
Citation: Venkatesh, R.; Gandhi, P.;

Choudhary, A.; Kathare, R.;

Chhablani, J.; Prabhu, V.; Bavaskar, S.;

Hande, P.; Shetty, R.; Reddy, N.G.;

et al. Evaluation of Systemic Risk

Factors in Patients with Diabetes

Mellitus for Detecting Diabetic

Retinopathy with Random Forest

Classification Model. Diagnostics 2024,

14, 1765. https://doi.org/10.3390/

diagnostics14161765

Academic Editor: José

María Ruíz-Moreno

Received: 19 July 2024

Revised: 8 August 2024

Accepted: 12 August 2024

Published: 13 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Evaluation of Systemic Risk Factors in Patients with Diabetes
Mellitus for Detecting Diabetic Retinopathy with Random Forest
Classification Model
Ramesh Venkatesh 1,* , Priyanka Gandhi 1, Ayushi Choudhary 1 , Rupal Kathare 1, Jay Chhablani 2 ,
Vishma Prabhu 1, Snehal Bavaskar 1, Prathiba Hande 1, Rohit Shetty 3, Nikitha Gurram Reddy 4,
Padmaja Kumari Rani 4 and Naresh Kumar Yadav 1

1 Department of Retina and Vitreous, Narayana Nethralaya, Bengaluru 560010, India;
phgandhi28@gmail.com (P.G.); ayushichoudhary10@gmail.com (A.C.); drrupalkathare@gmail.com (R.K.);
dr.vishmaprabhu@gmail.com (V.P.); snehal1128@gmail.com (S.B.); prathibahande@gmail.com (P.H.);
vasudha.naresh@gmail.com (N.K.Y.)

2 Medical Retina and Vitreoretinal Surgery, University of Pittsburgh School of Medicine,
Pittsburg, PA 15213, USA; jay.chhablani@gmail.com

3 Department of Cornea and Refractive Services, Narayana Nethralaya, Bengaluru 560010, India;
drrohitshetty@yahoo.com

4 Anant Bajaj Retina Institute, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad 500034, India;
nikithareddy67345@gmail.com (N.G.R.); rpk@lvpei.org (P.K.R.)

* Correspondence: vramesh80@yahoo.com

Abstract: Background: This study aims to assess systemic risk factors in diabetes mellitus (DM)
patients and predict diabetic retinopathy (DR) using a Random Forest (RF) classification model.
Methods: We included DM patients presenting to the retina clinic for first-time DR screening. Data
on age, gender, diabetes type, treatment history, DM control status, family history, pregnancy history,
and systemic comorbidities were collected. DR and sight-threatening DR (STDR) were diagnosed via
a dilated fundus examination. The dataset was split 80:20 into training and testing sets. The RF model
was trained to detect DR and STDR separately, and its performance was evaluated using misclassifi-
cation rates, sensitivity, and specificity. Results: Data from 1416 DM patients were analyzed. The RF
model was trained on 1132 (80%) patients. The misclassification rates were 0% for DR and ~20% for
STDR in the training set. External testing on 284 (20%) patients showed 100% accuracy, sensitivity,
and specificity for DR detection. For STDR, the model achieved 76% (95% CI-70.7%–80.7%) accuracy,
53% (95% CI-39.2%–66.6%) sensitivity, and 80% (95% CI-74.6%–84.7%) specificity. Conclusions: The
RF model effectively predicts DR in DM patients using systemic risk factors, potentially reducing
unnecessary referrals for DR screening. However, further validation with diverse datasets is necessary
to establish its reliability for clinical use.

