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Abstract: The rapid advancement of high-throughput technologies, particularly next-generation se-
quencing (NGS), has revolutionized cancer research by enabling the investigation of genetic variations
such as SNPs, copy number variations, gene expression, and protein levels. These technologies have
elevated the significance of precision oncology, creating a demand for biomarker identification and
validation. This review explores the complex interplay of oncology, cancer biology, and bioinformatics
tools, highlighting the challenges in statistical learning, experimental validation, data processing, and
quality control that underpin this transformative field. This review outlines the methodologies and
applications of bioinformatics tools in cancer genomics research, encompassing tools for data struc-
turing, pathway analysis, network analysis, tools for analyzing biomarker signatures, somatic variant
interpretation, genomic data analysis, and visualization tools. Open-source tools and repositories
like The Cancer Genome Atlas (TCGA), Genomic Data Commons (GDC), cBioPortal, UCSC Genome
Browser, Array Express, and Gene Expression Omnibus (GEO) have emerged to streamline cancer
omics data analysis. Bioinformatics has significantly impacted cancer research, uncovering novel
biomarkers, driver mutations, oncogenic pathways, and therapeutic targets. Integrating multi-omics
data, network analysis, and advanced ML will be pivotal in future biomarker discovery and patient
prognosis prediction.
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1. Introduction

In recent years, high-throughput technology has become increasingly available due to
advancements in next-generation sequencing (NGS) to analyze single nucleotide polymor-
phisms (SNPs), copy number variations, gene expression, microRNA expression, protein
expression, as well as other genetic alterations. Precision oncology utilizes high-throughput
technologies and bioinformatics tools to tailor cancer treatments to individual patients on
the basis of their unique genetic profiles. This approach improves the ability to identify and
validate biomarkers significant to cancer diagnosis, predicting outcomes, and developing
personalized therapeutic plans. Integrating bioinformatics in precision oncology requires
expertise in the fields of oncology, bioinformatics, and biostatistics.

For example, genomic profiling with NGS technologies such as whole-genome se-
quencing (WGS) and whole-exome sequencing (WES), allows for rapid and comprehensive
analysis of genetic mutations, SNPs, and structural variations within tumors. Bioinformat-
ics tools play a critical role in integrating and interpreting data from these technologies. For
instance, tools for variant annotation and interpretation, such as ANNOVAR, help predict
the functional consequences of genetic variants, aiding in the identification of actionable
mutations. Additionally, pathway analysis tools like Ingenuity Pathway Analysis (IPA) and
Gene Set Enrichment Analysis (GSEA) identify affected biological pathways and networks,
offering novel insights into tumorigenesis.

The process of biomarker discovery and validation is fundamental in precision on-
cology. Bioinformatics facilitates the identification of biomarkers that predict treatment
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response or disease progression, such as the immunotherapy target Programmed Death
Ligand 1 (PD-L1) [1]. Other examples of biomarkers used in current therapies include
epidermal growth factor receptor (EGFR) inhibitors for non-small cell lung cancer pa-
tients with EGFR mutations and PARP inhibitors in cancers with Breast Cancer Gene 1/2
(BRCA1/2) mutations. These biomarkers undergo stringent validation processes to ensure
their reliability and clinical utility.

As researchers improve biomarker identification methods and expand large data
repositories, the complexity and volume of the data require more powerful analytical
tools. This has led to the increasing demand for machine learning (ML) and predictive
algorithms. ML algorithms are adept at managing and interpreting large, high-dimensional
datasets and identifying patterns and relationships traditional methods might overlook.
Techniques such as dimensionality reduction and feature selection allow ML algorithms to
efficiently process and analyze biological data, evaluate disease mechanisms, and identify
potential biomarkers.

Despite the promise of these advanced tools, several challenges remain, including data
acquisition, quality control, and accurate reporting. Applying bioinformatics in diagnosis,
preventative medicine, and personalized treatment plans requires a multidisciplinary
approach. The use of bioinformatics in precision oncology is transforming cancer treatment,
facilitating the discovery and application of biomarkers amidst the challenges posed by
complex data.

2. Overview of DNA Sequencing Methods

DNA sequencing is utilized to enhance medical research. Key genomic research events,
such as chain termination (Sanger sequencing) in 1977 and polymerase chain reaction (PCR),
underlined significant studies such as the 1990–2003 Human Genome Project [2,3]. Over
time, new cost-effective methods for WGS and WES have emerged [4].

2.1. Whole Genome Sequencing

The human genome is comprised of approximately 3 billion base pairs, including both
coding and non-coding regions [5]. When exploring the genome, it is important to consider
distinctions between introns and exons. Introns are the non-coding regions of genes, while
exons are the coding regions that are responsible for the proteins produced in an organism.

WGS is a comprehensive analysis technique that involves sequencing the entire DNA
content of an organism, enabling the identification of all genetic variants and providing
insights into the complete genomic composition. This method unveils genetic variants
such as SNPs and larger structural variations that contribute to the genetic makeup of an
organism. SNPs are the most common type of genetic variation among people. They are
representative of a difference in a single nucleotide. These variations can occur in both
coding and non-coding regions of the genome and can influence how humans develop
diseases [6,7].

DNA sequencing is important in bioinformatics biomarker discovery studies because
it allows for the comprehensive analysis of genomic information. By examining DNA
sequences produced by methods like those mentioned in Figure 1, researchers identify
genetic variations, mutations, and specific markers associated with various disease pheno-
types. This information is crucial in understanding the genetic basis of diseases, predicting
predispositions, and discovering biomarkers that can serve as indicators or responses to
treatments. In addition, it provides insights into the relationships between genetic vari-
ations and diseases, enabling the identification of potential biomarkers for diagnostics,
prognostics, and personalized medicine.
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PacBioSMRT (2009), DNBS: Helicos (2010), Ion Torrent (2011), in situ RNA sequencing (2013), ONT 
nanopore (2015), spatial transcriptomics (2016), GeoSeq (2017), Slide-Seq (2019), and Revio (2022), 
illustrate the continuous improvements contributing to the genomics. It explores the various NGS 
sequencing techniques that have expanded upon chain termination and polymerase chain reaction. 

2.2. Whole-Exome Sequencing (WES) and RNA Sequencing (RNA-seq) 
While WGS involves sequencing all DNA content, including coding and non-coding 

regions, WES focuses on selectively sequencing the protein-coding regions of known 
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protein-coding regions of the genome along with ~20 nt of connecting introns [4]. WES 
covers over 95% of the exons in the genome, including 85% of disease-causing mutations 
and predisposing SNPs [8–10]. 

Next-generation sequencing (NGS) has evolved rapidly in recent years due to in-
creased throughput and reduced cost compared to traditional methods like Sanger se-
quencing [11–13]. Figure 1 highlights some of the NGS platforms developed in recent 
years. The evolution of NGS technologies in three distinct generations emphasizes the 
significant advancements in sequencing efficiency, accuracy, and throughput. First-gen-
eration sequencing technologies are based on Sanger sequencing techniques. Sanger se-
quencing was developed by Frederick Sanger in the 1970s [14]. This method uses chain-
terminating dideoxynucleotides during DNA synthesis, resulting in fragments of varying 
lengths that are then separated by electrophoresis [14]. While revolutionary, this method 
is limited by its low-throughput, high-cost, and labor-intensive process and can only se-
quence one DNA fragment at a time. Since then, sequencing technologies have evolved to 
improve accuracy and reproducibility in its experiments. 

