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Abstract: Osteoarthritis (OA) is one of the most common causes of disability around the globe,
especially in aging populations. The main symptoms of OA are pain and loss of motion and function
of the affected joint. Hyaline cartilage has limited ability for regeneration due to its avascularity, lack
of nerve endings, and very slow metabolism. Total joint replacement (TJR) has to date been used as
the treatment of end-stage disease. Various joint-sparing alternatives, including conservative and
surgical treatment, have been proposed in the literature; however, no treatment to date has been fully
successful in restoring hyaline cartilage. The mechanical and frictional properties of the cartilage
are of paramount importance in terms of cartilage resistance to continuous loading. OA causes
numerous changes in the macro- and microstructure of cartilage, affecting its mechanical properties.
Increased friction and reduced load-bearing capability of the cartilage accelerate further degradation
of tissue by exerting increased loads on the healthy surrounding tissues. Cartilage repair techniques
aim to restore function and reduce pain in the affected joint. Numerous studies have investigated
the biological aspects of OA progression and cartilage repair techniques. However, the mechanical
properties of cartilage repair techniques are of vital importance and must be addressed too. This
review, therefore, addresses the mechanical and frictional properties of articular cartilage and its
changes during OA, and it summarizes the mechanical outcomes of cartilage repair techniques.

Keywords: cartilage; osteoarthritis; cartilage friction; cartilage biomechanics; friction; wear

1. Introduction

Osteoarthritis (OA) is one of the main causes of disability around the world, especially
among the elderly population. Although OA is considered an age-related disease, stud-
ies have shown that osteoarthritic changes can be found in a younger population [1–3].
The global burden of disease report estimates that over 527 million people suffer from
OA [4,5]. The development of OA can be triggered by many different factors, includ-
ing obesity, sports, genetic factors, previous injuries, work environment or joint anatomy
abnormalities [6–8]. Osteoarthritis is also an important socioeconomic problem. It is esti-
mated that the costs of OA can reach up to 2.5% of the gross domestic product [9]. With the
aging of the population, an increase in OA prevalence is expected [10]. Articular cartilage
(AC), which is a highly specialized tissue producing smooth, painless, and almost friction-
less movement, is most significantly affected during OA progression. Moreover, cartilage
presents very limited repair capacity [11–14]. Once the cartilage structure is compromised,
osteoarthritic degeneration begins, leading to joint failure and pain as an end result [11,15].
The inevitable degradation of cartilage starts from its superficial layer [16], which is also the
most important layer in preserving tribological properties due to its collagen orientation
and composition. The surface roughness of healthy articular cartilage ranges from 1 nm
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to 150 nm, depending on the joint [17]. Interestingly, the surface roughness of total joint
replacements typically range from 40 nm to 200 nm [18]. Increased friction during OA pro-
gression as well as loads exerted on cartilage induce secretion of proinflammatory cytokines
such as IL-1, which further increases surface roughness and friction [19,20]. Modern ortho-
pedics considers cartilage as the most important structure to be preserved and protected in
diarthrodial joints in order to reduce OA progression. Various joint-sparing treatments have
been proposed in the literature, from conservative [21–24] up to different surgical treatment
options, including microfractures, load-shifting osteotomies, various scaffold options, as
well as cartilage culture and implantation techniques [25–28]. Clinical outcomes of those
procedures have been extensively studied by orthopedic surgeons and most commonly
survivor time (time when total joint replacement is required) is one the most important
outcome measures. Nevertheless, no strict protocol for cartilage repair and regeneration
has been established to date. To better understand the nature of cartilage regeneration
techniques, orthopedic surgeons should understand the biomechanical and tribological
properties of cartilage and its repair techniques. This review summarizes the anatomy and
mechanical properties of healthy cartilage, as well as cartilage repair techniques.

2. Healthy Cartilage—Anatomy, Mechanical Properties, Synovial Fluid

The cartilage is a viscoelastic type of connective tissue, originating during the em-
bryonic phase of human development, prior to the onset of osteogenesis [29]. Its mean
thickness was estimated at 1.4 mm. However, it is worth noting that the study was per-
formed on an elderly population, in which cartilage loss is to be expected. A more recent
study by Guo et al., who analyzed a total of 700 MRI results, has found that articular
cartilage thickness ranges from 1.79 mm to 3.13 mm depending on location [30].

The primary role of articular cartilage is to create a smooth, lubricated overlay for
low-friction articulation and to allow loads to be transmitted to the underlying subchondral
bone. The unique material properties of cartilage allow it to withstand strong contact forces
while dispersing the ensuing compressive stimulus to the subchondral bone underneath.
Hyaline cartilage consists of chondrocytes and an extracellular matrix (ECM). Chondrocytes
are cells that exhibit a high degree of specialization and metabolic activity, performing a
distinct function in the processes of extracellular matrix creation, maintenance and repair.
They are characterized by low apoptotic activity and an inability to divide [31].

Chondrocytes derive from mesenchymal stromal cells and comprise around 2% of
the overall volume of the articular cartilage [32]. Chondrocytes rarely form intercellular
connections for signal transduction and transmission. However, they respond to growth
factors, mechanical stresses, piezoelectric forces, and hydrostatic pressures. Schätti et al.
showed that bone marrow mesenchymal stromal cells show upregulation in chondrocyte-
specific gene expression when biaxial loading is applied [33]. Chondrocytes also affected
by compression frequency. Sah et al. [34] showed that cyclic loading with a frequency of 0.1
to 1 Hz stimulates collagen and proteoglycans synthesis, while, on the other hand, static
loading was related to dose-dependent ECM degradation [35]. Unfortunately, chondrocytes
have a limited mitotic capacity, which, in turn, decreases the intrinsic capacity of cartilage
for healing after injury [36,37].

The biochemical composition of cartilage includes water, collagen, and proteogly-
cans [36]. Cartilage is a type of tissue that exhibits anisotropic and viscoelastic features,
enabling it to withstand compressive, tensile, and shear forces. The compressive strength
of tissue is attributed to the presence of water and proteoglycans. This phenomenon is
attributed to negative electrostatic repulsion forces [36,38]. Under compression, negative
charges of proteoglycans are pushed closer together and, as a result, the repulsive force in-
creases, adding significantly to cartilage stiffness [36,39,40]. The resistance to tensile stresses
is mostly conferred by collagen fibrils. This is based on the mesh structure of collagen
fibrils interconnections [41] and its unique arrangement depending on the cartilage layer.
Hyaluronic acid, lubricin, and matrix permeability play a crucial role in reducing friction on
the joint surface. Decorin, a tiny leucine-rich proteoglycan, regulates the micromechanics
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and mechanobiology of the cartilage pericellular matrix. In vivo, as chondrocytes reside
in an aggrecan-rich, highly negatively charged osmomicroenvironment, decorin regulates
chondrocyte mechanotransduction primarily via controlling the integrity of aggrecan in
the PCM [42].

The surface of cartilage is enveloped by a delicate layer known as lamina splendens [30,43].
This layer is composed of proteins and exhibits an acellular and non-fibrous nature. Its
thickness varies in the range from a few hundred nanometers to one micrometer. The
formation of lamina splendens has been postulated to occur through a gradual build-up of
proteins originating from synovial fluid. It provides a low-friction interface for cartilage
and plays a key role in responding to mechanical loads [44]. It is also the first cartilage
layer to degrade during the progression of OA [45]. However, chondrocyte implantation,
for instance, does not regenerate lamina splendens [46].

The superficial zone lies beneath lamina splendens. It accounts for 10–20% of the carti-
lage thickness. The collagen fibers in this zone have relatively small diameters (18 ± 5 nm)
and are packed tightly, running parallel to the surface [47]. This particular architectural
arrangement is well-suited for effective dispersing and mitigating the impact of substantial
shear stresses [48]. The proteoglycan concentration within this layer is comparatively low,
resulting in its higher permeability when compared to other layers of cartilage [49–51]. And
what is most interesting, permeability rather than layer thickness is responsible for dynamic
friction in contrast to start-up friction, which is dependent on the layer thickness [52]. The
chondrocytes located in the superficial zone of cartilage are in control of the secretion
of lubricating proteins such as superficial zone proteins (SZPs) [53] along with collagen
I [54]. These proteins are exclusive to the superficial zone, absent in the other layers of the
cartilage [55].

The middle zone, which comprises 40–60% of the cartilage thickness, is distinguished
by a reduced cellular concentration together with the presence of spherical chondrocytes.
Type II collagen is the predominant ECM component inside this region [56]. The structure
is composed of arcades that are interconnected by small-scale fibers with random orienta-
tions [48,57]. The middle zone exhibits the most elevated concentration of proteoglycans
compared to other zones [49–51]. The chondrocytes located in the middle layer demonstrate
a substantial expression of collagen II and proteoglycans, including aggrecan [56].

The region referred to as the deep zone, along with the calcified zone, which comprises
20–50% of the cross-sectional length, exhibits a cellular and collagen fiber organization
that is oriented perpendicular to the subchondral bone. While the concentration of proteo-
glycans may rise, the cellular density in the deep zone is significantly lower in contrast
to the middle and superficial zones [50,51]. Chondrocytes in this layer demonstrate a
reduced capacity for synthesizing and secreting collagen II [58]. Collagen X secretion can
also be observed in the deep zone, where it contributes to structural integrity and shock
absorbance [59].