Keywords: new cases; diabetes; screening; diabetic retinopathy; random forest classifier

1. Introduction

Diabetes mellitus (DM) is a global epidemic that causes a wide range of complications
in the human body [1]. According to recently released information from the International
Diabetes Federation Diabetes Atlas in 2021, India has the world’s second-highest number
of people with diabetes, trailing only China [2]. Diabetic retinopathy (DR) is one of the
many serious ocular complications of DM [3,4]. The primary goal of screening DM patients
for DR is to identify and treat sight-threatening DR [STDR], i.e., proliferative DR and/or
diabetic macular edema, while also recommend follow-up for those who do not have DR
or STDR [5,6]. Worldwide, existing DR screening practices include dilated fundoscopy
and evaluation by ophthalmologists or teleophthalmology tools such as mydriatic and
non-mydriatic fundus cameras [7]. In developing countries such as India, the current DR
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screening practice generally involves a dilated fundus examination by a trained retina
specialist of referred DM patients identified by other specialists or general ophthalmologists,
optometrists, and diabetologists. The most recent publication from the SMART India Study
group revealed a national prevalence of 12.5% for DR and 4.0% for STDR [6,8]. With a
large population of DM patients to be screened for DR, a low prevalence of DR and STDR,
and a limited number of retina specialists for a country with high population density
such as India, alternative strategies assisted by technology and artificial intelligence (AI)
must be devised to screen a large number of DM patients and detect cases which have a
high probability of having DR and only refer cases with STDR to retina specialists who
require immediate attention. An AI-based machine learning-driven predictive model could
provide a rapid and a practical solution for screening DR.

Machine learning (ML) is a branch of AI and is highly effective in creating predictive
models. It learns from data without direct programming, indicating that the expression
of a particular task improves with incremental data and variables. Recently, ML has
demonstrated great potential for diagnostic applications [9]. Many studies in the field
of AI in DR focus on utilizing color fundus and fluorescein angiography images and
advanced, complicated ML techniques to identify cases of referable and non-referable
DR [10–23]. To the best of our knowledge, we did not come across literature that used
the patient’s demographic and systemic risk factor data to objectively predict the risk of
developing DR or STDR. We propose that utilizing a patient’s demographic profile and
systemic risk factors is a simple and practical approach to identifying those at high or low
risk of developing DR. This method could significantly streamline DR screening processes.
In a recent publication involving multiple centers, significant systemic risk factors were
identified that could be utilized to determine the optimal timing for initial DR screening
for maximizing the detection of DR and STDR cases. These risk factors were identified by a
joint team of trained retina experts and multiple text-based generative AI sources [24]. With
this knowledge, we aimed to develop a predictive model using supervised ML, trained on
patients’ demographic and systemic risk factor data, to accurately predict the likelihood of
DR at initial screening. This model could be a valuable tool for healthcare professionals,
including non-retina specialists, general ophthalmologists, optometrists, and diabetologists,
helping them determine which DM patients need direct screening by a retina specialist and
which can be screened via teleophthalmology without direct referral.

In the field of data mining for disease prediction, a range of supervised ML algorithms
have been employed [25]. The Support Vector Machine model was commonly employed;
however, the Random Forest (RF) model exhibited higher accuracy due to its ability to
minimize bias and variance [25].

Thus, the main objective of this study was to evaluate the predictive efficacy of a super-
vised ML-based RF classifier model for detecting DR based on the patient’s demographic
and systemic risk factor information at a hospital-based setting.

2. Methods
2.1. Dataset

This retrospective cohort study included patients aged ≥18 years diagnosed with type
1 or type 2 DM who visited our hospital’s diabetic and/or retina clinics for the first time for
DR screenings between January and December 2023. Demographic and medical history
data were extracted from electronic medical records and documented in Microsoft® Excel
2021. Collected information included age, gender, DM type, treatment history (oral hypo-
glycemic agents, insulin, or both), DM control (HbA1C levels if available), family history of
DM, pregnancy status during DR screening, and associated comorbidities (hypertension,
renal disease, cerebrovascular accident, cardiovascular disease, dyslipidemia, and anemia).