Second-generation NGS is based upon pH detection or pyrosequencing and may be 
referred to as first-generation massively parallel sequencing (MPS). These methods are 
used by technologies such as Illumina, 454 pyrosequencing, and Ion Torrent. These tech-
nologies involve sequencing by synthesis (SBS) where the addition of nucleotides is de-
tected in real-time, either by light emission or pH changes or sequencing by hybridization 
[15,16]. For example, Roche/454 FLX Pyrosequencer was the first high-throughput screen-
ing platform used in 2004 [17,18]. In pyrosequencing, as nucleotides are incorporated by 
DNA polymerase, a pyrophosphate cascade is initiated that produces light by luciferase 
[16]. The resulting light is proportional to the quantity of nucleotides added [16]. Sequenc-
ing by hybridization utilizes overlapping oligonucleotide sequences to determine the 
DNA sequence. In SBS, a primer aĴaches to the adapter binding site of the forward 
strands, and a polymerase adds fluorescently tagged dNTP to the DNA strand. This led 
to the development of ion and Illumina Genome Sequencing, which utilizes the principles 
of SBS while improving technology sensitivity [19]. SOLiD is another sequencing technol-
ogy that uses emulsion PCR with small magnetic beads to amplify fragments and DNA 

Figure 1. Overview of sequencing technologies 2004–2022. Post-Sanger sequencing technologies,
beginning with Roche 454 Pyrosequencing in 2004, Illumina HiSeq and MiSeq (2007), SOLiD (2008),
PacBioSMRT (2009), DNBS: Helicos (2010), Ion Torrent (2011), in situ RNA sequencing (2013), ONT
nanopore (2015), spatial transcriptomics (2016), GeoSeq (2017), Slide-Seq (2019), and Revio (2022),
illustrate the continuous improvements contributing to the genomics. It explores the various NGS
sequencing techniques that have expanded upon chain termination and polymerase chain reaction.

2.2. Whole-Exome Sequencing (WES) and RNA Sequencing (RNA-seq)

While WGS involves sequencing all DNA content, including coding and non-coding
regions, WES focuses on selectively sequencing the protein-coding regions of known
genes [4]. WES is an NGS method that utilizes sequencing to comprehensively investigate
protein-coding regions of the genome along with ~20 nt of connecting introns [4]. WES
covers over 95% of the exons in the genome, including 85% of disease-causing mutations
and predisposing SNPs [8–10].

Next-generation sequencing (NGS) has evolved rapidly in recent years due to in-
creased throughput and reduced cost compared to traditional methods like Sanger sequenc-
ing [11–13]. Figure 1 highlights some of the NGS platforms developed in recent years.
The evolution of NGS technologies in three distinct generations emphasizes the signifi-
cant advancements in sequencing efficiency, accuracy, and throughput. First-generation
sequencing technologies are based on Sanger sequencing techniques. Sanger sequencing
was developed by Frederick Sanger in the 1970s [14]. This method uses chain-terminating
dideoxynucleotides during DNA synthesis, resulting in fragments of varying lengths that
are then separated by electrophoresis [14]. While revolutionary, this method is limited by
its low-throughput, high-cost, and labor-intensive process and can only sequence one DNA
fragment at a time. Since then, sequencing technologies have evolved to improve accuracy
and reproducibility in its experiments.

Second-generation NGS is based upon pH detection or pyrosequencing and may be
referred to as first-generation massively parallel sequencing (MPS). These methods are used
by technologies such as Illumina, 454 pyrosequencing, and Ion Torrent. These technologies
involve sequencing by synthesis (SBS) where the addition of nucleotides is detected in
real-time, either by light emission or pH changes or sequencing by hybridization [15,16].
For example, Roche/454 FLX Pyrosequencer was the first high-throughput screening
platform used in 2004 [17,18]. In pyrosequencing, as nucleotides are incorporated by DNA
polymerase, a pyrophosphate cascade is initiated that produces light by luciferase [16].
The resulting light is proportional to the quantity of nucleotides added [16]. Sequencing
by hybridization utilizes overlapping oligonucleotide sequences to determine the DNA
sequence. In SBS, a primer attaches to the adapter binding site of the forward strands,
and a polymerase adds fluorescently tagged dNTP to the DNA strand. This led to the
development of ion and Illumina Genome Sequencing, which utilizes the principles of
SBS while improving technology sensitivity [19]. SOLiD is another sequencing technology
that uses emulsion PCR with small magnetic beads to amplify fragments and DNA ligase
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for sequencing the fragments [16,19,20]. The major advancements brought by second-
generation sequencing are increased throughput, reduced cost per base, and the ability to
sequence millions of DNA fragments simultaneously. However, these technologies require
an amplification step before sequencing. This ensures that there is a sufficient quantity of
DNA template for base additions. Some common amplification techniques are emulsion
PCR, bridge amplification, and DNA nanoball generation. This can introduce biases and
errors. Additionally, they generate shorter reads compared to Sanger sequencing, which can
make complex genome assembly more difficult. Second-generation NGS is most commonly
used, and these technologies require an amplification step before sequencing.

Lastly, third-generation sequencing is referred to as second-generation MPS and can
include Single-Molecule Real-Time (SMRT) sequencing and nanopore sequencing methods
like the technologies developed by PacBio and Oxford Nanopore. These technologies read
single DNA molecules in real time without the need for amplification. PacBio SMRT is a
long-read sequencing technology developed by Pacific Biosciences. It uses circular consen-
sus sequencing (CCS) to generate highly accurate read lengths between 10–15 kb. The long
reads are beneficial for investigating genomic regions, such as repetitive sequences and
structural variants. Similarly, Oxford Nanopore Technologies developed nanopore sequenc-
ing that encompasses distinct features, including long-reads exceeding 100 kb, real-time
sequencing, portable devices like MinION, and is useful in a wide range of applications, like
assembling complete genomes. Oxford Nanopore improves accuracy through algorithmic
advancements and base-calling software. The significant improvements of third-generation
sequencing are the elimination of amplification bias, the ability to generate longer reads,
and real-time data acquisition. This allows for immediate analysis and faster turnaround
times. Despite these advancements, third-generation sequencing initially faces high error
rates compared with second-generation sequencing methods. Additionally, while costs are
decreasing, third-generation sequencing is still relatively expensive compared with second-
generation methods. Although these technologies made great strides in genomic research,
there is still room for improvement and implementation in bioinformatic pipelines.

RNA-seq is a technique that uses NGS to examine the quantity and sequences of
RNA in a sample, enabling the study of gene expression, transcriptome structure, and
regulation. It allows for the detection of known and novel features in a single assay,
such as transcript isoforms, gene fusions, and single nucleotide variants, without the
limitation of prior knowledge. The RNA-seq workflow typically includes steps such as
RNA extraction, reverse transcription into cDNA, adapted ligation, amplification, and
sequencing. This approach evolved alongside technological advancements (i.e., NGS),
leading to the development of diverse computational tools and methodologies that help
unlock the full potential of RNA-seq data. Indeed, RNA-seq has become the preferred
method for studying the transcriptome, offering advantages over previous technologies,
and is widely used in various fields, including gene regulation studies and disease research.

3. Overview of RNA-Seq Bioinformatics

RNA-Seq bioinformatics workflows involve computational steps to process, analyze,
and interpret RNA sequencing data. It is utilized to understand molecular mechanisms
in cancer.

3.1. Data Quality Control and Pre-Processing

Transcriptomic data undergoes several transformations before it is used in analytical
pipelines (Figure 2). After data acquisition, pre-alignment quality control assesses the
sequencing quality and contamination screening using tools like FastQC. FastQC analyses
raw data to identify adapters and low-quality reads [21]. It conducts its quality assessment
by summarizing the per-base and per-sequence quality scores, per-sequence GC content,
per-sequence adapter content, per-sequence adapter content, per-sequence read lengths,
and overrepresented sequences. Adapters are synthetic sequences that should be removed
prior to alignment. These can be filtered and trimmed using tools such as Trimmomatic
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or Cutadapt [22,23]. Trimmomatic is a flexible and efficient tool used to trim paired-end
data [22]. Cutadapt locates and removes adapter sequences, primers, poly-A tails, and
other unwanted sequences from the reads [23].
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Figure 2. Overview of RNA-Seq data workflow. In this example of RNA-Seq data analysis workflow,
raw sequence reads serve as the input. Raw sequences undergo pre-processing and quality control.
Next, the Fastq files are aligned to a reference genome (SAM/BAM files) and are quantified to
generate count matrices (Text files). Downstream analysis, such as differential gene expression, uses
the count matrices as input. The data results can be visualized and integrated using R packages,
Python libraries, and other tools.