The deep and calcified zones are separated by a narrow line known as the “tidemark”.
The tidemark acts as a means of anchoring more pliable and vertically aligned collagen
fibrils found in the innermost region of non-calcified articular cartilage. This anchoring
mechanism is considered to help protect these fibrils from being disrupted or torn at their
attachment point to the calcified zone [60].

The calcified zone is composed of hydroxyapatite, which serves as a barrier between
the rigid bone and the pliable cartilage, reducing a mechanical gradient [61]. The layered
architecture of cartilage is presented in Figure 1.

In addition to the presence of zone-related differences in the structure and composition
of cartilage, the matrix is composed of numerous specified regions that are delineated by
factors such as closeness to chondrocytes, composition, and collagen content. The ECM
is divided into the pericellular, territorial, and interterritorial regions [36], as shown in
Figure 2. In this context, it can be observed that each chondrocyte is enveloped by a
translucent pericellular glycocalyx matrix (Pg) and is also enclosed by a pericellular capsule
(Pc). This structure is known as the chondron [62]. A combination of these two constituents
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is commonly known as the pericellular matrix. The pericellular capsule is enveloped by
a territorial matrix (Tm) and an interterritorial matrix (Im), which is sometimes referred
to as ECM [63]. A notable presence of aggrecan, link protein, and hyaluronan can be
observed inside a pericellular matrix (Pg and Pc) [64]. It can, however, be noticed that
these macromolecules are in a dissociated state and that the aggrecan–hyaluronan complex
has not yet been formed. The collagen composition exhibits variations in comparison
to the bulk or interterritorial matrix (Im) of cartilage [65]. Collagen II is observed in the
form of slender strands, with their diameters ranging from 10 to 15 nanometers, which
are intricately intertwined to create a compact and densely woven arrangement known
as the pericellular capsule [64]. This architectural structure is believed to function as a
hydrodynamic mechanism for safeguarding chondrocytes during loading. It acts as a
pliable cushion that is capable of supporting load by reversible deformation depending
on the amount of stress [66]. According to Chandrasekaran et al., SEM scans revealed
intricate collagen fibril structures on the mandibular condyle cartilage and articular disk.
The fibrillar diameter on the condyle cartilage surface was 22.3 ± 0.3 nm (mean ± 95% CI
from 300 fibrils measured on n = 3 animals), significantly thinner (p < 0.0001) than those
on the disk surfaces (33.4 ± 0.4 for superior surface, 32.9 ± 0.5 for inferior surface, both
statistically comparable). Additionally, differences in fibril sizes were observed on the
disk surfaces. The anterior end had the thickest fibrils (35.6 ± 1.1 nm), while the medial
region had the thinnest (31.3 ± 0.8 nm). On the inferior side, the front end similarly had the
thickest fibrils (34.0 ± 1.0 nm), and the central region had the thinnest (31.2 ± 0.9 nm) [67].
Collagen types IX and VI, along with collagen II, present increased quantities within the
pericellular matrix, as opposed to the interterritorial matrix [62]. As previously elucidated,
these collagens actively engage in cross-linking processes to contribute to the development
of more substantial collagen II bundles. The composition of the territorial matrix (Tm)
closely resembles that of the interterritorial matrix, except for the thinner collagen II fibrils
and a larger assembly of proteoglycans, particularly chondroitin sulfate [68].
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Collagen (75% of the dry weight) and proteoglycan (20–30% of the dry weight) are the
primary load-carrying structural segments of the extracellular matrix, and their concen-
trations and architectures vary depending on the depth from the articular surface [69,70].
The following collagens types can be found in the hyaline cartilage: III (10%), IX (1%), XI
(3%), as well as VI (1%, solely in the pericellular matrix surrounding chondrocytes) [71].
The surface zone has the maximum collagen concentration, with a 20% decrease in its
concentration in the middle and deep zones. The content of proteoglycans is the lowest
in the superficial zone and increases by up to 50% in the middle and deep zones [69,70].
The superior resistance to shear forces of the superficial zone among the four zones can
be linked to the unique organization of collagen fibrils [72–74]. Moreover, the superficial
zone protein, which is only produced by chondrocytes located in the superficial layer,
further decreases friction and, therefore, protects cartilage against shear forces [75]. This is
now recognized to be the very same molecule as the megakaryocyte-stimulating factor or
lubricin [76]. Furthermore, it is synthesized by synovial cells. The concept is that lubricin
plays a predominant role in supplying the almost frictionless articulation provided by
the articular cartilage [76]. Collagen exhibits a limited elongation of less than 10% of its
overall length, with a significant portion of this elongation attributed to the straightening
of the fibers rather than to actual extension [77]. When all collagen molecules reach a
straight configuration oriented perpendicular to the pulling axis and the entire potential
for molecular straightening is used up, the collagen molecules themselves stretch, resulting
in a markedly increased tangent microfibril stiffness at strains greater than 10% [78].

The articular cartilage is composed of two distinct phases: fluid and solid. The articular
cartilage is primarily water, which constitutes up to 80% of its wet weight. About 30%
of the water is located in the intrafibrillar region within the collagen structure, whereas a
little proportion is located within the intracellular area. The residual fraction is confined to
the interstitial voids of the matrix [79,80]. The tissue water contains dissolved inorganic
ions, including sodium, calcium, chloride, and potassium [81]. The water concentration
exhibits a gradual decrease from approximately 80% in the surface zone to 65% in the
deep zone [82]. Its movement within cartilage and over the articular surface facilitates
the transportation and dispersion of nutrients to chondrocytes, while also serving as a
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lubricant [36]. The interaction of proteoglycan aggregates and interstitial fluid results
in negative electrostatic repulsion forces, providing articular cartilage with compressive
resilience [36]. An instant application of articular contact forces during joint loading results
in a rise in the interstitial fluid pressure. This causes the fluid to leak out of the ECM,
creating a significant frictional drag on the matrix [83,84]. When the compressive force is
released, the interstitial fluid returns to cartilage. The fluid cannot be easily squeezed out of
the matrix due to the limited permeability of the articular cartilage [85]. The two opposing
bones, along with the surrounding cartilage, serve to enclose and restrict the movement
of the cartilage located beneath the contact surface. The purpose of these boundaries is to
limit or control mechanical deformation.

Since the articular cartilage is naturally avascular, synovial fluid (SF) is an essential
component of the biomechanical behavior, lubrication, and metabolism/nutrition of this
tissue. The composition of SF, which is a dynamic reservoir of proteins produced from
synovial and cartilage tissue, may serve as a biomarker for the health and pathophysiologic
state of the joint. It has a consistency which can be compared to an egg white. Hyaluronic
acid, lubricin (a protein from the superficial zone), and phospholipids at physiological
amounts work in concert to enable SF to act as a boundary lubricant and reduce border
friction in cartilage [86,87].

Glycosaminoglycans (GAGs), proteoglycans, and glycoproteins are some of the non-
collagenous components of the ECM ground substance that are connected to the fibrillar
components. GAGs are sugars composed of repeating disaccharide units that give rise to
six primary subunits of articular cartilage: chondroitin sulfates 4 and 6, keratin sulfates,
dermatan sulfate, heparan sulfate, and hyaluronan (or hyaluronic acid) [88]. They are
negatively charged, repelling one another while drawing ions (such as Ca11 and Na1)
and water to them. This ensures that their primary functional characteristics, i.e., water
absorption and maintenance of the mechanical properties as well as ECM hydration, are
maintained [77,89].

3. Factors Affecting the Mechanical Properties of Cartilage

The articular cartilage is responsible for load-bearing as well as facilitating translational
and rotational movements inside the adjacent joint [90]. The biphasic composite material of
articular cartilage is characterized by an intricate structure and composition, which allows
it to effectively trap liquids while maintaining its fibrous and porous nature [91]. When an
external force is exerted on the system such as the application of a load, the synovial fluid
confined inside the system becomes pressurized. As a result, the pressurized synovial fluid
squeezes through the surrounding tissue, developing frictional resistance against the solid
matrix. This frictional drag facilitates the transfer of the applied load within the system [92].
The exceptional load-bearing properties of articular cartilage can primarily be attributed to
load-transmission and fluid-pressurization mechanisms [93–95]. The material’s biphasic
and viscoelastic characteristics have significant implications for its reaction to compressive,
tensile, and shear loads. These responses are unevenly distributed across the depth of the
mature cartilage [96]. Multiple evaluation methods have been implemented to study the
mechanical properties of cartilage. The methods are described at the end of this Section.

