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Abstract: This study presents a novel approach for the optimization of genomic parental selection in
breeding programs involving categorical and continuous–categorical multi-trait mixtures (CMs and
CCMMs). Utilizing the Bayesian decision theory (BDT) and latent trait models within a multivariate
normal distribution framework, we address the complexities of selecting new parental lines across
ordinal and continuous traits for breeding. Our methodology enhances precision and flexibility in
genetic selection, validated through extensive simulations. This unified approach presents significant
potential for the advancement of genetic improvements in diverse breeding contexts, underscoring
the importance of integrating both categorical and continuous traits in genomic selection frameworks.

Keywords: Bayesian decision theory; genomic prediction; continuous traits; categorical traits;
genomic parental selection; mixture traits

1. Introduction

Since the pioneering study by Meuwissen [1], the use of genomic selection (GS) has
experienced consistent growth over the years. Initially, its applications were predominantly
observed in the fields of plant [2–6] and animal breeding [7–10]. However, in more recent
times, these applications have transcended into a diverse array of disciplines such as forest
preservation and restoration [11,12].

The GS process includes some basic steps: (1) Data collection is performed through
genotyping and phenotyping for target traits to establish a training or base population.
(2) Model building is accomplished by training a statistical or machine learning algorithm
to learn from the data. (3) Once the models have learned, they are applied to individuals
in a breeding population for which we have genotypic, but not phenotypic, information.
This allows for us to predict breeding values (BVs) for the traits of interest. (4) Finally, the
breeder decides which individuals to select to accelerate the genetic improvement of traits
over time.

For the second step in the GS process, breeders choose statistical machine learning
algorithms based on the type of phenotypic information, which represents the realization of
traits. Some traits are continuous, while others are discrete (nominal, ordinal, and counts).
Typically, breeding value (BV) predictions are carried out for single traits, although the use
of multi-trait predictions has recently become more frequent for continuous traits to exploit
correlations between them.
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For continuous traits such as plant height, yield, and nutrient content, we can assume a
normal distribution for the observed phenotypic data, a notion supported by the familiarity
of the normal distributions and available software, such as the popular BGLR package
in R-4.2.1 [13], although free distribution approaches such as quantile regression can be
performed on skewed traits [14].

For discrete traits, generalized linear models (GLM) are used. In the specific instance
of categorical or binary traits, there is an assumption regarding the presence of a latent
(unobserved) continuous variable. Such models are commonly referred to as threshold
models. The accuracy of predicted BVs is closely linked to the use of suitable statistical
machine learning models that match the type of traits. Authors of [15] provide a compelling
argument for the use of binary traits instead of continuous traits in genomic prediction
models, highlighting the potential benefits in terms of decision metrics such as sensitivity
and specificity. Incorporating these viewpoints can enhance the rationale for using appro-
priate statistical learning algorithms in genomic selection, thereby improving the accuracy
and reliability of predictions.

When addressing the challenge of the curse of dimensionality in GS, statistical models
are regularized. Regularization techniques play a pivotal role in GS by bolstering model
stability, enhancing predictive accuracy, managing high-dimensional data (which arise
due to the number of predictors, denoted as p, far exceeding the number of observations,
denoted as n), and simplifying the process of selecting relevant genetic markers.

Once an appropriate statistical machine learning model has been trained, the breeder
uses it to predict BVs in a candidate set for selection. In the case of single-trait selection,
a natural approach is to select individuals with the highest BVs if the trait is continuous.
However, if the trait is binary or ordinal, the selection is based on choosing lines with the
highest probability of achieving the desired level/category of interest for the breeder.

When selecting for numerous continuous traits, breeders often use selection indices
to rank individuals. A selection index generates a single numerical output representing
a score for each candidate, reflecting a weighted average of the BVs [16]. The primary
challenge associated with using selection indices lies in the intricate calibration of trait
weights. In our previous works [17,18], we proposed an alternative approach in which
selection is guided by the entire multivariate posterior predictive distribution for each
candidate in continuous traits; this methodology is referred to as selection based on the
Bayesian decision theory (BDT).

Despite the increasing frequency of continuous multi-trait selection in the existing
literature, there is no research addressing how to select candidates when there are two or
more ordinal traits. This, regardless of many traits of interest, is measured on ordinal scales.
For example, stripe rust resistance is commonly expressed in ordinal scales that reflect
the magnitude of symptoms. Similarly, numerous characteristics in animals and plants
are represented as either binary or ordinal traits. While some traits exhibit a continuous
distribution, they are often measured as ordinal traits for practical reasons. The scenario
with multiple ordinal traits is referred to in this work as categorical multi-trait (CM).

A case that is even less explored in the literature, although it is quite common in
practice, involves the presence of mixtures of different types of traits. This situation arises
when breeders aim to select individuals that excel in one or more continuous traits, as
well as in one or more discrete traits simultaneously. Henceforth, we will assume that
discrete traits are categorical, implying that the order of categories or levels possesses a
natural sequence. We will refer to this scenario as a continuous–categorical multi-trait
mixture (CCMM).

To address this lack of investigation, in this paper, we propose a methodology based
on the BDT to select the best candidates considering the CM and CCMM scenarios. Our
approach is based on the idea that each ordinal trait is associated with an underlying latent
trait of continuous nature. By selecting individuals with higher values for the latent trait,
we indirectly select the desired category of the trait of interest (if the order goes from lower
to higher; otherwise, the order can simply reverse).
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By extending this idea to the scenario of T ordinal traits, we have T latent traits
that can be assumed to have a multivariate normal distribution. For simplicity, it can be
assumed that the latent traits are uncorrelated. This assumption is made because it is
not trivial to train statistical machine learning models that contemplate the correlation
structure between different ordinal traits in high-dimensional data (n ≪ p). By assuming
uncorrelated latent traits, the complexity and computational cost is reduced significantly,
but the price of this assumption might lead to a loss of valuable information. Correlations
can capture relationships and trade-offs between traits that could be exploited to make
more informed selection decisions. Ignoring these correlations might result in suboptimal
selection outcomes. By assuming a multivariate normality of the latent traits, it is possible
to calculate the expected a posteriori loss (PEL) using BDT and select those individuals
with the lowest PEL values, such as the context of multi-trait selection with continuous
traits developed in [18].