3.2. Read Alignment/Mapping

Once the quality of the raw data has been assessed, genetic information cannot be
interpreted in its current form. Thus, the next step is adding biological context to the raw
data. This is done by aligning or mapping the reads to a reference genome. STAR, HISAT2,
and Bowtie are commonly used alignment tools [24–26]. STAR is a high-speed alignment
that aligns RNA-seq read to a reference genome. It provides accurate mapping of splice
junctions and can efficiently handle large datasets [24]. HISAT2 (Hierarchical Indexing
for Spliced Alignment of Transcripts) is a fast and memory-efficient aligner particularly
useful for spliced alignments. It supports alignment reads to large genomes and accurately
reads across splice junctions [25]. Bowtie is an extremely fast, memory-efficient aligner
that is suitable for aligning short DNA sequences to a reference genome [26]. Several
human reference genomes exist, such as the 2009 Genome Reference Consortium (GRC)
GRCh37 and 2013 GRCh38. The transcripts can be quantified after the reads are aligned to
a reference genome.

3.3. Quantification

Gene quantification refers to the process of measuring the expression levels of genes
from high-throughput sequencing data. This process allows for analyzing specific gene
activity within a biological sample. The quantification step addresses scientific questions
about the identity of transcribed genes and how abundantly they are expressed in vari-
ous biological conditions. It is essential for understanding gene regulation, identifying
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biomarkers, and studying cellular responses. RNA-Seq is the primary data source for gene
expression and quantification. Microarray technology, although less commonly used today,
can also be used for gene expression quantification. Several bioinformatics tools, such
as featureCounts, HTSeq, Salmon, and StringTie2, can be used to generate the raw read
counts [27–30]. featureCounts counts reads mapped to genomic features such as genes
or exons. It is a fast and efficient tool that supports a wide range of input formats and
handles both single-end and paired-end reads [27]. HTSeq also counts reads for various
genomic features. It supports multiple counting modes (e.g., union, intersection) and is
compatible with several alignment formats [28]. Salmon quantifies transcript abundances
from RNA-seq data. It uses lightweight alignment and quasi-mapping for fast and accurate
quantification. Salmon can work with both transcriptome and genome alignments and
offers robust management of sequencing bias and batch effects [29]. Raw read counts are
often normalized to account for variations in sequencing depth or library size. Common
normalization methods include TPM (Transcripts Per Million) and FPKM (Fragments Per
Kilobase of transcript per Million mapped reads). Gene quantification is a foundational
step in genomics and transcriptomics research. This step serves as the basis for down-
stream analyses that contribute to understanding gene expression and its role in biology
and disease.

3.4. Alternative Splicing Analysis

Alternative splicing analysis of RNA involves the detection, statistical comparison,
and effect prediction of splice events, which are variations in the way exons are joined
together to form a mature mRNA transcript. Various software packages and computa-
tional tools, e.g., RNA-Seq Mutational Analysis Tools (rMATS) or (Surpassing Parameter
Prediction Algorithms (SUPPA) have been developed to facilitate isoform-specific alterna-
tive splicing analysis, including tools for detecting splicing alterations, testing differential
splicing between two groups, and predicting the biological impact of alternative splic-
ing [31,32]. rMATs functions by detecting alternative splicing events from either paired-end
or single-end RNA-seq data. It has the ability to identify various splicing events such as
exon skipping and intron retention, while providing detailed statistical analysis of splicing
differences. SUPPA quantifies alternative splicing events and estimates differential splicing
using transcript-level abundance to predict the splicing events. This tool can also efficiently
handle large-scale transcriptomics data and provide visualization tools for splicing analy-
sis. This analysis is crucial for understanding the diversity of gene products that can be
generated from a single gene and for studying the impact of alternative splicing on gene
function and regulation.

3.5. Visualization

During the visualization process, tools like ggplot2 (R) and Matplotlib (Python) are
used to create graphs to depict patterns, differential gene expression, and splicing events.
Transcriptomic data visualization involves the graphical representation of transcriptomic
data to aid in the interpretation and analysis of gene expression patterns, transcript struc-
tures, and regulatory mechanisms. eVITTA is a web-based visualization and inference
toolbox for transcriptome analysis that provides modules for analysis, visualization, and
inference [33]. Giotto, Scanpy, Seurat, and Squidpy, are examples of advanced spatial
transcriptomic technologies that provide functionalities for plotting spatial transcriptomic
data in Euclidean space. They enable detailed visualizations and analysis of interactions
between cells and genes in spatial transcriptomic datasets [34–37]. These tools are useful
for researching the cellular interactions important for biological processes and diseases.
For instance, Giotto has been successfully used to analyze imaging-based spatial transcrip-
tomic datasets and large-scale spatial proteomic datasets. It was used to profile the spatial
distribution of proteins. In pancreatic ductal adenocarcinoma (PDAC) samples, identifying
distinct clusters and providing more understanding of tumor heterogeneity [38]. Phantasus
is a third-party application that can expedite bulk RNA-Seq data processing and offers a
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graphical user interface or a programmatic interface for data visualization and analysis [39].
omicplotR is a Shiny app to visualize RNA-seq, meta-RNA-seq, and 16s rRNA data, pro-
viding methods for differential RNA expression analysis and visualization [40]. BEAVR is a
browser-based tool for the exploration and visualization of RNA-seq data, which facilitates
interactive analysis and exploration of RNA-seq data, allowing both novices and experts
to perform differential gene expression analyses on RNA-seq datasets [41]. These tools
offer diverse functionalities for visualizing and analyzing transcriptome data, catering to
different research needs and user expertise levels.

3.6. Data Integration

RNA-Seq data may be combined with other omics data sources to comprehensively
investigate biological processes and diseases. This process allows researchers to com-
pare gene expression profiles, detect regulatory mechanisms, and gain a comprehensive
understanding of the transcriptome under various biological conditions. Integration meth-
ods often involve the alignment of samples across conditions using shared highly vari-
able genes and the comparison of cell subpopulations and their marker genes across
different datasets.

4. Open-Source Tools 4

In recent years, efforts have been made to compile and analyze genomic data. This
work led to the development of databases and publicly available tools to analyze cancer
omics data for biomarker discovery. Platforms like the European Nucleotide Archive (ENA)
and Sequence Read Archive (SRA) store raw data files, providing researchers access to the
primary data obtained from high-throughput sequencing experiments in various formats,
including Fastq and SRA. These open-source repositories are foundational for researchers
offering necessary genetic information for in-depth analysis.

Additionally, tools like Figshare and Dryad Digital Repository house a wide range of
academic research data, including genomics data and cross-disciplinary datasets. Harvard
Dataverse Network is a multi-disciplinary tool that stores research data and underscores
collaborative efforts. Various open-source repositories such as Network Data Exchange
and Open Science Framework serve as resources for scientists, enabling collaboration
and exploration of data and promoting the advancement of research and data analysis.
Reactome is an open-source pathway database that supports genomics analysis through
integrative analytical and visualization tools. SpatialDB is a database and visualization
tool for spatially resolved transcriptomes. These tools provide a range of functionalities
for transcriptome analysis, including differential gene expression, sequence alignment,
and annotation.