3.1. Compressive Strength

The permeability and viscoelasticity combination is thought to be responsible for the
compressive characteristics of cartilage. Due to its inherent traits, articular cartilage exhibits
a non-linear reaction when subjected to mechanical forces, owing to its inhomogeneity,
anisotropy, and poro-viscoelastic nature. The tissue has poor permeability, resulting in
rapid pressurization of the interstitial fluid. The tissue’s hydraulic permeability and
aggregate equilibrium compression modulus significantly depend on the water content
and uronic acid concentration. This relationship serves as a physicochemical foundation for
the observed reduction in the tissue’s permeability as compression increases [97–100]. The
movement of interstitial water via the ECM leads to certain time-dependent reactions in the
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articular cartilage [101]. Tissue creep may require around 1000 s of load application to attain
a condition of new equilibrium [101] and additional time for stress relaxation to achieve a
state of equilibrium. It is worth mentioning that an increase in ECM deformation leads to a
decrease in the average size of pores. Consequently, this results in an increased diffusional
resistance between the interstitial water and the ECM [102]. The duration required to attain
the equilibrium condition depends on the magnitude of load or displacement.

When an external force is applied, the fluid that was previously constrained within the
tissue starts to move. Due to poor permeability of cartilage, this results in pressurization
and generation of significant drag forces on the solid phase. These drag forces help to
dissipate the stress [103]. When cartilage undergoes deformation, there is a drop in its
porosity, resulting in reduced permeability. The values of permeability in cartilage normally
fall within the range of 0.1 to 10 × 1015 m2/Pa s [94]. This means that the cartilage
responds to external loads through the augmentation of hydraulic pressure and mechanical
rigidity [99]. Joint cartilage compressive forces exhibit a fleeting nature in spite of their
considerable magnitudes. These forces escalate from around 1–2 atmospheres during
unloading [104] to a range of 100–200 atmospheres when an individual assumes an upright
position. Furthermore, these forces cyclically fluctuate between 40 and 50 atmospheres [105].
The explanation for the compressive properties of cartilage has been traditionally grounded
in the biphasic theory. This study identifies three primary forces: (a) a stress exerted by the
solid phase, which is presumed to adhere to Hooke’s law and exhibit a linear stress–strain
behavior; (b) a pressure generated by compression of the liquid phase, which, as previously
mentioned, exhibits a time-dependent behavior; and (c) a friction generated between the
liquid and solid phases. The fluid phase generates friction, which may be characterized
using a linear formulation of Darcy’s law [106]. This friction depends on the permeability of
the tissue and the pressure generated, both of which vary with time. Upon removal of the
load, the tissue undergoes a process of regaining its initial shape. This recovery is facilitated
by two mechanisms: the Donnan osmotic pressure effect [107], which redistributes the
fluid inside the compressed region, and the presence of elastic qualities inherent in the
solid phase [55]. The variability of the compressive characteristics is associated with the
disparity in fluid flow. Consequently, the superficial zone, which exhibits a high level
of permeability, is subjected to compressive forces reaching a maximum of 50%. The
fluid flow experiences a significant reduction in the medium and deep zones, leading to
compressive strains that are below 5% [108]. Cartilage deformation is prevented through
its low permeability, which results in fluid pressurization, and the impermeability of the
subchondral bone, which provides stability to the tissue. Throughout the course of the
day, there are repeated instances of compression-relaxation events, resulting in strains of
which 15–20% are irreversible. The original shape can be fully restored only after extended
periods of rest [109].

3.2. Tensile and Shear Properties of Cartilage

The tensile and shear properties of cartilage can be observed when subjecting it to
a compressive force. Deformation manifests itself as the generation of tensile tension on
the surface. The force in question is tangential in nature, acting parallel to the surface.
It is sustained by the solid phase which is composed of collagens and proteoglycans. In
addition, the generated tension is responsible for inducing a viscoelastic reaction, which
arises from the displacement of collagen fibers. In the initial stages, the generation of
tension in the superficial zone results in the amplification of modest stresses into significant
strains. This phenomenon can be attributed to high permeability of the region, which
facilitates a quick outflow of the fluid. The need for greater levels of stress to achieve
equivalent strain is a consequence of the friction induced by the movement of collagen
networks through proteoglycans [32,36]. During the concluding phase, the collagen fibers
undergo stretching and assume the responsibility for withstanding the entirety of the
externally exerted force, hence leading to the manifestation of an elastic reaction. The
articular cartilage experiences shear pressures as a result of the translational and rotational
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motion of bones. Its primary support comes from the solid phase of the tissue. Empirical
investigations have been conducted to determine the equilibrium shear modulus, finding
it to range from 0.05 to 0.25 MPa. The values of the dynamic shear modulus and the loss
angle have been determined to range from 0.1 to 4 MPa and approximately 10 degrees,
respectively [110,111].

At the macroscale, the mechanical qualities of cartilage depend on the cell shape and
distribution from the superficial to deep cartilage, the orientation of collagen fibers, and the
amount of proteoglycans. Huttu et al. [112] reported notable positive associations between
the elastic modulus and both proteoglycan levels and collagen content in their analysis
of the total thickness of cartilage samples. However, when focusing solely on superficial
cartilage which constituted approximately 20% of the total thickness, positive correlations
were observed but they did not reach statistical importance. Similar correlations were
documented in a prior investigation by Nissinen et al. [113], who studied the proteoglycan
concentration and the modulus of the fibril network. These correlations were observed at
both 30% and 50% of the total depth. Furthermore, Ihnatouski M. et al. [114] established a
correlation between the elastic modulus and the indentation depth (h) measured by atomic
force microscopy (AFM). The elastic modulus exhibited a peak value of 1.7 MPa, which
decreased to 0.5 MPa as the indentation depth was increased from 25 to 150 nm. In contrast,
Fischenich et al. [115] discovered that the average modulus exhibited an upward trend as
the depth on human condyles increased, whereas the permeability was reduced. However,
in addition to examining the superficial zone, Fischenich et al. [115] also conducted tests at
a depth of 500 µm beneath the articular surface and 500 µm above the calcified cartilage.
Important relationships were observed between the mechanical behavior and the collagen
orientation or biochemical makeup with respect to fiber orientation and depth. Significant
correlations were established between the mechanical properties of moduli and their
chemical composition, as well as between the permeability coefficient and the orientation
of collagen.

3.3. Tribological Properties of Cartilage

Previous studies [103,116,117] have shown that, in contrast to other mechanical fea-
tures, tribological properties do not depend on the location. However, it is worth noting
that the presence of OA has a significant impact on these properties. A study conducted by
Moore et al. [117] revealed distinct tribological characteristics resulting from osteoarthri-
tis (OA). The researchers observed an escalation in shear stresses originating from the
superficial zone and propagating towards the deep zone. This phenomenon led to the
deterioration of the layers across the entire thickness, ultimately culminating in a slow loss
of the material.

A gradual transmission of the applied stress from the fluid medium to the pliable
cartilage tissue is a consequence of the fluid’s involvement inside the solid matrix, ulti-
mately leading to the attainment of an equilibrium state. The friction coefficient of articular
cartilage has been demonstrated to fluctuate throughout a wide range (from 0.002 to 0.5)
depending on the loading arrangement [118,119]. The maintenance of a low friction coeffi-
cient within a certain range [116] depends on the presence of interstitial fluid that effectively
lubricates the cartilage surfaces. The process of transitioning from dynamic loading to
static loading results in reduced energy dissipation, which is effectively compensated by
the presence of interstitial fluid that seeps into cartilage. The absorption of synovial fluids
by the cartilage components is responsible for initiating the boundary lubrication process,
primarily due to low velocities and the quasi-static environment involved. The process
of aging or the presence of joint illness results in decreased glycosaminoglycan levels,
hence leading to an elevation in the rate of coefficient of friction [120]. Kienle et al. [121]
conducted an investigation into the impact of lubricating fluid on the friction and wear
characteristics of the ovine articular cartilage in both boundary and mixed lubrication
regime. Four different lubricants were investigated in the study: ddH2O, 154 mM NaCl
solution (representing physiological concentration), 2 M NaCl solution, and synovial fluid.



Healthcare 2024, 12, 1648 9 of 37

An increase in the coefficient of friction was observed via atomic force microscopy (AFM)
when the salt concentration was increased at the microscale. However, opposite results
were obtained from macro-friction experiments conducted at sliding speeds greater than
0.1 mm/s. This discrepancy could be attributed to an ionic repulsion between the experi-
mental setup and the cartilage, which resulted in a lower measured friction force. In their
study, Hossain et al. [122] observed that the coefficient of friction (COF) in bovine cartilage
samples did not exhibit any anisotropy when subjected to a normal load applied parallel
or perpendicular to the direction of collagen fibers on the superficial layer of cartilage.
This lack of anisotropy was observed despite the presence of glycosaminoglycan loss and
collagen damage that extended throughout the depth of the cartilage tissue, particularly
for the cases of wear in the transverse direction. Moreover, few studies have focused on
the frictional characteristics of human cartilage. In a study by Middendorf et al. [123], the
coefficient of friction between human cartilage and glass was assessed using a specially
designed pin-on-plate apparatus. The study reported the average coefficient of friction to
be in the range of 0.22 ± 0.016. In a similar vein, Li et al. [124,125] investigated the frictional
characteristics of AC via pin-on-plate friction tests, with contact made against various
surfaces including cartilage, stainless steel, and polyvinyl alcohol (PVA). The coefficient of
friction values obtained from the cyclic tests were found to be 0.029, 0.159, and 0.076 for
the interactions of cartilage-on-cartilage, cartilage-on-stainless steel, and cartilage-on-PVA,
respectively. A summary of the articular cartilage mechanical properties is given in Table 1,
according to Little et al. [126].