A trained retina specialist (RV) with over 10 years of experience conducted fundus
evaluations using indirect ophthalmoscopy under mydriasis and documented findings
with Ultrawide field Optos® imaging (Optos, Daytona, UK). Patients were diagnosed with
DR if any signs of DR were present in either eye, irrespective of severity, stage, or macular



Diagnostics 2024, 14, 1765 3 of 10

status. The presence of STDR was noted based on signs of proliferative DR, diabetic macular
edema, or both in any eye. Missing values were estimated using mean imputation for
quantitative variables and mode imputation for qualitative variables in Microsoft® Excel
with XLSTAT (v2023.3.1.1416) (Denver, CO, USA).

2.2. Computational Methods

The collected dataset was divided into training (80%) and testing (20%) sets. An
ensemble learning approach using the RF classifier algorithm was employed. The training
samples were chosen randomly with replacement, and a bagging technique was used
to create a forest of 500 trees, each consisting of 300 samples. The final prediction was
derived from the majority vote of the individual decision trees. The model parameters were
optimized to ensure minimal mean square error and high prediction accuracy. Parameters
included a minimum node size of 2, minimum child node size of 1, maximum tree depth of
20, and a complexity parameter of 0.0001. These values were determined through various
permutations and combinations to balance model complexity and generalization, thereby
mitigating overfitting while ensuring accurate predictions.

Two RF classifier models were developed, each with distinct dependent variables. The
first model (RF1) was designed to detect any stage of DR, while the second model (RF2)
focused on detecting STDR. Both models utilized the same set of independent variables.
The RF models employed out-of-bag (OOB) evaluation for internal cross-validation, treating
the training set as a test set for quality assessment. The trained RF1 and RF2 models were
then used to predict the likelihood of DR and STDR, respectively, on an independent test
dataset that had not been used in training to ensure unbiased results. The classifications
generated by the models for the test set were assessed for their effectiveness using the
sensitivity analysis in the XLSTAT statistical software (v2023.3.1.1416) (Figure 1).Diagnostics 2024, 14, x FOR PEER REVIEW 4 of 10 
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3. Results

The dataset included systemic risk factor information from 1416 DM patients. The data
were split into training (80%, 1132 patient samples) and testing (20%, 284 patient samples)
sets. Table 1 summarizes the patient information in both sets, providing an overview of
their distribution and representation.

Table 1. Distribution and representation of different sample categories of patients with diabetes
mellitus used for this study.

Variables Model Training Model Testing

Sample size (n, %) 1132 (80) 284 (20)

Age (mean ± SD) 49.28 ± 13.90 46.55 14.1

Gender
Female (n, %) 390 91 (32)

Male (n, %) 742 193 (68)

Type of DM
T1DM (n, %) 39 (3) 13 (5)

T2DM (n, %) 1093 (97) 271 (95)

HbA1C levels (mean ± SD) 8.93 ± 2.12 9.26 1.42

DM treatment with

No treatment (n, %) 55 (5) 14 (5)

OHA (n, %) 813 (72) 212 (75)

Insulin (n, %) 79 (7) 19 (7)

OHA + Insulin (n, %) 185 (16) 39 (14)

Control of DM
Controlled (n, %) 551 (49) 141 (50)

Not controlled (n, %) 581 (51) 143 (50)

Family history of DM
Absent (n, %) 569 (50) 138 (49)

Present (n, %) 563 (50) 146 (51)

Pregnancy status Not pregnant (n, %) 1132 (100) 284 (100)

Systemic co-morbidity
Absent (n, %) 598 (53) 160 (56)

Present (n, %) 534 (47) 124 (44)

Presence of DR in any eye
Absent (n, %) 569 (50) 138 (49)

Present (n, %) 563 (50) 146 (51)

Presence of STDR in any eye
Absent (n, %) 828 (73) 212 (75)

Present (n, %) 304 (27) 72 (25)
Abbreviations: DM—diabetes mellitus; DR—diabetic retinopathy; STDR—sight threatening diabetic retinopathy;
OHA—oral hypoglycemic agents; SD—standard deviation; T1DM—Type 1 diabetes mellitus; T2DM—Type 2
diabetes mellitus.