5. Data Repositories

Understanding patient tumor samples is critical for identifying biomarkers and
targeted therapies. The conjunction of clinical samples with clinical records enhances
the characterization process. The Gene Expression Omnibus (GEO) database was estab-
lished in 2001 by the National Center for Biotechnology Information (NCBI). This public
repository contains over 3.3 million samples of gene expression data generated from
more than 100,000 experiments (e.g., microarray, bulk RNA-seq, scRNA-seq) and from
multiple organisms.

The ENCODE (Encyclopedia of DNA Elements) project was launched in September
2003 by the National Human Genome Research Institute (NHGRI). This repository provides
data produced by the ENCODE Consortium, offering a comprehensive resource for the
analysis of transcriptomic data. The goal of ENCODE was to create a comprehensive map
of all the functional elements in the human genome, including genes, regulatory elements,
and other non-coding regions.

The Cancer Genome Atlas (TCGA) is one of the largest multi-omics cancer repositories
initiated in 2006 by the National Cancer Institute (NCI) and the National Human Genome
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Research Institute. The data comprises paired normal and tumor tissue samples from over
20,000 patients, 33 different cancer types, 7 data types, and 15 genomic assays. TCGA has
generated over 2.5 petabytes of genomic, epigenomic, transcriptomic, and proteomic data.

The Sequence Read Archive (SRA) was established in 2009 by the National Center for
Biotechnology Information (NCBI), a division of the National Library of Medicine (NLM)
within the National Institutes of Health (NIH). It was developed in response to the rapid
growth of high-throughput sequencing data and the need for a centralized repository where
researchers could deposit and access this data. This archive of high-throughput sequencing
data includes DNA and RNA sequences, which provide a centralized repository for data
storage and access.

The Expression Atlas was established in 2012 by the European Bioinformatics Institute
(EMBL-EBI) with funding from the Wellcome Trust. This project was conceived as a
response to the growing need for a centralized resource for gene expression data across
various species and biological conditions. It currently holds data from over 250 million
samples across 80 species, making it one of the most comprehensive repositories of gene
expression data available. The platform continues to evolve and expand, incorporating
new technologies and datasets to remain at the forefront of bioinformatics research.

Launched in 2012, the Registry of Research Data Repositories (re3data.org) is a global
registry of research data repositories from all academic disciplines, providing an overview
of existing research data repositories to help researchers identify suitable repositories for
their data. Re3data covers thousands of data repositories from a wide range of disciplines,
including social sciences, natural sciences, humanities, and engineering. For each repos-
itory, re3data provides detailed information, including the types of data accepted, data
submission guidelines, access policies, and long-term preservation strategies. Importantly,
e3data provides an API that allows developers to integrate its data into other applications.

In 2017, Genomic Data Commons (GDC) expanded the Center for Cancer Genomics
(CCG) collaborative data generation model to include TCGA and Therapeutically Appli-
cable Research to Generate Effective Therapies (TARGET) programs on its platform. The
International Cancer Genome Consortium (ICGC) is a similar repository containing over 86
research projects, 22 cancer primary sites, and data from about 25,000 patients. On the ICGC
portal, data can be analyzed and downloaded for multi-omics studies. Although these tools
are helpful in the advancement of oncology research, the lack of clinical covariates, such
as patient follow-ups and treatments, often impede the translation of genomic research to
clinical outcomes. Bioinformatic tools such as the GDC portal (National Cancer Institute),
cBioPortal (Memorial Sloan Kettering Cancer Center), and UCSC Genome browser have
been developed to help bridge the gap between genomic studies and clinical results.

Digital Expression Explorer 2 (DEE2) was launched in 2019 by Deakin University
and the Walter and Eliza Hall Institute of Medical Research. This web-based, free-of-
charge, open repository of RNA-seq data in the form of gene-level and transcript-level
expression counts, contains a large volume of uniformly processed RNA-seq data from
various organisms. This platform offers several advantages over its predecessor, DEE1.
Specifically, DEE2 contains over 5.3 trillion assigned reads from 580,000 RNA-seq datasets,
covering nine different species. All data in DEE2 undergoes standardized processing steps,
ensuring consistency and facilitating comparative analysis across datasets.

6. Microarray/RNAseq Data Repositories

Sequencing technologies have improved the analysis and understanding of genomic
research studies, especially in targeted therapy development and oncologic biomarker iden-
tification. DNA microarray and RNAseq technology allow for the stratification of patients,
prognosis prediction, and improvement of early diagnostic methods using bioinformatics.
Both technologies can be used to create publicly available data on repositories such as
Gene Expression Omnibus (GEO). GEO is a public repository comprised of over 4000 high
throughput gene expression, microarray, and hybridization array data sets available to
researchers. Similar repositories exist globally, such as the European Array Express. Array
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Express has acquired over 44TB of data. The data on these repositories can be downloaded
using R Bioconductor packages.

Bioconductor is an open-source software that analyzes genomic data generated by
molecular experiments. This software is primarily based on the R programming language
and is used for high-throughput data, integration, statistical analysis, data pre-processing,
and visualization.

Integration of Multiple Repositories for Cancer Research

Highlighting two of the previously mentioned repositories, TCGA and GEO, both of
which are widely used in cancer research. GEO is a public functional genomic repository
comprised of multiple data types, including gene expression, genomic hybridization, and
sequencing across different experimental conditions and organisms. GEO houses a large
amount of transcriptomic data and is freely accessible. This facilitates its widespread use by
researchers. In contrast, TCGA has a specialized focus on cancer, providing detailed multi-
omics data specific to cancer types. By leveraging both GEO’s extensive transcriptomic
data and TCGA’s comprehensive cancer-specific datasets, researchers gain a more holistic
view of the genomic landscape and provide the framework for clinically applicable results.
Using both repositories enables a deeper understanding of gene expression patterns and
genomic alterations in cancer, ultimately aiding in the development of targeted therapies
and personalized medicine. For example, A 2022 study on skin cutaneous Melanoma
(SKCM) integrated single-cell RNA sequencing data from GEO with bulk RNA sequencing
data from TCGA. This combined approach enabled the identification of long-noncoding
RNA (lncRNA) PRRT3-AS1 as a significant biomarker for SKCM [42].

7. Data Manipulation and Structuring

Data manipulation and structuring are essential processes in data analysis and man-
agement. Raw data often contains missing values, errors, or outliers. Data manipulation
allows for early-stage quality control and pre-processing of the data, making it suitable for
analysis. Data may come from various sources that utilize different protocols and formats.
For analysis, the data needs to be converted into a consistent format. This can help improve
the reproducibility of the experiment. Lastly, feature engineering can also be a part of data
manipulation by generating new variables (features) from existing variables. This allows
researchers to capture important patterns and relationships in the data that may not be
initially apparent. Tools such as SAMtools, Picard, BEDtools, Pandas, dplyr, SQL, Apache
Spark, awk, and SED are used in genomic data manipulation.

Data may also undergo transformation. Transformation involves converting data
formats from one to another. For example, Fastq files may be converted to SAM/BAM files
or VCF (Variant Call Format). In addition, large data may be summarized or aggregated
into more manageable forms. In time-series data, this may allow for an observation of
trends that may not have been revealed in high-frequency datasets. Similarly, data can be
merged/joined by common identifiers, allowing for enriched analysis. Merging uncovers
relationships between data variables in different tables or matrices.

Structuring

Normalizing the data is also important for the experimental design. This involves
scaling data to a standard range to help compare variables with different scales, such as
RPKM/FPKM or TPM in RNA-Seq studies. It reduces the impact of outliers that may alter
the results. Likewise, logarithmic transformation proves invaluable when tackling data with
skewed distributions, enabling more effective application of certain statistical analyses.

There are several methods to consider for structuring genomic data. Variant encoding,
for instance, entails standardizing genetic variants and can be achieved through commonly
employed tools like HGVS notation, VCFtools, Bcftools, and PLINK. Genomic interval struc-
turing, on the other hand, organizes data on the basis of genomic coordinates, and this can
be efficiently carried out using BEDtools, GATK, VEP, and UCSC Genome Browser. Further-
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more, data can be enriched with annotations such as gene names, associated phenotypes,
and other functional impacts, which can be accomplished using tools like ANNOVAR,
SnpEff, VEP, and BioMart.