Table 1. Experiments into the mechanical properties of articular cartilage.

Author Mechanical Property Value Mechanical Tests

Mow VC et al. [94] Aggregate modulus
(MPa) 0.1–2.0 Confined compression,

indentation

Mow VC et al. [94] Hydraulic
permeability (m4/Ns) 10−16–10−15

Confined compression,
Unconfined compression,

Indentation

Mow VC et al. [94] Compressive Young’s
modulus (MPa) 0.24–0.85 Unconfined compression

Little et al. [126] Poisson’s ratio 0.06–0.3 Unconfined compression,
Indentation

Little et al. [126] Tensile equilibrium
modulus (MPa) 5–12 Tensile stress relaxation

Ihnatouski et al. [114]
Tensile Young’s

modulus (MPa)—
constant-strain rate

5–25 Tensile constant strain
rate

Little et al. [126] Tensile strength
(MPa) 0.8–25 Tensile constant strain

rate

Wenbo Zhu et al.
[110]

Equilibrium shear
modulus (MPa) 0.05–0.4 Equilibrium shear

Wenbo Zhu et al.
[110]

Complex shear
modulus (MPa) 0.2–2.5 Dynamic shear

Wong et al. [111] Shear loss angle (◦) 10–15 Dynamic shear

McCutchen CW et al.
Forster H et al.

[118,119]
Friction coefficient 0.002–0.5

Cartilage also presents thixoptrophic properties which are time-dependent shear-
thinning properties. Articular cartilage exhibits thixotropic properties, meaning its viscosity
changes under the influence of load and shear, then returns to its original state once these
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forces are removed. This allows the cartilage to adapt to varying mechanical conditions
within the joint. Under load, the viscosity decreases, facilitating movement and cushioning;
while, at rest, it returns to its initial level, ensuring joint stability [127–129]. Thixotropy
protects the joint from excessive friction and wear, while also enabling smooth and safe
movements. Over the time of using the knee joint, the viscous properties of SF change and
become less resistant to shear forces [130].

As shown above, the mechanical properties of cartilage differ depending on the
evaluation method. Below, we summarize the testing protocols mentioned in our review to
give a clear insight into the differences between the evaluation methods.

(a) Atomic Force Microscopy

Atomic Force Microscopy (AFM) is a nanostructural imaging technique that uses
submicron resolution to investigate sample surfaces (e.g., cartilage) [114,131]. A simple
AFM setup for biomechanical applications involves a silicon pyramidal probe (radius tip of
around units-tens of microns) [114] or a polystyrene or borosilicate glass sphere [121,132]
positioned on a flexible cantilever fixed to an electrical piezo. During the approach phase,
Van Der Waals forces interact with the sample surface. The attraction forces cause the
cantilever to deflect towards the sample surface. The cantilever deflection changes the
direction of the laser beam reflected from the backside of the cantilever, allowing for a
very accurate deflection measurement through optical beam detection. AFM can also
be used to examine specific structures like cytoskeleton and detect dynamic changes in
submembranous structures [133]. By applying a continuous load to the cantilever tip and
measuring the surface lateral force [132], AFM may also be utilized to study the tribological
characteristics of the cartilage in the boundary-lubricated regime [121]. Since AFM can
only be used to investigate a limited scanning region [114], large-scale measurements can
be performed with a rotational macrotribometer (e.g., a rheometer fitted with a tribology
measuring cell) [121].

(b) Indentation test

A quantification of tissue/cell stiffness in terms of instantaneous modulus (IM) or
equilibrium modulus (Eeq) is acquired from indentation testing, and due to material
heterogeneity, the results may differ from one point to another because only sections of the
total samples are analyzed. Colored maps can be used to emphasize the variety in tissue
mechanical characteristics within the same sample [134,135] as well as tissue degradation
caused by diseases such as OA. Plane-ended or spherical-tipped indenters are applicable
depending on the required stiffness qualities and sample thickness. When assessing
cartilage stiffness on small joint surfaces, indentation testing may be recommended because
obtaining regular samples for mechanical testing might be difficult and damaging to the
tissue [136].

(c) Compression test

Articular cartilage comprises both a solid and a fluid phase, thus compression tests
are classified as either confined [137] or unconfined [138]. The setup and outcomes vary
depending on the employed test method. Confined compression is typically accomplished
by placing a cylindrical disk of the testing material within a limited impermeable chamber
with one porous plate [137]. The sample and the porous plate are then subjected to an axial
fluid flow caused by a compressive force operating perpendicular to the plate. After a
relaxation time (Zimmerman et al. [137] reported roughly 1 h of relaxation time to see the
equilibrium stress plateau), this test allows direct measurement of solid matrix stiffness
(aggregate modulus, HA) and material permeability (K). Unconfined compression, on the
other hand, entails placing the sample between two impermeable plates and squeezing
the plates together at a specific velocity, causing the fluid to leak from the material and the
sample to deform radially [139]. After applying a constant displacement until equilibrium
is established, this test is often employed to achieve both instantaneous (instantaneous
modulus) and long-term properties, i.e., Eeq. Relaxation periods differ, ranging from
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15 min [140] to 2 h [138] depending on the imposed strain amplitude (from 5% to 25%,
respectively). In stress-relaxation experiments in unconfined compression with plane-
ended indentation, loading regimens with 4 to 6 ramps of increasing strain amplitude of
3–5% have been widely used.

(d) Tensile test

Tensile tests must be performed using an uncommon setup in order to keep the
samples hydrated in a saline solution throughout the course of testing. Rectangular sheet-
like samples are collected from the AC and then attached to the machine grips at both
ends in order to apply imposed displacement and measure force. Tensile tests are used
to characterize fracture strength [141] or step-wise stress-relaxation testing [139,142] to
discover immediate and equilibrium parameters. In comparison to other tests, tensile tests
on human cartilage yielded lower velocities (0.08 mm/s) and strain rates (0.2%/s)

(e) Friction Test

The AC should also provide a frictionless surface during joint action to avoid high
stress concentration and subsequent wear and erosion of the cartilage. In general, the
frictional properties of two surfaces in contact, i.e., the associated coefficient of friction
(COF), are affected by a variety of factors, including surface characteristics, roughness,
and anisotropy [133,134], as well as the friction-regime-defining sliding (dry or lubricated)
friction [143–145]. In the case of the AC, the COF may depend on the test type (i.e., rotat-
ing [146] or sliding [147,148]), cartilage source (e.g., both species and site), test speed and
length, as well as ECM subcomponents such as the GAG content [146,149]. Furthermore,
depending on the experimental setup design, different friction regimes, i.e., boundary vs.
mixed lubrication, are measured. Friction tests performed on cut samples (e.g., cartilage
plugs with a pin on plate arrangement) [148,149] have shown that the time to achieve the
equilibrium COF linearly increases with the cartilage plug area, due to a strong influence
of interstitial fluid pressurization on the COF of cartilage [92]. Maintaining a stationary
contact area during the test (for example, ensuring that cartilage cylindrical plugs glide
against an impermeable surface like that of metal) [149] results in a virtually stationary
normal pressure. As a result, the COF is initially low and gradually rises as the load is
shifted from the fluid to the solid matrix [92,149]. When a convex body slides across the
cartilage surface, a migrating contact area is formed, resulting in the migration of the con-
tact pressure field during sliding. This state reflects the natural circumstances within joints,
with an almost constant low COF and interstitial fluid pressure (assuming that the fluid
flow rate within the tissue is slower than the sliding velocity) [92,150,151]. In an unconfined
compression test [146], compressive forces, torque, displacement, and rotational data were
measured to calculate the torsional coefficient, while a pin-on-plate machine was built to
perform sliding tests of cartilage vs. cartilage with PBS as lubricant [148] in order to obtain
both the static and dynamic sliding COF.

4. Mechanical and Tribological Changes Induced by Osteoarthritis

Osteoarthritis (OA) is a complex disorder that exhibits diverse clinical manifestations
depending on its specific anatomical sites, natural progression, clinical subtypes, and
different etiological variables. The articular cartilage within a healthy joint has the capacity
to endure substantial forces that arise from weight-bearing and joint movement throughout
an individual’s lifespan. A hypothesis was formulated that persistent excessive stress
and compromised biomechanical factors had detrimental effects on the joint, ultimately
leading to the degradation of articular cartilage and a subsequent inflammatory response.
Consequently, these symptoms later resulted in stiffness, edema, and reduced mobility.
The current understanding is that osteoarthritis is a multifaceted process involving several
inflammatory and metabolic variables [152,153].
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4.1. Molecular Changes

During the early phases of osteoarthritis (OA), chondrocytes exhibit limited capacity
for effective restoration of the damaged matrix. This is mostly due to an increasing activity
of catabolic cytokines and matrix-degrading enzymes which hinder the repair process [154].
Unfortunately, this initiates the release of proteoglycans and the degradation of type
II collagen on the cartilage surface. Subsequently, an elevation in water levels occurs,
which is linked to the depletion of negatively charged glycosaminoglycans. This depletion
subsequently leads to matrix swelling [155–157].