In the case of CCMM, a practical approach involves modeling continuous traits sepa-
rately from categorical traits. For continuous traits, a multi-trait linear model can be used
to exploit correlations between traits, whereas categorical traits can be modeled assuming
they are not correlated. Subsequently, continuous traits and latent traits are assumed to
jointly follow a multivariate normal distribution, allowing for the application of BDT as
explained in [18].

Both scenarios, CM and CCMM, can be implemented using existing software. Specifi-
cally, the posterior predictive distributions of the latent traits and continuous traits can be
approximated using the BGLR library [14], while the posterior expected loss (PEL) can be
approximated using the MPS library [19].

Hence, the main goal of this research endeavor is to propose a pragmatic methodology
for multi-trait selection, targeting multiple ordinal traits (CMs) and CCMMs using GS
and applying the BDT. This proposal is primarily directed towards the plant and animal
breeding community. To incentivize the acceptance of this methodology, we present the
results of a computer simulation study conducted on a long-term breeding program. In
this simulation, we considered the CM context, where three ordinal traits, each one with
three categories, were simulated. Furthermore, for the case of the CCMM, we simulated
one ordinal trait with three categories, along with two continuous traits. Our simulation
encompasses two heritability’s, low and moderate, for both the CM and CCMM contexts.
In addition, we include a simple real application example considering a CCMM case.

2. Materials and Methods
2.1. General Structure of Phenotypic and Genomic Data

Suppose our data take the form of {(xi, yi), i = 1, . . . , n} with covariates (molecular
markers) xi = (xi1, . . . , xim )T ∈ Rm, m > 1 and a random response yi ∈ R in the case of
a continuous trait. For a multi-trait continuous response, yi = (yi1, . . . , yit)

T is a vector in
which each element represents a trait, i.e., yi ∈ Rt.

In the case of an ordinal trait, yi represents ordered categories, the categories are not
equidistant from each other. For example, plant vigor could have three categories (low = 1,
medium = 2, high = 3); in this case, k = 3. In ordinal multi-trait scenario yi = (yi1, . . . , yit)

T ,
each trait can have different categories.

2.2. General Model Formulation

In the case of a single continuous trait, the response can be modelled using a lin-
ear function of covariates, i.e., yi = µ0 + ∑

p
m=1 ximβm + ϵi, where ϵi ∼ NIID

(
0, σ2

ϵ

)
, or

equivalently, yi ∼ NI
(

µ0 + ∑
p
m=1 ximβm, σ2

ϵ

)
. In multi-trait yi ∼ MVN(µi, Σ), where

µi = (µi1, . . . , µit)
T , each element of µi is modelled as above, i.e., µij = µ0j + ∑

p
m=1 xijmβ jm,

for all traits j = 1, . . . , t. Finally, the covariance matrix is denoted as Σ, where the diagonal
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elements represent the variances of the traits, and the off-diagonal elements represent the
covariances between traits

Σ =


σ11 σ12 . . . σ1t
σ21 σ22 . . . σ2t

...
...

. . .
...

σt1 σt2 . . . σtt

.

The above formulation for Σ is known as an unstructured covariance matrix, but other
configurations exist, such as diagonal, factor analytic and recursive; see details in [20]. Note
that we are assuming yi is independent and identically distributed. However, in animal
and plant breeding, individuals are often related. This relationship is incorporated by using
a kinship and/or pedigree matrix.

In an ordinal trait, the probability of observing a particular category—Pr(y = j), j =
1, 2, . . . , k—can be linked to predictors using a non-linear function f (·) that in most cases
is the probit function [21] that takes the linear predictor ηi = ∑

p
m=1 ximβm as input and a

threshold parameter γ ∈ R associated with an unknown latent variable 𝓁 ∈ R. Mathe-
matically, Pr(yi = k) = Φ(ηi − γk)− Φ(ηi − γk−1), where Φ(·) represents the cumulative
standard normal distribution. The latent variable or latent trait, 𝓁, can be interpreted
as follows: rather than observing 𝓁 directly, we observe its categorical version, which is
determined by yi = k if, and only if, γk−1 ≤ 𝓁i ≤ γk.

In turn, 𝓁i = ∑
p
m=1 ximβm + ϵi, and it is assumed that ϵi ∼ N

(
0, σ2

𝓁

)
with the restriction

that σ2
𝓁 = 1 for the identifiability of the rest of model parameters. It should be noted that

intercepts are not included in liability formulation given that threshold parameters act as
intercepts, with the restriction that −∞ < γ0 < γ1 < · · · < γk < ∞.

2.3. Categorical Multi-Trait (CM)

The presence of multiple ordinal traits, here referred to as categorical multi-trait (CM),
occurs when breeders are interested in more than one ordinal trait. Consider, for instance,
two such traits: “drought tolerance” with categories low = 1, medium = 2, and high = 3 and
“fruit quality” with categories poor = 1, fair = 2, good = 3, very good = 4, and excellent = 5.
It is noteworthy that the number of levels for each trait may differ. The breeder could be
interested in individuals exhibiting high drought resistance and excellent fruit quality.