8. Data Analysis

Bioinformatic tools are used to analyze and visualize the large datasets derived from
the data repositories. According to researchers, cBioPortal is one of the most common tools
to analyze cancer genomic studies. This multi-omics analysis tool contains pre-processed
data from over 147 cancer studies that permit the interpretation of somatic mutations,
race/ethnicity, gene expression, copy number changes, methylation, and phosphorylation.
This tool also has heatmap and gene network visualization capabilities. Other web-based
or desktop applications that allow visualization include the UCSC Genome Browser, In-
tegrative Genomics Browser (IGV), and the Catalogue of Somatic Mutations in Cancer
(COSMIC). Notably, COSMIC is one of the most comprehensive databases for investigat-
ing known somatic mutations in cancer. The Gene Ontology Consortium (GOC) aims to
develop computational models across biological systems [43,44]. Gene Ontology (GO)
provides both human-readable and machine-readable information about the functions of
genes [43,44]. Other tools for analyzing somatic mutations and their functional impact
include SIFT, PolyPhen, Mutation Assessor, and IntoGen [45–47].

Pathway and Network Analysis Tools

Pathway analysis incorporates a variety of applications and programs to analyze and
interpret biological data such as genes and proteins. This allows researchers to critically
analyze interactions between genes, proteins, metabolites, and other biological regula-
tory molecules. It is important to note the difference between pathway analysis and
network analysis. Pathway analysis is often a visual conceptualization of widely studied
research [48]. Network analysis includes genome and proteome-wide interactions [48].

Qiagen Ingenuity Pathway Analysis (QIAGEN IPA) is a commercial tool that enables
the interpretation of omics data by identifying relevant pathways, networks, and functional
annotations [49]. It provides visualization and analysis of molecular interactions. Gene Set
Enrichment Analysis (GSEA) assesses whether a predefined set of genes shows statistically
significant differences between different experimental conditions [50]. It is widely used
to identify enriched pathways using gene expression data [50]. In addition, Reactome is a
free and open-source pathway database that provides curated and peer-reviewed pathway
analysis and visualization resources [51,52].

Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) is a compre-
hensive resource for biological pathways and functional annotations [53]. It includes a
pathway mapping tool that helps visualize omics data in the context of pathways [53].
DAVID (Database for Annotation, Visualization, and Integrated Discovery) provides func-
tional annotation tools to understand the biological significance of large gene lists [54].
It offers pathway analysis, gene ontology enrichment, and functional annotation cluster-
ing [54]. In addition, the Pathway Studio 9.0 software allows the integration of molecular
and clinical data for pathway analysis [55]. It aids in building and visualizing pathway
models and supports network analysis. Metacore is a web-based platform focusing on
pathway analysis, network building, and visualization [56]. It provides tools for omics
data interpretation and helps uncover hidden relationships in complex biological systems.
STRING is a database and web resource that analyzes protein-protein interactions and
provides functional enrichment analysis [57]. It can be used to generate interaction net-
works and identify enriched pathways. R-based Bioconductor packages such as Pathview,
ClusterProfiler, and fgsea provide various tools for pathway analysis, gene set enrichment,
and visualization [58–60]. Although mainly used for network visualization, Cytoscape also
supports pathway analysis plugins that allow users to analyze and visualize pathways and
networks simultaneously [61].
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Similarly, WebGestalt is an online tool that supports functional enrichment analysis,
pathway analysis, and network visualization of omics data [62,63]. Lastly, PantherDB is a
resource that offers tools for gene ontology analysis, functional annotation, and pathway
analysis. It covers a wide range of species and biological functions. In addition to the
many pathway analysis tools, Table 1 provides a brief overview of some gene network
analysis tools. There are vast possibilities with the features of these tools in conjunction
with different types of omics data.

Table 1. Gene network analysis tools used in bioinformatics research studies.

Network Analysis Tool Description

ARCANE
A tool for inferring gene regulatory networks from gene
expression data. It employs mutual information-based methods
to identify direct regulatory relationships.

WGCNA
(Weighted Gene
Co-Expression Network
Analysis)

Used to identify co-expression modules within large gene
expression datasets. It helps uncover gene networks related to
specific biological processes or conditions.

GeneMANIA

A tool integrates various data sources to predict and visualize
gene function and interactions. It helps users understand the
functional relationships between genes in the context of specific
biological processes.

VisANT
Network visualization and analysis tool that enables the
exploration of biological pathways, gene interactions, and
molecular networks

BioGRID Offers tools for network analysis. It helps users explore physical
and genetic interactions within a network context.

NetworkAnalyst
Integrated platform for network-based analysis that supports
various types of omics data. It provides tools for network
visualization, enrichment analysis, and pathway analysis.

RegulatoryNetworks
Focuses on the reconstruction and analysis of gene regulatory
networks. It utilizes transcription factor binding site data to infer
regulatory interactions.

GRNsight
Web-based tool for visualizing and analyzing gene regulatory
networks. It helps users explore transcriptional interactions and
regulatory relationships.

CytoScape.js
JavaScript library for network visualization that can be integrated
into web applications to display and analyze gene networks
interactively.

PathVisio Offers plugins for network analysis. It allows users to draw, edit,
and analyze biological pathways and networks.

9. Using Predictive Algorithms

The identification of predictive biomarkers plays a pivotal role in advancing our
understanding of complex diseases like cancer. ML techniques have emerged as valuable
tools for this purpose. In Figure 3, we delve into the multifaceted process of discovering
predictive biomarkers in cancer research using ML algorithms.
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Figure 3. Overview of a classification algorithm workflow. Classification algorithms utilize features
to identify patterns in the input data. During the training stage, the model uses statistical calculations
to develop predictions. In the testing stage, the initial model is employed to evaluate its performance
using precision, accuracy, recall, and F1 score. The final step is to validate the model on external
datasets and address various scientific questions.

9.1. Data Labeling and Supervised Learning

To uncover predictive biomarkers, researchers employ supervised learning methods
in ML. Supervised learning algorithms utilize labels to learn data patterns to generate a
labeled output. In this context, the labels represent meaningful associations with specific
values. For instance, in a cancer study, these labels could signify critical information such as
tumor status (positive or negative), patient outcomes (survival or recurrence), or molecular
subtypes. These labels are often encoded using a binary system of 0 and 1 to provide a
negative or positive context for a data value.

9.2. Data Labeling Beyond Cancer Research

The concept of data labeling extends beyond cancer research. In various domains like
computer vision, natural language processing, and speech recognition, labels are used to
categorize and make sense of data. For example, in computer vision, labels might represent
object classes in an image, while in natural language processing, they can indicate sentiment
(positive or negative) in text analysis.

9.3. Data for Predictive Models

For cancer research studies, the input values for predictive models typically consist
of matrices representing untreated biological conditions, such as gene expression profiles.
These datasets are often characterized by high dimensionality due to the many genes
and features.