The breakdown of the cartilage matrix begins in the surface zone of cartilage and
then expands into further zones as OA advances [158]. This phenomenon is correlated
with a significant decline in the tensile strength of the extracellular matrix [159]. The
breakdown of collagen and proteoglycan molecules, which are subsequently internalized
by synovial macrophages, elicits the secretion of proinflammatory cytokines such as TNFα,
IL-1, and IL-6. The binding of these cytokines to the receptors on chondrocytes results in a
subsequent release of metalloproteinases and a suppression of type II collagen synthesis,
thereby promoting the breakdown of cartilage [160]. Il-1β is considered a fundamental
cytokine for OA progression. This cytokine not only induces secretion of proteases but also
inhibits key type II collagen synthesis by osteoblasts [161]. This mechanism is supported
by TNF-α [162] and Il-6 [160].

Alterations in PCM micromechanobiology are among the earliest signs of OA onset.
Aggravated chondrocyte catabolism causes local degradation of proteoglycans, partic-
ularly aggrecan, in the PCM, resulting in worse micromechanical characteristics. This
disrupts chondrocytes’ normal mechanosensing, contributing to the vicious cycle of car-
tilage breakdown in OA. The local PCM micromodulus (Eind, PCM) and mechanically
induced chondrocyte [Ca2+]i activity are two crucial early indications of PTOA onset. Atten-
uating PCM degradation can protect chondrocyte mechanosensing, potentially protecting
joint health, as local alterations occur before larger matrix changes. Exploring cell-ECM
mechano-crosstalk at the nm-to-µm scale provides a basis for creating novel ways for early
PTOA identification or treatments by targeting cartilage PCM [163]. These findings may
also have implications for other load-bearing illnesses.

Multiple proteases have been described as OA triggers in the literature, out of which
the most important are MMP-1, -3, -9, and 13 [164]. What is worth noting is the fact that
degraded ECM components are a stimuli for further inflammatory response, which, as a
result, progresses the OA. Antibodies directed against ECM proteins can be found in serum
samples from patients with osteoarthritis and rheumatoid arthritis [165,166].

Apart from cartilage degradation and inflammatory activation, gross remodeling
of subchondral bone is also present and proposed as a trigger towards further cartilage
degradation [167]. Platelet-derived growth factor (PDGF) elevated levels in subchondral
bone promote vessel formation and, therefore, progression of OA [168]. Another cytokine
secreted by osteoblasts in subchondral bones is prostaglandin E2 [169], which has a detri-
mental effect on cartilage mostly by increasing the production of MMPs.

4.2. Structural Changes

At the macroscopic level, alterations in the composition of the cartilage matrix coincide
with the emergence of surface fibrillations, which are characterized by the presence of
microscopic cracks in the superficial zone. As OA advances, these cracks contribute
to the detachment of cartilage fragments and the development of fissures that expand
into the deeper layers of cartilage. Subsequently, the deep fissures within the affected
cartilage cause its delamination, exposing the underlying zones of the calcified cartilage
and subchondral bone [170–172]. Figures 3–6 show the course of cartilage loss in a knee
joint according to the ICRS [173] grading system. These changes include an increase
in the volume, thickness, and outline of the cortical plate, as well as changes in bone
mineralization and material characteristics. Additionally, OA is associated with changes in
the architecture and mass of the subchondral trabecular bone, the development of bone
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cysts, and the presence of bone marrow lesions and osteophytes [174–176]. Subchondral
bone cysts are frequently observed in individuals with advanced osteoarthritis. A concept
has been developed that cysts are created within the subchondral bone, specifically at
places where previous bone marrow lesions are present. This observation suggests that
the development of cysts is directly linked to bone damage and necrosis, which, in turn,
triggers the process of osteoclast-mediated bone resorption, ultimately resulting in cyst
formation [177]. Osteophytes may potentially play a role in joint stabilization rather
than actively contribute to the advancement of joint disease. Certainly, the elimination
of osteophytes has been seen to result in increased joint instability in animal models of
osteoarthritis [178]. Moreover, it is worth noting that no discernible correlation exists
between the advancement of knee OA and the dimensions of osteophytes in human
individuals with OA [179].
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Figure 5. Arthroscopic view of grade III lesion with a visible cartilage deficit of less than 50% (arrow)
in the femoral trochlear groove.
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Figure 6. Arthroscopic view of grade IV lesion with subchondral bone exposure and complete
cartilage loss, with only islands of cartilage visible on the medial femoral condyle.

4.3. Synovial Fluid Changes

The synovium is a distinct type of connective tissue that serves as a lining for diarthro-
dial joints, envelops tendons, and constitutes the inner layer of bursae and fat pads. The
synovium plays a crucial role in regulating the quantity and content of synovial fluid (SF),
primarily through the synthesis of lubricin and hyaluronic acid. The synovium plays an
important role in facilitating chondrocyte nourishment, together with the subchondral
bone. This is particularly important because articular cartilage lacks its own vascular or
lymphatic supply [180].

The synthesis and secretion of proteoglycan 4 (PRG4) protein, also known as lubricin,
occur within articular joints, specifically articular chondrocytes [181] and synoviocytes [182]
in the superficial zone. Lubricin is detected inside synovial fluid [183] and is also found at
the surface of articular cartilage. Lubricin functions as a boundary lubricant, facilitating
the reduction in friction during contact between the cartilage surfaces. In this context, lu-
brication is achieved through molecular interactions occurring at the surface. Additionally,
it exhibits a synergistic effect with hyaluronan (HA) to further diminish friction to a level
that is almost equal to that of complete synovial fluid [86]. HA levels are diminished in
osteoarthritis compared to the healthy joint [184]. Similarly, subsets of people with OA
exhibit a diminished lubricating capacity in relation to lubricin [185]. Kosinska et al. [186]
quantified the levels of HA and lubricin in synovial fluid samples obtained from healthy
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joints, as well as from joints at different stages of osteoarthritis, including early-stage (eOA)
and late-stage (lOA) osteoarthritis. The concentrations of HA were found to be the highest
in the control SF, with a mean value of 2.2 mg/mL (range: 1.6–3.7 mg/mL). In comparison,
the levels of HA in eOA SF were significantly lower, with a mean value of 1.7 mg/mL
(range: 1.1–1.9 mg/mL). Similarly, the accumulation of HA in lOA SF were also lower,
with a mean value of 1.9 mg/mL (range: 1.5–2.3 mg/mL), although this difference was
not statistically significant. The levels of HA in eOA SF were 23.7% lower than those in
the control SF, while the levels in lOA SF were 14.0% lower. The amount of lubricin in
the control synovial fluid was measured to be 364.4 µg/mL (305.0–404.8 µg/mL). This
concentration was found to be 1.5 times higher compared to the concentration of lubricin
in the synovial fluid of individuals with early osteoarthritis (eOA), which was measured to
be 244.5 µg/mL (119.6–381.7 µg/mL). Significantly, compared to the control synovial fluid,
the content of lubricin in the synovial fluid for individuals with osteoarthritis decreased by
58.2% [152.3 µg/mL (108.2–183.9 µg/mL), p = 0.005]. The facilitation of low friction in the
boundary mode and its potential impact on the shear deformation of cartilage is attributed
to the lubrication of articular cartilage by synovial fluid. When conducting experiments
on articular cartilage, researchers have observed that the presence of synovial fluid and
its lubricant molecules can lead to reduced friction on the articular surface, thus demon-
strating the effects of boundary lubrication [86,187]. The substitution of SF lubrication with
phosphate-buffered saline (PBS) leads to an increase in boundary-mode friction [187].

Prior research has demonstrated that synovial fluid derived from human joints af-
flicted with OA exhibits typical lubricating properties [188]. Conversely, a reduction in
the lubricating capacity of synovial fluid has been documented following several inflam-
matory and traumatic events, such as rheumatoid arthritis, [189] knee joint effusion after
trauma, [188] meniscus removal, [190], and anterior cruciate ligament disruption [191]. A
correlation has been discovered between a decrease in lubricin levels and an increase in
friction inside the whole joint [108,189,191]. Teeple et al. [192] observed a marked decrease
in the overall joint lubrication and an accompanying rise in friction persisting beyond the
initial acute phase of the injury. The specific mechanisms underlying the deficit of lubricin
remain unclear, although potential factors include reduced expression of lubricin by syn-
oviocytes or superficial zone chondrocytes, depletion of these cells, and/or an elevated
breakdown of lubricin. Mice lacking in lubricin exhibit clinical and radiographic mani-
festations of joint pathology as well as histological irregularities in their articulate joints
that become more pronounced as they mature. The most significant characteristics include
synovial hyperplasia and subintimal fibrosis, the presence of proteinaceous deposits on the
surface of cartilage, irregularities in the cartilage surface and endochondral growth plates,
as well as aberrant calcification observed in tendon sheaths and osteophytes [193]. The
inclusion of lubricin into an in vitro bovine explant cartilage-on-cartilage-bearing system
resulted in a considerable reduction in the coefficient of friction and chondrocyte death in
the peripheral zone of cartilage. This finding confirmed the essential function played by
lubricin in the prevention of cartilage degeneration [194]. The severity of both age-related
and post-traumatic osteoarthritis was reduced in transgenic mice by the overproduction
of lubricin. The observed decrease can be attributed to the inhibitory effect of lubricin
on the expression of genes associated with cartilage breakdown and the enlargement of
chondrocytes [191].