In this example, it becomes apparent that presuming a multivariate normal distribution
would not be prudent, given the discrete nature of the traits. Therefore, a simple choice
is to use categorical regression models for each trait independently. For each categorical
regression there is a latent variable 𝓁 ∈ R. The combination of multiple categorical
regressions forms a vector of latent variables 𝓁i = (𝓁1, . . . ,𝓁t)

T , 𝓁i ∼ MVN(ηi, Σl), with
ηi = (η1, . . . , ηt)

T and Σ𝓁 = Diag(1, . . . , 1).

2.4. Continuous–Categorical Multi-Trait Mixtures (CCMM)

Suppose we have t traits; a subset is continuous (yi), and the rest are ordinals (𝓁i). They
jointly form a vector, y∗i = (yi,𝓁i)

T . By construction, continuous traits are multivariate
normal, and for categorical traits, the corresponding latent traits are also multivariate
normal. Thus, all the mixed continuous–categorical traits are multivariate normal that can
be formulated as y∗i ∼ MVN

(
µ∗

i , Σ∗), where µ∗
i = (µi, ηi)

T and the variance–covariance

matrix Σ∗ =

[
Σ 0
0 Σl

]
.

2.4.1. Posterior Predictive Distribution and Posterior Expected Loss

The posterior distribution for a vector of parameters θ ∈ Θ, p(θ|X, Y∗) is obtained
using Bayes’ theorem, X is the matrix of molecular markers and Y∗ =

(
y∗T

1 , . . . , y∗T
n
)
, where

each y∗T
i was defined above. In GS, p(θ|X, Y∗) is approximated by the Markov chain

Monte Carlo (MCMC) integration technique. The posterior predictive distribution of a
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candidate line for selection in the context of CCMM scenario is given by p(y∗c |xc, Y∗, X) =∫
θ∈Θ p(y∗c |θ, xc)p(θ|Y∗, X)∂θ.

By combining the Bayesian decision theory for genomic selection [18], we can compute
the posterior expected loss for each candidate:

Lc =
∫

y∗c∈Y∗
c

∫
θ∈Θ

L
(

Fy∗c , θ
)

p(y∗c |θ, xc)p(θ|Y∗, X)∂θdy∗c (1)

where L
(

Fy∗c , θ
)

represents a generic loss function that depends on the multivariate distri-

bution (Fy∗c ) of y∗i = (yi,𝓁i)
T . L(·, ·) could be any of the loss functions proposed in [17,18].

After computing the posterior expected loss for each candidate, a decision maker could
rank each candidate, from minimum to maximum posterior expected loss, and select a
fraction of candidates with the lowest posterior expected loss.

Note that in the above formulation, for model identifiability, we supposed that latent
traits have a variance equal to one, and they are independent of each other; therefore,
Σ𝓁 = Diag(1, . . . , 1). These assumptions are obviously unrealistic; most categorical traits
might be least weakly correlated. Additionally, we suppose that every continuous trait
is independent of each ordinal trait; therefore, solutions based on the above formula-
tion are suboptimal. To date, breeders do not have any practical approaches to capture
the dependence between ordinal traits in genomic selection, let alone in CCMM; conse-
quently, our approach suggests that there is a practical first approach to conduct selection
in CCMM cases.

The above proposal can be implemented using existing software. Specifically, BGLR
can be used to conduct multi-trait and ordinal regressions separately. The MCMC chains
from BGLR can then be used to approximate the posterior expected loss, as given by
Equation (1) for each candidate line, using the MPS-0.1.0 R Package [19].

2.4.2. Simulation Study

We simulated a recurring selection plan with ten selection cycles. In each selection
cycle, an offspring of full siblings was derived from parents randomly chosen from the
entire population. From each offspring, lines of double haploids were randomly generated,
resulting in a total of 2000 lines in each cycle. To represent historical evolution and induce
linkage disequilibrium, 200 generations of random mating were simulated in a population
of 2000 lines segregating for all loci. The allelic frequency was fixed at 0.5. The simulated
genetic component follows Mendelian segregation laws for diploid species. The genome
was composed of 8000 sites segregating independently of each other.

In the case of CM, three correlated categorical traits were genetically simulated based
on three quantitative traits, assuming a full pleiotropic model [22]. The same was carried
out for the CCMM design, although in this case, we simulated two quantitative traits
and one categorical trait (categorized from a quantitative trait), the three of which were
genetically correlated. In both cases, this was carried out by randomly sampling gene
effects for all segregating sites from a multivariate normal distribution with a mean of zero
and a previously stated variance–covariance, to ensure a genetic correlation of quantitative
traits at the first generation of −0.37 between trait 1 and trait 2; a genetic correlation of
0.34 between traits 2 and 3; and a genetic correlation of −0.02 between trait 1 and trait
3. To mimic complex and simple quantitative traits, narrow-sense heritability of 0.3 and
0.6 were assumed for all traits as in [18]. Hereinafter, we will always refer to the traits in
terms of narrow-sense heritability (h2), given that in the simulation plan we simulated a
purely additive model and did not include dominance effects. Each quantitative trait was
transformed into an ordinal trait, each one with three categories in the CM scenario. In
the case of CCMM, two quantitative traits were treated as continuous, and the third was
discretized into three categories.

The population proportion of each category for each categorical trait at the F0 for CM
scenario was as follows: 49% for trait 1 category 1 (T1C1), 34% for T1C2, and 17% for T1C3;
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49% for T2C1, 23% for T2C2, and 28% for T2C3; and 14% for T3C1, 36% for T3C2, and 50%
for T3C3. In the case of CCMM, the proportion of the categorical trait at F0 was 49% (C1),
19% (C2), and 32% (C3). Subsequently, 70% of these lines were used to train the regression
model using the BGLR-1.1.2 software.