9.4. Training ML Models

ML models leverage statistical computations to train classification algorithms on
input and labeled data. When applied to cancer research, these models can help identify
significant genes, biomarkers, or patient subgroups associated with disease progression,
prognosis, or response to therapy. Notably, a wide range of ML and deep learning (DL)
algorithms can be employed depending on the research question and the nature of the data.
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9.5. Machine-Learning Tools and Languages

Python is commonly used for many ML and DL developments. However, R packages,
such as Caret for pre-processing and Modelr for modeling, can also be used effectively
for algorithm development. TensorFlow v2.17.0 is an open-source software library for
numerical computation and ML. It offers various pre-built models and tools for RNA-seq
analysis [64]. PyTorch is another open-source ML framework popular for its flexibility and
ease of use [65]. It also provides numerous resources for RNA-seq analysis. DeepSEA2 is a
deep learning model for predicting regulatory elements in DNA sequences [66]. Similarly,
DeepSEA++ is an advanced model of DeepSEA2 that can predict regulatory elements
across multiple cell types. SpliceAI is a deep learning (DL) model for predicting alterna-
tive splicing events in RNA transcripts [67]. It analyzes RNA sequences and uses a deep
convolutional neural network to identify potential splice sites. SpliceAI can predict both
known and unknown splicing events with high accuracy [67]. rna2vec is a tool that uses
word2vec, a natural language processing technique, to embed RNA sequences into vector
representations [68]. These vectors capture the underlying biological meaning of the RNA
sequences and allow for efficient downstream analysis tasks. Examples include cluster-
ing RNA sequences based on their similarity and functional categories and identifying
regulatory elements in RNA sequences; DeepRibo is another DL model for predicting
RNA-binding protein targets [69].

9.6. Validation and Reproducibility of ML Models

ML has emerged as a powerful tool in cancer research, offering significant potential
for improvements in multi-modal data analysis. However, the effectiveness of these
models relies heavily on validation and reproducibility, two crucial aspects that ensure their
reliability and generalizability. Researchers must consider validation methods throughout
the predictive model development process to prevent overfitting or underfitting the data.
Ensuring reproducibility is equally critical, as it enables the scientific community to verify
and build upon research findings.

Predictive algorithms are indispensable tools in cancer research, aiding in identifying
crucial biomarkers and insights into the disease. By leveraging ML techniques, researchers
can unlock valuable knowledge contributing to better diagnostics, treatment strategies,
and improved patient outcomes. Validation can prevent overfitting, which occurs when a
model learns the training data too well, failing to generalize to unseen data. In contrast,
underfitting happens when a given model is too simple to capture the underlying relation-
ships in the data. Appropriate validation also ensures model accuracy and generalizability.
This assesses model performance in real-world scenarios and provides insights into its
generalizability to different populations and contexts. Common ML model validation
methods include the Hold-Out Method, which divides data into training and testing sets;
K-fold Cross-Validation, which repeatedly splits data into training and testing folds for
better evaluation; and Leave-One-Out Cross-Validation, which uses each data point as a
test case [70–72].

Reproducibility enables verification of analysis results. Indeed, reproducible research
allows others to replicate a study, verify findings, and build upon them. There are several
challenges to reproducible ML models. There is a lack of standardized data analysis
ML pipelines. Different researchers often use different tools and parameters, leading
to inconsistencies. Limited data-sharing practices due to data access restrictions hinder
reproducibility and collaboration. Researchers and developers must clearly document their
methods, data sources, and code to facilitate reproducibility. Predictive algorithms are
indispensable tools in cancer research, aiding in identifying crucial biomarkers and insights
into the disease [73]. By leveraging machine learning techniques, researchers can unlock
valuable knowledge contributing to better diagnostics, treatment strategies, and improved
patient outcomes.
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10. Applications of Bioinformatics Tools in Cancer Research

As shown in Table 2, bioinformatics tools are pivotal in advancing cancer research by
providing in-depth analyses and comprehensive perspectives on the complex molecular
mechanisms underlying cancer development, progression, and treatment. These tools
enable the integration and interpretation of large volumes of multi-omics datasets and
clinical data, allowing researchers to identify key genetic alterations, oncogenic pathways,
and potential therapeutic targets. In cancer genomics, bioinformatics tools aid in identify-
ing somatic mutations, copy number variations, and driver mutations that contribute to
tumorigenesis. Additionally, transcriptomics analysis helps uncover dysregulated gene
expression patterns associated with specific cancer types, stages, and ethnic/racial groups.
Through network analysis, researchers can elucidate intricate gene-gene interactions and
signaling pathways involved in the underlying molecular processes.

Table 2. Overview of bioinformatics tools used in cancer research genomics.

URL Description

Repositories

TCGA
https://www.cancer.gov/ccg/research/
genome-sequencing/tcga (Accessed on 31
October 2023)

Multi-omics data of 20,000 patients
and 33 tumor types

ICGC https://dcc.icgc.org/ (Accessed on 31
October 2023)

55 cancer genomics projects with tools
to analyze and visualize data.

GDC https://gdc.cancer.gov/ (Accessed on 31
October 2023)

Developed by the NIH and NCI and
includes TCGA AND TARGET

Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/
(Accessed on 31 October 2023)

Stores processed data files, including
RNA-Seq and chip-Seq

Array Express
https://www.ebi.ac.uk/biostudies/
arrayexpress (Accessed on 31
October 2023)

Stores high-throughput
genomics data.

European Nucleotide Archive
(ENA)

https:
//www.ebi.ac.uk/ena/browser/home
(Accessed on 31 October 2023)

Stores raw data files in Fastq format.

Sequence Read Archive https://www.ncbi.nlm.nih.gov/sra
(Accessed on 31 October 2023) Stores raw data files in SRA format.

Dryad Digital Repository https://datadryad.org/stash (Accessed
on 31 October 2023)

Open access repository of medical
research data

Figshare https://figshare.com/ (Accessed on 31
October 2023)

Cross-disciplinary open-access
repository for academic research

Harvard Dataverse Network https://dataverse.harvard.edu/
(Accessed on 31 October 2023) Multi-disciplinary data storage center

Kaggle https://www.kaggle.com/ (Accessed on
31 October 2023)

Platform for data science training,
competitions, and datasets

Network Data Exchange https://home.ndexbio.org/about-ndex/
(Accessed on 31 October 2023) Repository for network biology data

Open Science Framework https://osf.io/ (Accessed on 31
October 2023)

Platform for collaborating on
research projects

GenoVault
https://github.com/bioinformatics-
cdac/GenoVault (Accessed on 31
October 2023)

Cloud-based repository for NGS data

UK Biobank https://www.ukbiobank.ac.uk/
(Accessed on 31 October 2023)

Large-scale biomedical
research database

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://dcc.icgc.org/
https://gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.ncbi.nlm.nih.gov/sra
https://datadryad.org/stash
https://figshare.com/
https://dataverse.harvard.edu/
https://www.kaggle.com/
https://home.ndexbio.org/about-ndex/
https://osf.io/
https://github.com/bioinformatics-cdac/GenoVault
https://github.com/bioinformatics-cdac/GenoVault
https://www.ukbiobank.ac.uk/
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Table 2. Cont.

URL Description

Tools for data
analysis and
visualization

cBioPortal https://www.cBioPortal.org/ (Accessed
on 31 October 2023)

Visualizations, analysis, cancer
genomics projects

COSMIC https://cancer.sanger.ac.uk/cosmic
(Accessed on 31 October 2023)

Database of somatic mutations in
cancer.

IGV
https://software.broadinstitute.org/
software/igv/ (Accessed on 31 October
2023)

High-performance genome browser
for visualizing and analyzing
large-scale genomic data.

Regulome Explorer
https://explorer-cancerregulome.
systemsbiology.net/ (Accessed on 31 July
2024)

Exploring and analyzing regulatory
elements in the genome.

UCSC Genome Browser https://genome.ucsc.edu/ (Accessed on
31 October 2023)

Provides access to a vast collection of
genomic data and annotations

Bioconductor https://www.bioconductor.org/
(Accessed on 31 October 2023)

Open-source software project for the
analysis and comprehension of
high-throughput genomics data.

Cytoscape https://cytoscape.org/ (Accessed on 31
October 2023)

Network analysis and visualization
tool

Gene Ontology http://geneontology.org/ (Accessed on 31
October 2023)

Standardized system for annotating
genes and their functions in different
organisms.

UALCAN https://ualcan.path.uab.edu/ (Accessed
on 31 October 2023)

Web portal for in-depth analysis of
cancer transcriptome data.