The model’s accuracy was assessed by quantifying the misclassification rate for the
OOB evaluation samples. The study found correct classification rates of 100% for detecting
any DR and approximately 80% for detecting STDR in validation samples. For OOB
samples, the positive and negative predictive values were 100% for DR and 85% and 64%
for STDR, respectively. The RF models identified family history of diabetes mellitus as the
most significant predictor for detecting both DR and STDR stages (Table 2).
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Table 2. Variable importance for detecting DR and STDR using Random Forest Classifier Model.

Factors
Any DR Stage STDR Stage

Absent Present Overall Absent Present Overall

Age 1.567 4.495 4.332 4.848 1.850 4.798

Gender 0.286 0.645 0.656 1.190 0.419 1.027

HbA1c 0.700 4.714 4.684 1.755 −1.966 −0.139

DM type 2.157 1.587 3.327 −0.711 0.810 0.103

DM treatment 5.537 3.493 6.042 −0.264 2.581 1.997

DM control 0.311 1.998 2.103 1.963 −1.251 0.959

Family history of DM 99.884 112.021 121.556 27.086 45.613 41.069

Pregnancy status 0.000 0.000 0.000 0.000 0.000 0.000

Systemic co-morbidity 1.384 1.410 1.846 −0.364 −0.250 −0.535
Abbreviations: DR—diabetic retinopathy; STDR—sight threatening diabetic retinopathy; HbA1c—Glycosylated
hemoglobin; DM—diabetes mellitus.

Table 3 represents a contingency table comparing the RF model predictions with clini-
cian observations for each test sample. Sensitivity analyses results are summarized in Table 4.
For test samples, the RF model detected DR with 100% accuracy (95% CI: 100%–100%),
100% sensitivity (95% CI: 100%–100%), and 100% specificity (95% CI: 100%–100%). For
STDR, the model achieved a 76% accuracy (95% CI: 70.7%–80.7%), 53% sensitivity (95% CI:
39.2%–66.6%), and 80% specificity (95% CI: 74.6%–84.7%).

Table 3. Contingency tables comparing the model’s predictions against the clinician’s observations.

Observed
Data

(n = 284)

Model Prediction (n = 284) Observed
Data

(n = 284)

Model Prediction (n = 284)

DR Present
(n, %)

DR Absent
(n, %)

DR Present
(n, %)

DR Absent
(n, %)

DR Present
(n, %) 146 (51) 0 (0) STDR

Present (n, %) 25 (9) 47 (16)

DR Absent
(n, %) 0 (0) 138 (49) STDR Absent

(n, %) 22 (8) 190 (67)

Abbreviations: DR—diabetic retinopathy; STDR—sight threatening diabetic retinopathy.

Table 4. Sensitivity analyses of the testing samples for detecting DR and STDR.

Statistic

Analysis for Detecting DR Analysis for Detecting STDR

Value
Lower
Bound
(95%)

Upper
Bound
(95%)

Value
Lower
Bound
(95%)

Upper
Bound
(95%)

Correct classification 1.000 1.000 1.000 0.757 0.707 0.807

Misclassification 0.000 0.000 0.000 0.243 0.193 0.293

Sensitivity 1.000 0.968 1.000 0.532 0.392 0.666

Specificity 1.000 0.967 1.000 0.802 0.746 0.847

False positive rate 0.000 0.000 0.000 0.198 0.148 0.249

False negative rate 0.000 0.000 0.000 0.468 0.331 0.605

Prevalence 0.514 0.456 0.572 0.165 0.122 0.209

Positive Predictive Value 1.000 1.000 1.000 0.347 0.237 0.457

Negative Predictive Value 1.000 1.000 1.000 0.896 0.855 0.937
Abbreviations: DR—diabetic retinopathy; STDR—sight threatening diabetic retinopathy.
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4. Discussion

In summary, this study utilized the demographic and systemic medical history data of
DM patients to develop a supervised ML-based predictive model. This model was capable
of detecting and classifying patients into two groups: those with the potential to develop
DR or STDR, and those without. The model demonstrated a remarkable degree of accuracy
for predicting DR in the study. Furthermore, when evaluating the model using new patient
samples, it exhibited a 100% accuracy rate for detecting DR and a 76% accuracy rate for
detecting STDR.