Thirty percent of the remaining lines were used as a pool of candidate individuals
for selection, subjected to a 30% selection pressure. Selection was performed by ranking
individuals based on their PEL from lowest to highest. The computation of multivariate
posterior predictive distribution for latent traits and PEL were approximated using the
MPS R Package, assuming preference for the third category of each trait in CM condition.
In the context of CCMM, we assumed the need to increase the genetic values for the two
quantitative traits and to increase the frequency of the third category for the ordinal trait.
Subsequently, the selected lines were crossed by random mating to form the new improved
population. In each selection cycle, the heritability of quantitative traits, the population
mean of quantitative traits, and the population proportion in ordinal traits were monitored,
among other things. This process was repeated twenty times (Monte Carlo replicates).

2.4.3. Experimental Data

This example illustrates the application of CCMM in wheat data. For this purpose,
phenotypic and genotypic information of 300 lines is known. The phenotypic records
correspond to five traits, three of which are continuous (GY-B5IR, GY-B2IR, and GY-BLHT)
and two are discrete (SR-NJ and YR-NJ). The continuous traits include grain yield (GY)
measured in three different selection environments at the CIMMYT experimental field in
Ciudad de Obregón, Mexico: optimal environment (B5IR), intermediate drought (B2IR),
and late heat stress (BLHT). The discrete traits represent the percentage severity of stem rust
(SR) and yellow rust (YR) observed in Njoro, Kenya (NJ). SR and YR traits were placed into
four categories according to the sample quartiles. Category 1 represents individuals who
experienced the highest severity of the disease (upper quartile), whereas category 4 repre-
sents individuals who experienced the lowest severity of the disease (lower quartile). Thus,
this categorization implies a preference for the selection of lines with a higher probability of
belonging to category 4 (the most resistant). Finally, the genotypic information pertains to
single-nucleotide polymorphisms (SNPs) obtained through genotype-by-sequencing (GBS)
technology. Raw data are allocated in https://github.com/bjesusvh/PaperGenes2024
(accessed on 1 June 2024). To replicate a realistic scenario that breeders might encounter,
we randomly divided the data into a training set (300 lines) and a candidate set (50 lines).
The training data were used to calibrate the statistical model. Subsequently, predictions
were made for the candidate lines, with each line ranked based on the posterior expected
loss using Kullback–Leibler loss. Technical details are provided in the Results Section.

3. Results
3.1. Simulated Data

Table 1 provides a summary of the main findings from the simulation study across two
heritability scenarios (h2 = 0.3 and h2 = 0.6) and under the CM and CCMM frameworks.
The “goal” column refers to the selection objectives. In the CM framework, the objective
was to decrease the population proportion of trait category 1 (less desired) across all traits
over time, while increasing the proportion of trait category 3 (more desired). For category
2, the best-case scenario expected a decrease in frequency relative to category 3, although
an increase was not entirely negative for improvement purposes, as category 2 is more
desirable than category 1. According to the results, most scenarios achieved the selection
objective. When comparing the percentage of genetic gain at the end of the selection
program relative to the first cycle, large percentages corresponded to cases where there was
a statistically significant difference (α = 0.01) as a function of time. In the CCMM scenario,
both continuous traits were anticipated to increase their genetic value, and for the discrete
trait, category 3 was the most desired and an increase of frequency expected. Based on

https://github.com/bjesusvh/PaperGenes2024
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the results, the expected objective was achieved for the the two continuous traits and the
discrete trait, with greater percentage genetic gains when h2 = 0.6.

Table 1. Summary of the results obtained from the simulation study of a breeding program under
two scenarios, categorical multi-trait (CM) and continuous–categorical multi-trait mixture (CCMM),
and two heritability conditions.

CM: Categorical Multi-Trait h2 = 0.3 h2 = 0.6

Trait Type Category Notation Goal Achieved Average %
Change Achieved Average %

Change

1 Categorical 1 T1C1 Decrease Yes −5.36 Yes −2.95

1 Categorical 2 T1C2 Increase/decrease Yes 6.65 No 4.39

1 Categorical 3 T1C3 Increase Yes 2.47 Yes −4.72

2 Categorical 1 T2C1 Decrease Yes −21.93 Yes −42.62

2 Categorical 2 T2C2 Increase/decrease Yes 8.72 Yes 9.09

2 Categorical 3 T2C3 Increase Yes 31.06 Yes 84.84

3 Categorical 1 T3C1 Decrease Yes −71.97 Yes −95.29

3 Categorical 2 T3C2 Increase/decrease Yes −38.96 Yes −71.58

3 Categorical 3 T3C3 Increase Yes 47.47 Yes 74.45

CCMM: Continuous–Categorical Multi-trait Mixture h2 = 0.3 h2 = 0.6

Trait Type Category Notation Goal Achieved Average %
change Achieved Average %

change

1 Continuous - T1 Increase Yes 23.96 Yes 50.77

2 Continuous - T2 Increase Yes 185.26 Yes 572.10

3 Categorical 1 T3C1 Decrease Yes −56.32 Yes −85.88

3 Categorical 2 T3C2 Increase/Decrease Yes −5.19 Yes −39.03

3 Categorical 3 T3C3 Increase Yes 100.61 Yes 246.36

Figures 1 and 2 depict the population frequencies of each category in every categorical
trait. Each point on the graphs represents the population proportion in a Monte Carlo
replication, with the x-axis representing selection cycles. Particularly, Figure 1 presents the
results when h2 = 0.3. The trend of population proportions in category 3 of the three traits
(Figure 1c,f,i) is observed to show an increase of frequency across selection cycles: 0.15%
(T1C3), 0.86% (T2C3), and 2.70% (T3C3) per selection cycle. These increases follow a linear
trend, although there is a non-uniform variance in the proportions over time, prompting a
formal comparison in the following section using a non-parametric test.

