for myeloproliferative neoplasms and associated
cardiovascular risk factors and complications.

MPNs Major Criteria Minor Criteria Cardiovascular Risk Factors and
Complications References

PV

• hemoglobin: >16.5 g/dL in
men; >16.0 g/dL in women;
hematocrit: >49% in men and
>48% in women

• JAK2 V617F or JAK2 exon
12 mutation

• EPO concentrations lower
than normal

Hypertension (40–70%) [147]
Diabetes melitius (7–16%) [148]
Obesity (7.5%) and smoking
(5–10%) [38]

• Myocardial infarction (30%) [149]
• Stroke (25%) [149]
• Peripheral arterial thrombosis

(20%) [149]

[38,147–151]

ET
• Platelet count ≥ 450 × 109/L
• JAK2, CALR, or MPL mutation

• Exclusion of secondary causes
of platelet number increase

Thrombotic risk before diagnostic
18% [152]
Each cardiovascular risk increases the
thrombotic risk [153]:

• No CV risk (14%)
• 1 CV risk (16%)
• More than 1 CV risk (29%)

[150–153]

PMF
• High-grade reticulin fibrosis (2

or 3 grade)
• JAK2, CALR, or MPL mutation

• Secondary anemia excluded
• Leukocytosis ≥ 11 × 109/L
• Enlarged spleen
• LDH levels raised above

normal interval
• Leucoerythroblastosis

Thrombotic events [154]:

• Myocardial infarction (9.5%)
• Stroke (2.3%)
• Venous thromboembolism (4.5%)
• Splanchnic thrombosis (0.6%)

[150,151,154]

JAK2—Janus kinase 2; MPL—myeloproliferative leukemia protein; CALR—calreticulin; EPO—erythropoietin;
LDH–lactate dehydrogenase.

9. Conclusions

This study highlights the substantial cardiovascular risks in MPNs, primarily driven
by genetic mutations and chronic inflammation. Mutations in JAK2, MPL, and CALR genes
play crucial roles in disease progression and thrombotic complications, with PV and ET
showing high thrombosis rates. In PMF, the CALR variant predicts a lower thrombotic risk
relative to JAK2 mutations, but the risk remains elevated relative to the general population.

Chronic inflammation worsens cardiovascular complications by promoting clonal
expansion and increasing leukocyte and platelet production. Heart failure and pulmonary
hypertension linked to JAK-STAT pathway activation add to the cardiovascular burden in
MPN patients.
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