4.4. Mechanical Changes

Significant alterations in the functionality of cartilage are observed in individuals
with osteoarthritis, leading to negative impacts on the weight-bearing, stabilizing, and
lubricating capabilities of articular cartilage.

When subjected to tension, cartilage experiences a loading or stretching force, which
causes collagen fibers and entangled proteoglycan molecules to align and elongate in the
direction of the applied force. The primary source of resistance to tensile deformation
and loads is mostly derived from the inherent stiffness of collagen fibrils [72,195,196].
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The tensile modulus in the healthy human articular cartilage has been observed to range
between 5 and 25 MPa. This variation depends on factors such as the specific position
on the joint surface as well as the depth and orientation of the test specimen in relation
to the joint surface [197,198]. The presence of osteoarthritis has been associated with a
substantial reduction in the tensile modulus, with a potential loss of up to 90%. This
decrease indicates a considerable level of damage to the solid network of cartilage [198].
Likewise, there have been documented reports of reduced tensile stiffness and fracture
stress in the human cartilage affected by OA [195,197]. The changes are indicative of
structural abnormalities in the collagen fibrillar network, as evidenced by both macroscopic
and histological observations. The cartilage affected by degeneration also had a notably
higher level of compliance to shear. This phenomenon was related to the presence of
fibrillation on the articular surface and the depletion of the extracellular matrix [199]. In
their study, Peters et al. [134] observed a significant reduction in the shear storage modulus
by around 70–80% compared to the healthy condition.

Previous studies have demonstrated that the articular cartilage exhibiting surface
fibrillation, pitting or fraying shows a higher level of compliance or deformability under
compression [197,199,200]. Boschetti et al. [139] reported a reduction of 30% in the average
thickness and a growth of 8% in the average water levels in OA samples compared to the
healthy cartilage. These findings were consistent with the observations made in previous
studies [100,155,201,202]. The mechanical properties of OA samples were also evaluated in
comparison to those of the healthy cartilage. The static compressive modulus exhibited
a decrease of 55–68%. Additionally, the permeability demonstrated an increase of 60–
80%, while the dynamic compressive modulus experienced a decrease of 59–64%. Lastly,
the static tension modulus displayed a decrease of 72–83% compared to the reference
value. According to Armstrong and Mow [100], the compressive modulus of human
cartilage tends to decrease as the severity of degeneration increases. Additionally, a
reduction in the modulus was observed as individuals progressed in age. On the other
hand, it was shown that neither age nor degeneration exhibited any significant variation in
hydraulic permeability. Evidently, the OA-induced changes in cartilage, such as fibrillation,
heightened hydration, and reduced proteoglycan content, would have a more significant
impact on the inherent compressive stiffness of the cartilage compared to its flow-dependent
behavior [203].

Ihnatouski et al. [114] observed that there was a decrease in the average values of the
instantaneous modulus as the OA grade increased. The osteoarthritis-affected specimens
were split into three groups: small, medium, and severely impacted. Young’s modulus
for the normal cartilage ranged from 1.7 to 0.5 MPa, while the values for the three stages
of OA wear were lower—1.14 to 1.3 MPa (small OA), 1.02 to 1.2 MPa (medium OA), and
0.82 to 1.2 MPa (severe OA). Additionally, atomic force microscopy surface-mapping was
employed to examine the alterations in surface roughness that occur with an increase in
OA stages. The results indicated a positive link between the two variables. Changes in the
equilibrium modulus were also investigated. A study by Ebrahimi et al. [204] showed that
the tibial plateaus exhibited a significant reduction in Eeq, reaching up to 80% compared to
the healthy tissue. Similarly, Kleeman et al. [138] discovered that the Eeq of cartilage was
reduced by around 40% from the early stages to the advanced stages of osteoarthritis.

In a study conducted by Huttu et al. [112], it was observed that mechanical parameters
exhibited a negative correlation with cell volume. This relationship was attributed to an
increase in the collagen orientation angle inside cartilage as osteoarthritis progressed. Ad-
ditionally, Nissinen et al. [113] observed significant variations between early and advanced
osteoarthritis, leading to a reduction in the initial modulus of the fibril network and the
strain-dependent permeability. A positive relationship was observed between the total
joint OA grade and the subchondral bone growth [134].
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5. Mechanical and Frictional Features of Cartilage Repair Techniques—Are We
Getting Close?

The intricate and dynamic nature of hyaline cartilage within the human body poses
both challenges and opportunities in the realm of medical science. Cartilage plays a crucial
role in maintaining joint function; however, its limited self-repair capability makes cartilage
injuries a significant concern for surgeons and scientists. In this section, we will explore the
principles, methodologies and outcomes of various cartilage repair techniques, ranging
from simple interventions like microfractures to complex tissue-engineering constructs. A
summary of the techniques mentioned below is given in Table 2.

5.1. Microfracture

Full-thickness articular cartilage lesions hardly ever heal on their own [93,205]. Nu-
merous techniques have been employed to activate bone marrow in the history of cartilage
repair. A complete injury of the hyaline cartilage in a weight-bearing region between the
femur and the tibia or in the patellofemoral joint is a common indication for microfrac-
ture. The indications for the microfracture technique are usually small lesions up to
2 cm2 without subchondral involvement. Exceptionally, it can be used for larger defects
(>3 cm2) in less demanding patients [206]. The location of the lesions is also crucial, with
much better results achieved at the femoral condyles than at the patellofemoral joint [207].
The microfracture (MFX) technique was extensively researched and developed by Stead-
man [208,209]. Over the years, advancements [25] have been made in the method, resulting
in many improvements. These enhancements include removal of the calcified subchondral
bone [210], establishment of straight and uniform cartilage margins [211] and execution of
microfractures in close proximity to one another [212]. The perforation of the subchondral
bone plate releases liquid bone marrow. Depending on the size of the awl/drill used for
bone marrow stimulation, nanofractures with the use of 1 mm drills can be distinguished
in this technique. Figure 7 shows the arthroscopic view of the medial femoral condyle with
microfractures (MFX). The roughened surface produced by the surgeon provides an area to
which the marrow clots can firmly adhere [208,213]. Mesenchymal stromal cells (MSCs)
that are introduced into the damaged region have the ability to undergo differentiation
into fibrochondrocytes. These fibrochondrocytes then proceed to occupy the defect and
subsequently undergo remodeling, resulting in the formation of a fibrocartilage clot [214].
Nevertheless, the abundance of mesenchymal stromal cells is very limited and diminishes
with an individual’s aging [215]. The composition of the clot primarily consists of type
I collagen, which distinguishes it from the natural hyaline cartilage that predominantly
comprises type II collagen [216]. Type II collagen possesses a higher concentration of
hydroxylysine and a much greater amount of glycosylated hydroxylysine compared to type
I collagen. These additional residues might confer distinctive physical characteristics onto
type II fibrils [217]. Histological examinations of the tissue-healing process subsequent
to microfracture surgery have revealed the predominant presence of fibrocartilage. In
other cases, a hybrid repair tissue has been observed, characterized by varying levels of
proteoglycan and type II collagen [218,219]. In contrast to hyaline cartilage, fibrocartilage
has mechanical qualities that are less optimal for enduring the prolonged stresses associ-
ated with joint-loading, owing to its softer nature and lower capacity for tolerating shear
stress [220]. The cells present in the fibrous tissue have an elongated phenotype resembling
fibroblasts, both in terms of their physical form and the profile of genes they express. The
matrix exhibits a reduced concentration of glycosaminoglycans and a higher presence
of type I collagen [221,222]. Ebenstein et al. [223] reported that fibrous repair cartilage
exhibited a contact stiffness of 0.03 ± 0.01 kN m−1, which was approximately one order of
magnitude lower than the contact stiffness of the healthy cartilage (0.17 ± 0.039 kN m−1).
The lower compression stiffness could explain the lower resilience of the fibrous repair
cartilage to mechanical load [224].
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The microfracture technique is frequently used for the treatment of chondral injuries.
Nevertheless, like any other surgical procedure, it poses a distinct set of possible risks.
Incomplete adhesion or partial filling of the defect by unstable blood clots may lead to poor
healing [213]. The occurrence of osseous outgrowth has been observed subsequent to inad-
vertent removal of the subchondral bone during the operation. Osseous overgrowth occurs
frequently, with a reported incidence ranging from 25% to 49% among patients [225,226].

Good short-term clinical results have been reported for the treatment of cartilage
lesions using the microfracture technique [227]. However, a longer follow-up indicated
steadily decreasing satisfaction with the results and lower durability of the repair over the
years [228,229]. Orth et al. [230] in their systematic review reported a failure of rate 11–27%
in 5 years of observation and 6–32% during a 10-year period.

5.2. Autologous Matrix-Induced Chondrogenesis (AMIC)

Autologous Matrix-Induced Chondrogenesis (AMIC) is a single-stage procedure for
cartilage repair combining microfractures and application of external scaffold. One of the
reasons for failure of isolated microfractures may be the lack of protection of the repair
site and washing out of MSCs [231]. Adding a matrix allows for stabilization of the clot
and provides a scaffold for bone marrow cells, facilitating their differentiation towards
the cartilage lineage [232]. Longer follow-up of this technique shows promising results.
After 2 years, the outcomes are comparable to isolated microfractures, but after this time,
the microfractures are characterized by a decrease in satisfactory results, in contrast to the
AMIC technique, which maintains its functional parameters for up to 5 years [229].