While the primary focus is on the third category of each trait, which is the desired
one to increase, it is also important to analyze the trend in the other categories. Initially,
there is a negative trend in the first categories of the three traits, as expected. Furthermore,
for category 2, there is a slight increase per selection cycle in trait 1 (0.29%) and trait 2
(0.21%), while in trait 3, there is a negative trend (1.62%). When h2 = 0.6, the trend is
similar. Specifically, for the third category, the increases per selection cycle were 0.03%
(T1C3), 1.92% (T2C3), and 4.24% (T3C3), as shown in Figure 2c, 2f, and 2i, respectively.
The increases for the second and third traits are noted to be greater when h2 = 0.6, in
comparison to when h2 = 0.3, but this is not the case for trait 1.
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For the CCMM scenario and h2 = 0.3, both continuous traits show the tendency to
increase over time, as desired. However, for trait 1 (Figure 3d), this increase was only 0.93%
per cycle, while for the second continuous trait, the increase per cycle was 4.87% (Figure 3e).
For the third category of the third trait, the increase per cycle was 3.33% (Figure 3c). In
conclusion, there were genetic gains in almost all traits.
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In the scenario of h2 = 0.6 in CCMM, the average genetic gain per cycle, assuming
a linear trend, was 2% for trait 1 (continuous) (Figure 4d), 6.1% for trait 2 (continuous)
(Figure 4e), and 6.1% in category 3 of trait 3 (Figure 4c). In summary, the selection goal was
achieved in two out of the three traits.

Upon examination of Figures 1–4, it becomes apparent that the observed data exhibit
deviations from the linear trend. Additionally, there is a discernible trend of increasing
variance with the progression of improvement cycles. In response, we conducted the
non-parametric Kruskal–Wallis test to assess whether there are statistically significant
differences in population means across time, and the non-parametric Mann–Whitney U
test with Bonferroni correction was used to conduct multiple means comparisons.

The outcomes of the Kruskal–Wallis test reveal significant disparities (α = 0.05) in
population means for the following combinations within the CM scenario with h2 = 0.3:
T1C1, T2C1, T3C1, T1C2, T2C2, T3C2, T2C3, and T3C3. Similarly, in the CM scenario
with h2 = 0.6, significant differences are observed for T2C1, T3C1, T2C2, T3C2, T2C3, and
T3C3. Tables 2 and 3 present the results of the Mann–Whitney U test with Bonferroni
correction for multiple mean comparisons (α = 0.05) for T2C3 and T3C3 under h2 = 0.3
and h2 = 0.6, respectively. In these tables, “S” denotes statistically significant differences in
mean comparisons between cycles, and “NS” indicates non-significant differences.
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Note that in the case of T3C3 (h2 = 0.3), significant differences relative to cycle 1 are
observed from cycles 9 and 10 onwards, as shown in Table 2. These discrepancies became
apparent towards the latter stages of the breeding program. Conversely, for T3C3 (h2 = 0.6),
a statistical significance in differences was established as early as the initial selection cycle.

Table 2. Results of the Kruskal–Wallis test and Mann–Whitney U test for results of trait 2 category 3
(T2C3) and trait 3 category 3 (T3C3) for h2 = 0.3.

Trait 2 Category 3, h2 = 0.3

p-Value = 2.14 × 10−6 from the Kruskal–Wallis Test

p-Values from the Mann–Whitney U Test Using the Bonferroni Correction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 2 NS

Cycle 3 NS NS

Cycle 4 NS NS NS

Cycle 5 NS NS NS NS

Cycle 6 NS NS NS NS NS

Cycle 7 NS NS NS NS NS NS

Cycle 8 NS NS NS NS NS NS NS

Cycle 9 S S NS NS NS NS NS NS

Cycle 10 S S NS S NS NS NS NS NS
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Table 2. Cont.

Trait 3 Category 3, h2 = 0.3

p-value = 7.55×10−29 from the Kruskal–Wallis test

p-values from the Mann–Whitney U test using the Bonferroni correction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 2 S

Cycle 3 S S

Cycle 4 S S NS

Cycle 5 S S NS NS

Cycle 6 S S S NS NS

Cycle 7 S S S S NS NS

Cycle 8 S S S S S NS NS

Cycle 9 S S S S S S NS NS

Cycle 10 S S S S S S S NS NS

Table 3. Results of the Kruskal–Wallis test and the Mann–Whitney U test for results of trait 2 category
3 (T2C3) and trait 3 category 3 (T3C3) for h2 = 0.6.

Trait 2 Category 3, h2 = 0.6

p-Value = 3.90 × 10−23 from the Kruskal–Wallis Test

p-Values from the Mann–Whitney U Test Using the Bonferroni Correction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 2 NS

Cycle 3 S NS

Cycle 4 S S NS

Cycle 5 S S S NS

Cycle 6 S S S NS NS

Cycle 7 S S S NS NS NS

Cycle 8 S S S S NS NS NS

Cycle 9 S S S S S S NS NS

Cycle 10 S S S S S NS NS NS NS

Trait 3 Category 3, h2 = 0.6

p-value = 2.74 × 10−32 from the Kruskal–Wallis test

p-values from the Mann–Whitney U test using the Bonferroni correction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 2 S

Cycle 3 S S

Cycle 4 S S NS

Cycle 5 S S S NS

Cycle 6 S S S S NS

Cycle 7 S S S S S NS

Cycle 8 S S S S S S NS

Cycle 9 S S S S S S S NS

Cycle 10 S S S S S S S NS NS
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For T2C3 (h2 = 0.6) and T3C3 (h2 = 0.6), statistically significant differences relative to
cycle 1 began to appear as early as selection cycle 3, as depicted in Table 3. Furthermore,
nearly all conceivable mean comparisons yielded statistically significant results.