Various risk factors influence DR screening in newly diagnosed DM patients, either
independently or interdependently. The American Diabetes Association (ADA) guidelines,
widely accepted worldwide, primarily base DR screening recommendations on two risk
factors: type of DM and pregnancy status [5]. However, community-based studies have
identified at least 12 risk factors that affect the development or progression of DR, making
the ADA guidelines appear overly simplistic and outdated [26]. Therefore, developing a
concise set of key risk factors for routine clinical use has become essential.

In a recent multicenter study involving our group, relevant risk factors of varying
importance were identified to optimize the timing of initial DR screening, maximizing the
yield of DR and STDR cases for retina specialists. A collaborative team of retina experts
and text-based generative AI resources identified these risk factors [24]. Consequently, this
study developed a prediction model for detecting DR and STDR using the identified risk
factors and patient demographic data.

One notable exclusion from our study’s pool of risk factors for identifying DR was
the duration of DR. We are aware that DR is a retinal complication of long-term DM that
affects the retinal microvascular system [27]. As a result, the risk of developing DR or STDR
increases with longer duration of DM. However, in real-world clinical practice, particularly
in low- or middle-income countries where annual screening for DM is not routinely per-
formed, knowing the exact duration of DM is unlikely. Even the ADA guidelines advise
patients with type 2 DM to be screened promptly after diagnosis because many patients
with type 2 DM have the disease for a long time before being diagnosed. Patients with type
1 DM, on the other hand, are advised to undergo screening within 5 years from diagnosis [5].
Thus, the duration of DM does not appear to be an important risk factor when screening
for DR.

As per the ADA, AI has the potential to serve as a substitute for conventional screen-
ing techniques in identifying DR [28]. Nonetheless, the use of AI is not recommended
for patients with a history of DR, previous DR treatment, or any signs of vision impair-
ment. Recent studies have explored various deep learning techniques for DR classification,
showcasing significant advancements in this field [10–23,29]. One approach utilized con-
volutional neural networks (CNNs) such as VGG16 and VGG19, achieving an accuracy
of 90.60% and a 94% F1 score by classifying DR into five severity levels across multiple
datasets, including APTOS-2019 and Messidor-2 [15]. Another study by Gunasekaran et al.
employed a deep recurrent neural network (RNN) for DR prediction from fundus images,
attaining a precision of 95.5%. Khan et al. compared several deep neural network archi-
tectures, with InceptionV3 showing the highest testing accuracy of 79.4% [16]. Fang et al.
introduced a Directed Acyclic Graph (DAG) network model for multi-feature fusion, evalu-
ated on hospital and DIARETDB1 datasets [17]. Elloumi et al. addressed the challenge of
smartphone-captured fundus images using NasnetMobile, achieving a 95.91% accuracy [30].
Kanakaprabha et al. [18] assessed various architectures, including VGG16 and ResNet50,
for DR prediction. Sridhar used a CNN to classify DR severity with notable accuracy
improvements on a Kaggle dataset, while Das et al. applied morphology and adaptive
histogram equalization with a CNN, achieving 97.2% precision [19]. Vives-Boix et al. [31]
implemented meta-plasticity in CNNs, achieving a 95.56% accuracy, and Adriman evalu-
ated ResNet and DenseNet, with ResNet reaching 96.25% accuracy [32]. Fatima’s hybrid
neural network model demonstrated a strong performance on the MESSIDOR-2 and AP-
TOS datasets, and Qureshi’s ADL-CNN model achieved a 98.0% accuracy [22,33]. Kalyani
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et al. applied capsule networks, achieving a high accuracy across DR stages [34]. Gay-
athri’s multipath CNN combined with ML classifiers showed strong results on IDRiD and
MESSIDOR datasets [20]. Bodapati’s composite DNN with a gated-attention mechanism
performed well on the APTOS-2019 dataset, and Math’s system based on a pre-trained CNN
achieved 96.37% sensitivity and specificity [21,22]. Gao’s grading system using fundus
fluorescein angiography images and deep learning algorithms achieved 94.17% accuracy,
while Kobat’s DenseNET model, using horizontal and vertical image patches, achieved
84.90% accuracy with 10-fold cross-validation [23,35]. These studies collectively highlight
the effectiveness of various deep learning methods for DR classification, reflecting high
accuracy and promising results across diverse datasets. However, there are valid concerns
regarding image acquisition and quality, potential biases in the data and the determination
of ground truth, the selection of appropriate algorithms, challenges associated with deep
ML, the applicability of AI in diverse populations, and the obstacles faced in the adoption
of AI in healthcare [36]. To address this issue, a powerful predictive AI model using ML
which would utilize patient information, like demographic details and medical history,
rather than relying on fundus images alone is required. The RF model is a powerful ML
method that utilizes ensemble learning techniques to address classification and regression
problems. It creates multiple decision trees during training and outputs the most frequent
class (classification) or the mean prediction (regression) from these trees. The RF classifier
model offers a high accuracy by reducing biases and variances commonly observed in
single decision tree models. Therefore, we used the RF classifier model to train and test
individual patient samples for identifying DR in this study.