DAVID https://david.ncifcrf.gov/ (Accessed on
31 October 2023)

Functional annotation and enrichment
analysis of gene lists

HumanBase (GIANT) https://hb.flatironinstitute.org/
(Accessed on 31 October 2023)

Exploring human genomic data and
conducting large-scale integrative
analysis.

CEDER
https:
//ieeexplore.ieee.org/document/6205734
(Accessed on 31 October 2023)

Detection of differentially expressed
genes

CPTRA
https:
//pubmed.ncbi.nlm.nih.gov/19811681/
(Accessed on 31 October 2023)

Package for analyzing transcriptome
sequencing data

Bioconductor https://www.bioconductor.org/
(Accessed on 31 October 2023)

Open-source software for genomic
data analysis

Tools for analyzing
biomarker
signatures from
omics data

Limma
https://bioconductor.org/packages/
release/bioc/html/limma.html (Accessed
on 31 October 2023)

Statistical package for the analysis of
microarray and RNA-seq data.

Caret
https://cran.r-project.org/web/
packages/caret/index.html (Accessed on
31 October 2023)

R package for training and evaluating
ML models.

netClass https://doi.org/10.1093/bioinformatics/
btu025 (Accessed on 31 October 2023)

A tool for classifying biological
samples using network-based
features.

WGCNA
https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/
WGCNA/

Identifying gene modules and their
relationships in high-throughput data.

Somatic variants
interpretation

MyCancerGenome https://www.mycancergenome.org/
(Accessed on 31 October 2023)

Understanding cancer genomics and
personalized cancer treatment options.

Civic https://civicdb.org/welcome (Accessed
on 31 October 2023)

Treatment options for cancer patients
based on their unique tumor DNA

https://www.cBioPortal.org/
https://cancer.sanger.ac.uk/cosmic
https://software.broadinstitute.org/software/igv/
https://software.broadinstitute.org/software/igv/
https://explorer-cancerregulome.systemsbiology.net/
https://explorer-cancerregulome.systemsbiology.net/
https://genome.ucsc.edu/
https://www.bioconductor.org/
https://cytoscape.org/
http://geneontology.org/
https://ualcan.path.uab.edu/
https://david.ncifcrf.gov/
https://hb.flatironinstitute.org/
https://ieeexplore.ieee.org/document/6205734
https://ieeexplore.ieee.org/document/6205734
https://pubmed.ncbi.nlm.nih.gov/19811681/
https://pubmed.ncbi.nlm.nih.gov/19811681/
https://www.bioconductor.org/
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://doi.org/10.1093/bioinformatics/btu025
https://doi.org/10.1093/bioinformatics/btu025
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://www.mycancergenome.org/
https://civicdb.org/welcome
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Table 2. Cont.

Somatic variants
interpretation

URL Description

TARGET
https://www.cancer.gov/ccg/research/
genome-sequencing/target (Accessed on
31 October 2023)

Molecular characterization

CGI https://www.genomicinterpretation.org/
(Accessed on 31 October 2023)

Genomic alterations in cancer and
their potential clinical relevance

ClinicalTrials.gov https://www.clinicaltrials.gov/
(Accessed on 31 October 2023)

An online database that provides
information on clinical trials

EUCTR https://www.clinicaltrialsregister.eu/
(Accessed on 31 October 2023)

Database containing information on
clinical trials conducted in the
European Union

Moreover, bioinformatics can facilitate the prediction of drug responses, survival anal-
ysis, and the discovery of personalized treatment options by investigating patient-specific
genetic profiles. Bioinformatics tools bridge the gap between basic research and its clinical
applications, providing clinicians with valuable insights for early diagnostics, prognosis,
and therapeutic options. Ultimately, this knowledge contributes to the advancement of
precision oncology and the improvement of patient outcomes.

11. Ethics in Bioinformatics

The integration of bioinformatics into biomedical research and clinical practice has
led to unprecedented advancements in understanding and treating complex diseases like
cancer. However, these advancements also bring forth significant ethical considerations.
Ethical considerations in bioinformatics encompass issues related to data privacy, informed
consent, data sharing, the potential misuse of genetic information, and ethics in AI and
machine learning. Addressing these ethical challenges is crucial to ensuring the responsible
use of bioinformatics in research and healthcare.

11.1. Data Privacy and Security

A primary ethical concern in bioinformatics is the privacy and security of patient
data [74]. High-throughput technologies and bioinformatics tools generate large amounts
of genomic and clinical data, which if not protected, can lead to confidentiality breaches.
To protect patient identity, data must be anonymized or de-identified before being shared
or published [75,76]. However, genomic data, due to its unique nature, poses challenges
in achieving true anonymization [77]. Advanced techniques and stringent protocols are
required to ensure individual identities cannot be re-identified from genomic data. Another
avenue to ensure data privacy is data encryption [78,79]. Encryption technologies and
careful data management can be used to safeguard data against unauthorized access
during storage and transmission [79,80]. This includes using secure servers and encrypted
communication channels. Additionally, implementing access control mechanisms may
provide a physical safeguard only permitting authorized personnel access to sensitive data.

11.2. Informed Consent

Informed consent is an ethical consideration in biomedical research. Participants must
be fully informed about the nature of the research, the type of data collected, how the data
will be used, and potential risks and benefits. In the context of bioinformatics, informed
consent involves navigating the complexity of information, broad consent, and reconsent.
Explaining complex genomic research and bioinformatics analysis to research participants
can be challenging. Researchers must ensure that consent forms are clear and comprehen-
sive and provide sufficient detail about the study’s aims and methodologies. Researchers
may opt for broad consent where participants may agree to allow researchers to use their
data for future studies. Although this may be beneficial for scientific research, participants’
autonomy and their right to withdraw consent must be acknowledged. Similarly, if the

https://www.cancer.gov/ccg/research/genome-sequencing/target
https://www.cancer.gov/ccg/research/genome-sequencing/target
https://www.genomicinterpretation.org/
https://www.clinicaltrials.gov/
https://www.clinicaltrialsregister.eu/
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scope of the research or data use changes, re-consent may be necessary to respect the
participants’ autonomy.

11.3. Data Sharing

Data sharing is a key component of bioinformatics. However, establishing clear data
sharing agreements is essential for protecting participants’ rights and responsible use of
the data. Many data repositories like dbGap (Database of Genotypes and Phenotypes)
offer both open access and controlled access data [81]. Open access data promotes trans-
parency while controlled access allows researchers to access the data while maintaining
participant confidentiality.

11.4. Potential Misuse of Genetic Information

Utilizing genomic data for research poses significant ethical risks, including genetic
discrimination and stigmatization. It is important to consider that individuals might
be subjected to discrimination based on their genetic information. In the United States,
the Genetic Information Nondiscrimination Act (GINA), aims to protect individuals, but
continuous vigilance is required to enforce and update these protections [82]. Furthermore,
certain genetic findings can lead to the stigmatization of individuals or groups. Especially if
associated with specific diseases or conditions. Additionally, researchers must be aware of
the health disparities, ensuring that genomic research does not disproportionately impact
or overlook vulnerable populations and that findings are applied equitably.

11.5. AI and Machine Learning

Prediction models and artificial intelligence in bioinformatics can increase the analyti-
cal capacity by being able to manage significantly large datasets. However, this technology
brings ethical considerations. AI models can inherit biases present in training data, leading
to biased outcomes [83]. Using diverse datasets and implementing fairness-aware algo-
rithms (FAIs) is crucial to mitigate bias and ensure equitable treatment of all population
groups [83–87].

The complexity of AI models often leads to a lack of transparency. Assuring trans-
parency in AI decision-making processes and maintaining accountability for AI-generated
results are essential for maintaining trust in bioinformatics applications [87].