Furthermore, differences were also observed when testing CCMM. In the case of trait
2 (continuous, h2 = 0.3), disparities relative to cycle 1 began to emerge as early as cycle
4, with the majority of possible comparisons yielding statistically significant results, as
presented in Table 4. For the categorical trait, significant differences were observed across
all three categories. However, Table 4 presents result solely for category 3 of the trait (the
preferred category), revealing that significant differences were apparent from early selection
cycles, with nearly all possible comparisons being statistically significant. Regarding trait 1
(continuous), no differences were observed, indicating that this trait remained neutral with
no genetic gain or loss.

Table 4. Results of the Kruskal–Wallis test and the Mann–Whitney U test for results of continuous–
categorical multi-trait mixture simulations for h2 = 0.3.

Trait 2 Continuous, h2 = 0.3

p-Value = 8.46 × 10−22 from the Kruskal–Wallis Test

p-Values from the Mann–Whitney U Test Using the Bonferroni Correction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 2 NS

Cycle 3 NS NS

Cycle 4 S NS NS

Cycle 5 S NS NS NS

Cycle 6 S S NS NS NS

Cycle 7 S S S NS NS NS

Cycle 8 S S S S S NS NS

Cycle 9 S S S S S S NS NS

Cycle 10 S S S S S S NS NS NS

Cycle 10 NS NS S NS S S S NS NS

Trait 3 Category 3, h2 = 0.3

p-value = 1.79 × 10−34 from the Kruskal–Wallis test

p-values from the Mann–Whitney U test using the Bonferroni correction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 2 NS

Cycle 3 S NS

Cycle 4 S S NS

Cycle 5 S S S NS

Cycle 6 S S S S NS

Cycle 7 S S S S S NS

Cycle 8 S S S S S S NS

Cycle 9 S S S S S S S NS

Cycle 10 S S S S S S S S NS

Similarly, when h2 = 0.6, more pronounced significant differences were observed. For
trait 2 (continuous), genetic gains from cycle to cycle of selection were higher compared
to when h2 = 0.3. This conclusion is drawn from the comparison of the slopes of the
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trend lines in both cases (Figure 3e vs. Figure 4e) and is further confirmed by the non-
parametric test, where a greater number of statistically different comparisons were found
(Table 5). Additionally, the categorical trait also displayed significant differences across all
three categories of the trait, and unlike when h2 = 0.3, these differences were of a greater
magnitude. Comparisons for category 3 (the preferred category) are presented in Table 5.
Once again, trait 1 (continuous) showed neither genetic gain nor loss.

Table 5. Results of the Kruskal–Wallis test and the Mann–Whitney U test for results of continuous–
categorical multi-trait mixtures simulations for h2 = 0.6.

Trait 2 Continuous, h2 = 0.6

p-Value = 8.46 × 10−22 from the Kruskal–Wallis Test

p-Values from the Mann–Whitney U Test Using the Bonferroni Correction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 2 NS

Cycle 3 S NS

Cycle 4 S NS NS

Cycle 5 S S NS NS

Cycle 6 S S S NS NS

Cycle 7 S S S NS NS NS

Cycle 8 S S S S NS NS NS

Cycle 9 S S S S S NS NS NS

Cycle 10 S S S S S S NS NS NS

p-value = 1.79 × 10−34 from the Kruskal–Wallis test

p-values from the Mann–Whitney U test using the Bonferroni correction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 2 S

Cycle 3 S S

Cycle 4 S S S

Cycle 5 S S S S

Cycle 6 S S S S NS

Cycle 7 S S S S S NS

Cycle 8 S S S S S S NS

Cycle 9 S S S S S S S NS

Cycle 10 S S S S S S S S NS

3.2. Experimental Data

Figure 5 depicts the distribution of the traits involved in the selection. The continuous
traits (Figure 5a–c) exhibit symmetrical distributions. The Shapiro–Wilk test indicates
that GY-B2IR and BLHT are normally distributed (α = 0.01). Therefore, we pragmatically
assumed that all three traits follow a multivariate normal distribution. However, the
discrete traits are asymmetrical, and normality is questionable. Therefore, we categorized
into four categories as described previously.
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Figure 5. Histograms of the five traits. Plots (a–c) show approximately symmetrical normal distribu-
tions for the continuous traits. Plots (d,e) exhibit highly skewed distributions for the discrete traits.

In addition, our example supposes that there is genomic information for 50 candidates
for selection. In Appendix A, R codes and detailed explanations are provided to replicate
the exercise; with minor modifications, users can adapt the code to suit their own needs.

Therefore, each one the 50 candidates lines have a rank based on PEL. Suppose we
are interested in identifying the top 10 candidates. The pair plots in Figure 6 illustrate the
estimated GEBVs for each trait (including latent BVs for ordinal traits), highlighting (blue
dots) the lines that should be selected. The red dotted lines indicate the regions where we
expect the selected lines to fall, given the need to increase BVs across all traits. Notably,
almost all the selected lines fall within these regions, confirming that these lines are the
best according to the PEL criterion.