5.3. Osteochondral Autograft Transfer System (OATS)

Osteochondral autograft transplantation (OAT) involves the transplantation of grafts
obtained from the non-weight-bearing areas of the joint to the injured regions that bear
more weight [233]. The application of autograft results in a more expedited and dependable
process of osseous integration compared to the osteochondral allograft. Furthermore, the
autograft presents several advantages, including convenient accessibility to donor cartilage,
capacity for addressing lesions of different sizes, and utilization of the native hyaline
cartilage containing functional and fully developed chondrocytes [234,235]. Good results
of OATS have been described for small defects (<2 cm2), but larger defects ranging from 2
to 4 cm2 can also be treated beneficially with this method, especially in young, demanding
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patients [236]. This technique is the first line of treatment for cartilage lesions involving
the subchondral layer [234]. The histologic examination of the transplanted osteochondral
graft has revealed that in an ideal OATS, the grafts are successfully integrated into the
defects to preserve the structural integrity of the hyaline cartilage and cancellous bone.
This integration also ensures the maintenance of a smooth and congruent articular surface
in the weight-bearing regions [237,238]. Intraoperative views of the OATS procedure are
shown in Figures 8 and 9.
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Nakaji et al. [239] provided a comprehensive analysis of the progressive alterations in
the structural characteristics of an osteochondral cylinder graft–recipient construct. The
primary focus of this study was to evaluate the stiffness of articular cartilage using a rabbit
model. The articular cartilage stiffness of the osteochondral transplant was within normal
parameters upon its first placement (107,695.1 ± 11,610.1 N/m2). During the first, third,
and eight weeks following the surgical procedure, it was noticed that the stiffness levels
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decreased (95,386.8 ± 2689.4, 92,899.3 ± 3748.2, and 95,969.8 ± 2157.1 N/m2, respectively)
compared to the stiffness typically detected in healthy cartilage (100,027.5 ± 396.4 N/m2).
Additionally, the histological analysis revealed an increase in the bone trabeculae inside
the subchondral region. At the 12-week post-operative mark, the articular cartilage of the
osteochondral graft exhibited normal stiffness (104,683.7 ± 3311.5 N/m2), and the bone
trabeculae in the subchondral region demonstrated effective remodeling.

A study by Kuroki et al. [240] investigated the mechanical impact of an OATS on
articular cartilage in a porcine model. They employed an ultrasonic measurement system
to assess the immediate post-surgical outcomes. The findings of the study indicated that
the surgical procedure of osteochondral grafting did not induce any significant alterations
in the stiffness (9.2 ± 1.78 and 9.0 ± 1.91 [corresponding values, mean ± SD] before
harvesting and after grafting, respectively, in a 6 mm-plug model and 5.8 ± 1.54 and
5.8 ± 1.87, respectively, in a 5 mm-plug model), surface irregularity (0.7 ± 0.10 µ seconds
and 0.7 ± 0.11 µ seconds, before harvesting and after grafting, respectively, in a 6 mm-
plug and 0.8 ± 0.12 µ seconds and 0.8 ± 0.09 µ seconds, respectively, in a 5 mm-plug
model), or thickness of the graft plug (2.7 ± 0.57 µ seconds and 2.7 ± 0.62 µ seconds,
before harvesting and after grafting, respectively, in a 6 mm-plug model and 2.4 ± 0.81 m
seconds and 2.3 ± 0.67 m seconds, respectively, in a 5 mm-plug model). Additionally,
it was hypothesized that in the event of mechanical alterations, a change in stiffness
would be more likely related to the healing or remodeling process rather than to the
surgical procedure.

Lane et al. [241] examined the biochemical and biomechanical alterations throughout
a goat osteochondral autograft model after 12 weeks following surgery. The stiffness of
the healthy cartilage was 0.79 ± 0.15 N/mm, whereas the cartilage of the transferred plugs
ranged 5.29 ± 1.04 N/mm. This indicated that the graft cartilage had a stiffness that was 6
to 7 times larger than that of the control normal tissue. Moreover, viability of the cells in
the bone plugs were examined by confocal microscopy. In total, 95% of the cells counted
manually were viable 12 weeks after grafting. The assessment of the joint surfaces showed
no significant degenerative changes at either the recipient or the donor locations 12 weeks
post implantation.

The biomechanical and histological characteristics of the OATS were also investigated by
Nam et al. [242] in a rabbit model. The stiffness of the 12-week grafts (1213.6 ± 309.0 N/mm)
was found to be substantially greater than that of the 6-week grafts (483.1 ± 229.1 N/mm)
and natural cartilage (774.8 ± 117.1 N/mm). The stiffness of the grafts at the 6-week mark
revealed a statistically significant reduction in comparison to the stiffness observed in the
natural cartilage. Furthermore, with regard to a potential score of 24.0 points, the average
values for the overall healing indices (Modified O’Driscoll Histological Score) [243] were as
follows: 6-week OAT, 21.6 ± 1.3; 12-week OAT, 21.0 ± 1.8; 6-week full-thickness defects,
11.5 ± 2.8; and 12-week full-thickness defects, 10.8 ± 4.4. The histology scores of the OAT
groups were considerably superior compared to the full-thickness defects groups in both
time periods.

The successful use of autograft is subject to some constraints, with defect size being
the primary one. Lesions above 3 cm2 in size are susceptible to experiencing symptomatic
donor–site morbidity, resulting in pain and associated symptoms [244]. The rate of donor–
site morbidity has been reported to range from 2.3% to 12.6% [245,246]. However, OATS
has very good long-term clinical results with functional benefits and survival beyond
15 years [247].

5.4. Autologous Chondrocyte Implantation—ACI

The Autologous Chondrocyte Implantation (ACI) procedure was first introduced in
1994 [205]. It involves a two-step approach, beginning with the collection of a sample of
the patient’s articular cartilage in the first stage. Subsequently, after ex vivo multiplication,
the cells are inserted to the chondral defect during the second stage. The ACI possesses
the notable benefit of effectively addressing extensive lesions measuring up to 10 cm2
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by the restoration of cartilage that closely resembles hyaline cartilage [248–252]. The
growth of hyaline-like tissue during the healing of chondral lesions is expected to yield
biomechanical qualities that are comparable to those of the healthy cartilage, as shown by
stiffness measures [250]. The grafted area’s stiffness was measured to be 2.4 ± 0.3 N, while
the normal cartilage’s result was 3.2 ± 0.3 N. Moreover, the average stiffness measurement
in the grafted sections containing hyaline tissue was found to be 3.0 ± 1.1, whereas a
stiffness of 1.5 ± 0.35 was reported in the repairs involving fibrous tissue. In 8 out of
12 cases of stiffness testing, the indentation measurement exhibited a value that was equal
to or more than 90% of the value seen in the healthy cartilage.

According to Vasara et al. [252], the stiffness of the repaired tissue exhibited a notable
increase, reaching 62% of the stiffness observed in the surrounding cartilage. The indenta-
tion force of the repair tissue in six individuals was shown to exceed 80% of the adjacent
cartilage, indicating a potential presence of hyaline-like repair. The mean indentation force
of the repair tissue was 2.04 ± 0.83 N, which accounted for 62% of the adjacent cartilage
(3.58 ± 1.04 N). However, it is important to note that there was a significant difference in
the stiffness of the repair tissue.

Henderson et al. [253] conducted an evaluation of 66 ACI repairs for articular car-
tilage injuries. The mean normalized stiffness for the entire sample of 66 lesions was
found to be 104% at an average follow-up period of 22.1 months post-implantation. A
notable observation was made regarding the stiffness of both hyaline articular cartilage and
hyaline-like repairs, with about half of these samples exhibiting greater stiffness compared
to the adjacent cartilage. It was suggested that it could be due to the difference in matrix
composition during the healing process. The alteration in cartilage matrix composition
occurring with the aging process may differ from the repair composition that more closely
approaches the stiffer structure often observed in children. On the other hand, it is possible
that a higher repair stiffness would lead to the occurrence of symptomatic repair due to
abnormal load transmission, which is comparable to the reported high stiffness of the
subchondral bone plate in individuals with OA. Hence, the increased stiffness might have
negative implications for joint functionality. Moreover, based on the clinical and arthro-
scopic observations, repairs were categorized into two groups: ACI-unrelated problems
(Group A) and ACI-related problems (Group B). In Group A, a majority of repairs, namely
65%, consisted of either hyaline or hyaline-like cartilage, but in Group B this proportion
was significantly lower and amounted to 28%. Autologous chondrocyte repairs consisting
of fibrocartilage had a higher prevalence of morphologic defects and manifested symptoms
at an earlier stage compared to the repairs using hyaline or hyaline-like cartilage. The
reparative characteristics of hyaline articular cartilage were shown to have biomechanical
parameters that were equivalent to the adjacent cartilage and higher than those observed
for fibrocartilage repairs.