Ethical considerations in bioinformatics are multifaceted and require ongoing attention
as the field evolves. Ensuring data privacy and security, obtaining informed consent,
responsible data sharing, preventing the misuse of genetic information, and addressing the
ethical challenges in AI are all crucial components of ethical bioinformatics practice.

12. Advancements, Challenges, and Future Directions

The rapid advancements in high-throughput technologies, specifically next-generation
sequencing, have transformed cancer research. The use of bioinformatics tools has paved
the way for significant discoveries in genomic biomarkers and precision oncology. These
technologies highlight the great potential for advancing personalized therapies, improv-
ing diagnostic methods, and addressing health disparities. However, there are several
challenges and future directions to be considered.

12.1. Key Findings and Applications

Bioinformatics tools have been instrumental in identifying and validating biomarkers
in cancer genomics. Platforms like TCGA, GDC, and ICGC provide vast repositories of
multi-omics data facilitating comprehensive analyses of genetic alterations, gene expres-
sion, and epigenetic modifications. Tools like cBioPortal and COSMIC have enabled the
exploration of somatic mutations and their implications in tumorigenesis. Furthermore,
RNA-Seq workflows, including tools such as FastQC and HISAT2, have advanced our
understanding of transcriptomic challenges in cancer studies.
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The application of machine learning in predictive biomarker discovery has grown
significantly in recent years. By leveraging large datasets, ML algorithms can unveil
complex patterns that contribute to the prediction of disease outcomes and treatment
responses. Tools like TensorFlow and PyTorch have been used to develop models for
RNA-Seq analysis, contributing to the identification of significant biomarkers and patient
subgroups. For example, a study used TensorFlow to build a deep learning model for
classifying cancer types on the basis of RNA-Seq data. The model demonstrated high
accuracy in distinguishing between various cancer types [88].

12.2. Data Challenges

Biomarker discovery often involves the integration of various types of omics data,
such as genomics, transcriptomics, proteomics, and metabolomics. Therefore, ensuring
the quality, accuracy, and compatibility of these heterogeneous datasets can pose a chal-
lenge. Cancer datasets frequently exhibit issues such as incomplete data, batch effects,
noise, and variability due to differences in sample collection, processing, and sequencing
technologies. These inconsistencies can lead to unreliable results and affect the accuracy
of the downstream analyses. In addition, using large high-dimensional omics data may
lead to overfitting or false discoveries. Multiple hypothesis testing and data mining can
increase the likelihood of identifying spurious correlations that fail validation. Normal-
ization, batch correction, and rigorous statistical methods are essential to reliable and
reproducible findings.

12.3. Challenges in Biomarker Identification, Validation, Clinical Implications, and Ethics

Biological systems are complex, and bioinformatics used for biomarker discovery
must account for multi-omics interactions between genes, proteins, and other molecules in
pathways and networks. The intricate nature of bioinformatics workflows, often involving
multiple software and specific parameter settings, is another challenge for reproducibility.
Ensuring reproducibility requires meticulous documentation and adherence to standard-
ized protocols.

As biomarkers are identified, they must be validated in independent cohorts or experi-
mental settings to ensure their reproducibility and clinical relevance. However, many initial
biomarker candidates fail to reproduce the same results in validation experiments, empha-
sizing the need for rigorous validation processes. Transitioning from biomarker discovery
to clinical implementation requires validation, regulatory approval, and demonstration in
a clinical setting. Clinical trials and regulatory considerations can add significant time and
cost. In bioinformatics studies, handling patient data and information raises ethical and
privacy concerns. Researchers must implement data security protocols, informed consent,
and compliance with privacy regulations in their studies.

12.4. Health Equity in Multi-Modal Cancer Research Challenges

While multi-modal data analysis has the potential to revolutionize cancer research
and improve patient outcomes, several challenges hinder its application in a way that
promotes health equity. Underserved communities often lack access to quality healthcare,
technology, and precision medicine (e.g., CLIA NGS) resulting in limited data collection and
representation in multi-modal datasets. This can lead to biased models that are inaccurate
for diverse populations. Historical biases in healthcare and data collection can perpetuate
inaccuracies and misrepresentations of certain groups, which can lead to discriminatory
outcomes and widen health disparities.

ML algorithms can inherit and amplify biases present in training data, leading to
discriminatory predictions (i.e., algorithm bias) and unfair outcomes for certain groups.
Understanding how algorithms make decisions and the reasons behind their predictions
is crucial for identifying and mitigating biases. However, many artificial intelligence
(AI)/ML models lack transparency and interpretability, making it difficult to assess and
address bias. Ensuring ethical and fair use of multi-modal data requires robust regulatory
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frameworks and oversight. Unfortunately, current regulations or practices lag behind
technological advancements.

12.5. Future Directions and Emerging Technologies

The future of bioinformatics in precision oncology is set to leverage emerging tech-
nologies and methodologies to overcome current limitations. As cancer research continues
to generate large complex datasets, integrating multi-omics approaches, advanced machine
learning algorithms, and innovative sequencing technologies will be essential. These ad-
vancements will not only advance our understanding of cancer biology, but also refine
biomarker discovery, improve predictive models, and ultimately enable more personal-
ized and effective treatments for patients. These future directions will help bridge the
gap between research and clinical practice, leading to new discoveries and improved
patient outcomes.

12.5.1. Single-Cell and Spatial Omics

Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics are improving
our understanding of cellular heterogeneity. These technologies allow for high-resolution
analysis of gene expression at the individual cell level, investigating the diversity of cell
types and interactions within the microenvironment [89]. However, they present bioinfor-
matic challenges including data integration, scalability, and standardization. Advanced
computational methods are required to combine scRNA-seq and spatial transcriptomics
data while retaining both high-resolution gene expression information and spatial context.
The high-dimensional nature of the data requires robust bioinformatics tools for meaningful
analysis. Despite these challenges, these technologies offer opportunities for advancement
and innovation. They provide detailed molecular profiling that supports personalized
medicine by tailoring treatments according to individual disease characteristics.

12.5.2. Long-Read Sequencing Technologies

Long-read sequencing technologies, such as PacBio and Oxford Nanopore, offer the
capability to sequence full-length transcripts, providing more accurate identification of
isoforms and gene fusions in single-cell and spatial transcriptomics data. This technology
is beneficial for identifying novel isoforms, gene fusions, and complex structural varia-
tions that may be overlooked by short-read technologies. Although long-read sequencing
technologies have their advantages, they may face challenges related to higher error rates
compared to short-read sequencing technologies. Bioinformatics tools must be adapted
to address the errors and efficiently process the data. Additionally, the computational
demands for analyzing long-read data are substantial, necessitating advanced algorithms
and computing infrastructure.

12.5.3. Machine Learning Approaches

Machine learning is increasingly being applied to analyze complex multi-omics, single-
cell, and spatial omics datasets. These methods enable the identification of rare cell popula-
tions, cell-cell, interactions, and spatial patterns of gene expression. Machine learning and
artificial intelligence can be used to uncover patterns and clinical outcome predictions on
the basis of multi-omics profiles.

12.5.4. Clinical Integration

Combining single-cell and spatial omics data with clinical information can help iden-
tify biomarkers, predict treatment responses, and develop personalized therapies for cancer
patients. By correlating molecular data with clinical outcomes, researchers generate action-
able insights to inform treatment strategies and improve patient care.

The integration of emerging technologies in precision oncology requires the continu-
ous development of bioinformatics tools and frameworks. Key areas for future research and
development include multi-omics integration, enhanced visualizations, machine learning,
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and AI. Multi-omics integration involves developing sophisticated methods for integrating
multi-omics data to provide a holistic view of cellular function and interactions. Visual-
ization tools may help aid the interpretation of complex data findings. Addressing these
challenges and leveraging the opportunities presented by emerging technologies will en-
hance our understanding of cancer biology and make strides toward understanding the
potential of biomarkers in personalized healthcare.
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