Now, suppose we ignore the presence of ordinal traits and perform selection consid-
ering only the three continuous traits. The question that arises is whether the ranking
of each line remains the same compared to when selection considers all traits. Figure 7
shows the discrepancies when selecting based on both approaches. By ignoring the ordinal
traits, the top 10 lines identified are 36, 22, 3, 14, 20, 26, 50, 5, 29, and 33, whereas when
considering all traits, the top 10 lines are 22, 35, 43, 33, 21, 4, 6, 8, 9, and 1. Note that only
lines 22 and 33 appear in both cases, although they have different rankings. Observing the
ranking of all lines, it is evident that the order is entirely different in both scenarios. These
types of discrepancies result in suboptimal selection in breeding programs, highlighting
the importance of selection in the context of CCMM.
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Figure 7. Ranking vs. posterior expected loss for each of the 50 candidates. The label above each
bar represents the line ID number. (a) Results considering all traits (continuous and categorical);
(b) results considering only continuous traits and ignoring categorical traits.

Remember that this exercise mimics a real CCMM scenario. In practice, in the absence
of statistical methodologies to address this challenge, selection is generally performed
considering only continuous traits, or using categorical traits as continuous. But, this
simple example illustrates the importance of using appropriate methodologies in an easy
way to implement.

Observing the ranking of all lines (Figure 7a,b), it is evident that the order is entirely
different in both scenarios. Such discrepancies result in suboptimal selection in breeding
programs, underscoring the importance of selection in the context of CCMM. These discrep-
ancies highlight the critical role of comprehensive selection methods that integrate both
continuous and discrete traits. By neglecting discrete traits, valuable genetic variations
that could enhance the overall performance and adaptability of the breeding lines are
overlooked. Furthermore, the imbalance created by focusing solely on continuous traits
can lead to an overemphasis on certain characteristics while neglecting others that are
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equally important for the success of the breeding program. This selective pressure might
inadvertently favor traits that are advantageous under specific conditions but detrimental
in broader contexts, thereby reducing the robustness and versatility of the selected lines.

The exclusion of discrete traits not only limits the genetic diversity but also reduces the
potential for innovation in breeding strategies. Discrete traits often represent key qualitative
attributes, such as disease resistance or drought tolerance, which are critical for developing
resilient and high-performing crop varieties. Ignoring these traits can make the breeding
outcomes less applicable to real-world agricultural challenges, where such attributes play a
crucial role in ensuring sustainable production and food security.

4. Discussion

This study introduces a novel methodology for optimizing genomic parental selection
in breeding programs by integrating both categorical and continuous traits using Bayesian
decision theory (BDT) and latent trait models within a multivariate normal distribution
framework. The approach enhances selection precision and flexibility, capturing the genetic
architecture of diverse traits more accurately. Extensive simulations and a real-world
application demonstrate its practical utility and potential to advance genetic improvements
across various breeding contexts.

The methodology significantly improves selection precision by incorporating both trait
types, addressing the challenge of dimensionality, and ensuring computational efficiency
and practical implementation using existing software. This comprehensive approach
allows for breeders to achieve more informed selection decisions, particularly for traits
with categorical or ordinal distributions, such as disease resistance or quality traits. The
successful application in simulations with various trait combinations and heritability’s
underscores its robustness and practical value. The simulation results, summarized in
Table 1, highlight the differential outcomes under various heritability scenarios (h2 = 0.3
and h2 = 0.6) and selection frameworks (CM and CCMM). Notably, the CCMM framework
yielded significant genetic gains for continuous traits and achieved selection objectives
for categorical traits, albeit with some variability. This suggests that CCMM models
can effectively balance the trade-offs between improving continuous traits and achieving
categorical trait targets, which is critical for comprehensive breeding programs.

Despite its strengths, our study acknowledges limitations, such as the assumption
of uncorrelated latent traits, which may lead to the loss of valuable trait correlation infor-
mation. Future research should focus on incorporating correlations between latent traits
and expanding validation across different species and breeding programs to ensure the
methodology’s robustness and generalizability. Future research could explore the appli-
cation of this methodology to real-world breeding programs, evaluating its effectiveness
in practical scenarios. Integrating this approach with other genomic selection tools could
further enhance its adoption and effectiveness in breeding programs.

5. Conclusions

This study introduces a novel methodology to optimize genomic parental selection
in scenarios involving CM and CCMM. By leveraging the BDT, we effectively address the
complexities of selecting candidates across both ordinal and continuous traits. Our ap-
proach underscores the importance of considering both trait types simultaneously, enabling
precise and flexible genetic selection.

Specifically, we observed significant genetic gains in almost all traits, with a notable
increase in the continuous traits by 4.87% per cycle and the categorical trait by 3.33% per
cycle under the CCMM framework when heritability was set at 0.3. Furthermore, for a
heritability of 0.6, the genetic gains were 2% and 6.1% per cycle for the two continuous
traits, respectively, and 6.1% per cycle for the categorical trait. These results highlight the
method’s effectiveness in achieving the selection objectives and demonstrate the practical
utility of our approach. Results from our experimental data further support the efficacy of
the proposed method, showing a consistent improvement in trait selection accuracy and
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overall breeding efficiency. This reinforces the practical applicability of our methodology
in real-world breeding programs.

The integration of latent trait models within a multivariate normal distribution frame-
work ensures comprehensive and efficient selection, validated through extensive sim-
ulations. This unified approach for CM and CCMM scenarios represents a significant
advancement in genomic selection. Future research should refine these models and ex-
plore their broader applications, promising substantial genetic improvements in various
breeding programs.
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Appendix A

“Optimizing Genomic Parental Selection for Categorical and Continuous–Categorical
Multi-trait Mixtures”

The following lines of R codes illustrate how to apply the BDT approach in a CCMM
context. Chunk #1 loads the required packages and data. Three hundred lines are used
to train the statistical learning models, and 50 lines are used as candidates for selection,
emulating a real scenario in genomic selection. We used Bayesian ridge regression (BRR) to
impose quadratic penalization to regression coefficients. BGLR is instructed to save the
MCMC chains of the regression coefficients using the argument saveEffects = TRUE. After
iterating 50,000 times, the first 20,000 MCMC chains are discarded as burn-in, and thinning
at lag five. The remaining MCMC chains are used for inference in this example.
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regression coefficients in ordinal regression) of latent traits. Σℓଶ×ଶ = ቂ1 00 1ቃ. 0ଷ×ଶ is the diagonal of Σ∗. 