The study achieved correct classification rates of 100% for DR and ~80% for STDR in
the training samples. For the test samples, the RF model detected DR with 100% accuracy
and STDR with 76% accuracy, indicating very high training accuracy and low variance
between the training and testing sets. Although a 100% accuracy rate for DR detection
might suggest overfitting, overfitting is characterized by a low number of training errors
and a high number of testing errors. In this study, the numbers of both training and
testing errors were low, indicating low bias and low variance. This demonstrates that the
model was not overfitted but rather balanced, achieving high accuracy and repeatability in
detecting DR and STDR.

This study has several positive implications for clinical practice in DR screening
for newly diagnosed DM cases. First, integrating this model into hospital electronic
medical records will enable general ophthalmologists, non-retina specialists, optometrists,
diabetologists, and general physicians to identify which DM cases require direct referral to
retina specialists for DR screening via dilated fundus examination. Second, by classifying
DR and STDR, patients without STDR can be screened using alternative tools such as
teleophthalmology with mydriatic and non-mydriatic fundus cameras. Third, this approach
can reduce the burden on retina specialists by involving more healthcare providers in DR
screening. Fourth, by referring only high-risk DM cases for treatment-requiring DR, retina
specialists can focus on cases needing immediate attention, enhancing their efficiency.
Finally, from a patient perspective, it can reduce hospital or clinic wait times.

This study has some limitations. The size of the dataset was relatively small given
the high prevalence of DM in the population. The study samples were not compared with
other supervised ML algorithms. The use of convenience sampling, relying on DM cases
referred to an eye hospital for DR screening, may have introduced sample bias. To enhance
the real-world applicability of the model, additional validation in varied settings, such as
community health programs or screening camps, is necessary. Moreover, the research did
not study which systemic factors pose the greatest risk for developing DR, which could
aid clinicians in identifying high-risk patients before screening. However, the primary
aim was to develop a straightforward and accurate model for identifying and categorizing
DR without relying on fundus images, thereby minimizing unnecessary referrals to retina
specialists. To enhance the model’s reliability and acceptability in clinical practice, further
research is needed with training and testing samples from diverse cohorts. This future
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research should objectively assess the model’s clinical impact. Once validated, the model
can be integrated into hospital electronic medical records as a viable alternative screening
tool for DR.

In conclusion, the ML-based RF classifier model shows promise in detecting and
classifying DR and STDR in diagnosed DM patients screened for the first-time, potentially
transforming DR screening practices. However, further validation studies are necessary to
confirm its reliability and suitability as an alternative method for predicting DR.
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