0ଷ×ଶ = 0 00 00 0൩. 

Therefore, Σ∗ is conformed as follows: 

Chunk #2 fits the regression models saving MCMC chains in the “out” folder that exists in
our working directory. The Multitrait function of BGLR [20] is used to fit the multivariate
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regression model on the three continuous traits. Setting saveEffects = TRUE allows the
MCMC chains of the covariance matrix to be saved. Subsequently, categorical regression
models are independently fitted to the remaining two discrete traits.

Genes 2024, 15, x FOR PEER REVIEW 18 of 20 
 

 

Chunk #1 
library(BGLR); library(MPS)  
setwd(“your-path”)  
set.seed(63) # for reproducibility 
geno <- readRDS("./data/X.rds"); pheno <- readRDS("./data/Y.rds") 
id_candidates <- sample(x = 1:50, size = 50, replace = FALSE) 
Y <- pheno[-id_candidates,]; X <- geno[-id_candidates,] 
Xcandidates <- geno[id_candidates,] 
ETA <- list(list(X = X, model='BRR', saveEffects = TRUE)) 
no_iter <- 50e3 
no_burn <- 20e3 
thin <- 5 
id_samples <- which(seq(1, no_iter, thin) > no_burn) 

Chunk #2 fits the regression models saving MCMC chains in the “out” folder that 
exists in our working directory. The Multitrait function of BGLR [20] is used to fit the 
multivariate regression model on the three continuous traits. Setting saveEffects = TRUE 
allows the MCMC chains of the covariance matrix to be saved. Subsequently, categorical 
regression models are independently fitted to the remaining two discrete traits. 

Chunk #2 
# Fit Multitrait regression model on quantitative traits (traits 1,2,3) 
fmQ <- Multitrait(y = Y[,1:3],  
                  ETA = ETA, intercept = TRUE,    
                  resCov = list(type = "UN", saveEffects = TRUE),  
                  nIter = no_iter, burnIn = no_burn, thin = thin,  
                  verbose = FALSE, saveAt = "./out/") 
# Fit ordinal regression on categorical trait (trait 4) 
fmO1 <- BGLR(Y[,4], response_type = 'ordinal', 
            ETA = ETA, nIter = no_iter, burnIn = no_burn, thin = thin, 
            verbose = FALSE, saveAt = "./out/O1") 
# Fit ordinal regression on categorical trait (trait 5) 
fmO2 <- BGLR(Y[,5], response_type = 'ordinal', 
             ETA = ETA, nIter = no_iter, burnIn = no_burn, thin = thin, 
             verbose = FALSE, saveAt = "./out/O2") 

Chunk #3 starts reading MCMC samples to create the array of regression coefficients 
and covariance matrix 𝛴∗. This matrix should have 15 distinct entries corresponding to 
the variances and covariances among the five traits. Recall that this matrix has the 

following structure: 𝛴∗ = 𝛴ଷ×ଷ 0ଷ×ଶ0ଶ×ଷ 𝛴ℓమ×మ൨. We detail each component of this matrix below: Σଷ×ଷ is the covariance matrix corresponding to quantitative traits, 
Σଷ×ଷ =  𝜎ଵଶ 𝜎ଵଶ 𝜎ଵଷ𝜎ଵଶ 𝜎ଶଶ 𝜎ଶଷ𝜎ଵଷ 𝜎ଶଷ 𝜎ଷଶ . 

Σℓଶ×ଶ  represent the covariance matrix (diagonal by model identifiability of 
regression coefficients in ordinal regression) of latent traits. Σℓଶ×ଶ = ቂ1 00 1ቃ. 0ଷ×ଶ is the diagonal of Σ∗. 

0ଷ×ଶ = 0 00 00 0൩. 

Therefore, Σ∗ is conformed as follows: 

Chunk #3 starts reading MCMC samples to create the array of regression coefficients
and covariance matrix Σ∗. This matrix should have 15 distinct entries corresponding to the
variances and covariances among the five traits. Recall that this matrix has the following

structure: Σ∗ =

[
Σ3×3 03×2
02×3 Σ𝓁2×2

]
. We detail each component of this matrix below:

Σ3×3 is the covariance matrix corresponding to quantitative traits,

Σ3×3 =

 σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

.

Σ𝓁2×2 represent the covariance matrix (diagonal by model identifiability of regression
coefficients in ordinal regression) of latent traits.

Σ𝓁2×2 =

[
1 0
0 1

]
03×2 is the diagonal of Σ*.

03×2 =

0 0
0 0
0 0


Therefore, Σ* is conformed as follows:

Σ* =


σ2

1 σ12 σ13 0 0
σ12 σ2

2 σ23 0 0
σ13 σ23 σ2

3 0 0
0 0 0 1 0
0 0 0 0 1


This matrix is filled to use in MPS R Package as the following: provide the upper

triangular matrix including the main diagonal in the order: σ2
1 , σ12, σ13, 0, 0, σ2

2 , σ23, 0, 0, σ2
3 ,

0, 0, 1, 0, 1.
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The last line in chunk #3, the PEL, is approximated using the MPS R Package. In 
addition to the PEL, the ‘out’ object includes the posterior punctual BVs of each candidate 
for each trait and the ranking of each candidate. 
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