Despite initial good clinical results, ACI is characterized by a higher rate of complica-
tions, such as periosteal patch hypertrophy, high reoperation rates, bulky sutures, and cell
leakage [254]. The occurrence of such adverse effects paved the way for the matrix-based
modification of this technique using matrix-induced autologous chondrocyte implantation
(MACI).

5.5. Matrix-Induced Autologous Chondrocyte Implantation—MACI

MACI is a more recent variation of ACI, which incorporates a collagen scaffold to
facilitate the use of autologous cells and promote directed tissue regeneration. This next-
generation method has the advantage of utilizing the patient’s own cells while employing
a biocompatible scaffold made of collagen. A surgical visualization via a dry arthroscopy
technique is shown in Figure 10. The MACI implant possesses intrinsic benefits such as
the ability to be surgically implanted by arthroscopy or miniarthrotomy, no periosteal
harvest, and its utilization of tissue adhesive as a substitute for sutures [255]. The efficacy
of MACI has been assessed in many animal experiments, demonstrating its ability to
enhance the healing process in full-thickness cartilage injuries. The immunological or
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inflammatory responses elicited by the membrane alone have been assessed and shown to
be modest [256,257]. MACI is indicated as a first line of treatment for lesions above 2 cm2

and second for defects below 2 cm2 [258].
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A study by Lee et al. [259] demonstrated that the use of a MACI graft in combination
with a type II collagen membrane resulted in an aggregate modulus that was 15% of the
modulus observed in the native tissue. The results of stiffness tests conducted on an ovine
model demonstrated that the MACI grafts exhibited a stiffness range of 16% to 50% in
comparison to the natural cartilage [256,260].

Griffin et al. [261] investigated the mechanical characteristics of MACI cartilage repair
in an equine model. The findings indicated that the compressive and frictional properties
of the repaired tissue were comparable to those of the natural tissue. The equilibrium
modulus of the cartilage obtained from the defects that underwent MACI was found to
be 70% of that observed in the normal cartilage. This value was not found to have a
statistically significant difference when compared to the equilibrium modulus of the native
control tissue. Moreover, there was no statistically significant difference between the control
tissue and the implant groups in terms of the average values of boundary mode friction
coefficients which varied from 0.42 to 0.52. The shear modulus values for the healthy
cartilage generally varied between 1.0 and 1.5 MPa; however, the shear moduli of the
cartilage from all categories of injuries were much lower, ranging from 0.2 to 0.5 MPa,
which represents a reduction of 4 to 10 times compared to the healthy cartilage. The low
shear modulus of the grafts made the restored cartilage vulnerable to mechanical failure or
deterioration.

Schuette et al. [262] reported favorable mid- to long-term clinical results of the MACI
technique. It significantly increased patient-related scores (KOOS, SF-36, Tegner). Compari-
son of MFx and MACI at 5-year follow-up shows significantly better results in the KOOS
pain score and functional scales and non-significantly lower risk of failure [205].

5.6. Tissue Engineering

The concept of osteochondral and cartilage tissue engineering has emerged as a
means to forward the development of novel and enhanced therapeutic interventions.
There exist two primary approaches to the restoration of impaired osteochondral modulus
and complete-thickness cartilage through the use of tissue-engineering techniques. The
objective is to create artificial cartilage structures that replicate the structural characteristics,
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mechanical attributes and, therefore, biological functionalities of natural cartilage tissues.
An alternative approach puts greater emphasis on the field of regenerative medicine. The
fundamental idea revolves around the administration of suitable biomaterials in the form of
artificial extracellular matrix to stimulate cellular growth, proliferation, and differentiation
at the injury zone. This approach relies on the inherent biological processes involving
cellular interactions and biomolecules to facilitate the regeneration of articular cartilage
and subchondral bone [263]. An implantation of the collagen matrix with a preparation of
the donor site is shown in Figures 11 and 12.
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Figure 12. Dry arthroscopy view of the same defect filled with cell-free matrix gel.

Koh et al. [264] utilized the finite element analysis to demonstrate the efficacy of a scaf-
fold with ideal mechanical qualities in promoting cartilage regeneration within a cartilage
defect. It was assumed that the implantation of a scaffold with ideal mechanical qualities
would serve to mitigate cell death and promote increased development of cartilage tissue.

The scaffolds utilized in cartilage tissue engineering are mostly composed of car-
bohydrates such as alginate, chitosan, poly-L-lactide/poly(glycolic acid) (PLLA/PGA),
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agarose, and hyaluronic acid, as well as proteins like collagen and gelatin. Growth fac-
tors are employed to induce the proliferation and differentiation of cells that will be
transplanted onto the scaffold, hence promoting the maintenance of their chondrogenic
phenotype [265]. Other authors have explored alternative mechanical and chemical stimuli
in pre-implantation culture in order to enhance lubrication efficiency [266]. Scaffolds which
are better-structured present higher elastic values [267].

Hydrogels are polymer networks that exhibit a three-dimensional structure charac-
terized by significant swelling and porosity at the molecular level. This unique structure
enables the transport of diverse solutes and nutrients inside the hydrogel matrix. The fabri-
cated structure possesses cell compatibility, enabling the containment of various cell types
such as chondrocytes and stromal cells. Moreover, a variety of hydrogel characteristics
may be adjusted to enhance their effectiveness in tissue regeneration. These parameters
encompass polymer chemistry, crosslinking density, degradation, mechanical qualities, and
release kinetics of biological components [268]. Hydrogels with reduced crosslinking den-
sity exhibit lower mechanical properties. Dynamic loading conditions have the potential
to promote the process of chondrogenesis in mesenchymal stromal cells [268,269]. The
mechanical strength of natural hydrogel scaffolds can vary between 0.45 and 5.65 MPa, but
synthetic hydrogels have the potential to reach values ranging from 15 to 125 MPa [270].

When compared to solid scaffolds, hydrogels facilitate the adoption of a more spherical
shape by cells, which is a hallmark feature of the chondrogenic phenotype. This, in turn,
leads to a reduction in the production of fibrous tissues [271]. However, hydrogels have
restricted mechanical characteristics, which renders them susceptible to failure. This
drawback poses a significant disadvantage, particularly considering that articular cartilage
is exposed to substantial mechanical pressures. Furthermore, it should be noted that these
particular materials still exhibit limitations in their capacity for effective integration with
the adjacent tissues [272].

Also worth highlighting in this paper is the need for adequate oxygen concentra-
tion during chondrocyte culturing [273–275]. It has been proven that a physiological
(5%) oxygen concentration while culturing chondrocytes promotes proper and adequate
chondrogenesis. An optimal oxygen concentration increases GAG production, therefore
increasing compressive strength of the constructs [276]. Physioxia during chondrocyte
culturing also promotes collagen type II production [277].

Table 2. Comparison of the biomechanical properties of different cartilage repair methods.

Study Operative
Technique Tissue Type Measurement

System Biomechanical Results Additional Findings

Ebenstein
et al. [223] MFx Animal

model—rabbits Nanoindentation

Stiffness
0.03 ± 0.01 kN m−1—fibrous

repair
0.17 ± 0.039 kN m−1—normal

cartilage

Nakaji et al.
[239] OATS Animal

model—rabbits Tactile frequency

Stiffness
107,695.1 ± 11,610.1 N/m2 after

procedure;
95,386.8 ± 2689.4 after 1 week;
92,899.3 ± 3748.2 after 3 weeks;
95,969.8 ± 2157.1 N/m2 after

8 weeks;
104,683.7 ± 3311.5 N/m2 after

12 weeks
100,027.5 ± 396.4 N/m2—

normal cartilage

Increase in bone
trabeculae inside the
subchondral region.



Healthcare 2024, 12, 1648 25 of 37

Table 2. Cont.

Study Operative
Technique Tissue Type Measurement

System Biomechanical Results Additional Findings

Kuroki et al.
[240] OATS Animal

model—porcine Ultrasonic

Stiffness
9.2 ± 1.78 (before harvesting)
and 9.0 ± 1.91 (after grafting)

[corresponding values]—6 mm
plug model

5.8 ± 1.54 (before harvesting)
and 5.8 ± 1.87 (after

grafting)—5 mm plug model

Changes in stiffness
are more likely

related to the healing
or remodeling

process rather than
to the surgical

procedure

Lane et al.
[241] OATS Animal

model—goats Indentation

Stiffness
5.29 ± 1.04 N/mm—transferred

plugs after 12 weeks
0.79 ± 0.15 N/mm—normal

cartilage

In total, 95% of the
cells counted
manually by

confocal microscopy
were viable 12 weeks

after transfer

Nam et al.
[242] OATS Animal

model—rabbits Indentation

Stiffness
1213.6 ± 309.0 N/mm—
12 weeks after transplant

483.1 ± 229.1 N/mm—6 weeks
after transplant

774.8 ± 117.1 N/mm—normal
cartilage

Modified O’Driscoll
Histological Score
(24 points max):

6-week OAT,
21.6 ± 1.3;

12-week OAT,
21.0 ± 1.8;

6-week full-thickness
defects, 11.5 ± 2.8;

12-week
full-thickness

defects, 10.8 ± 4.4

Hangody
et al. [237] OATS Human Arthroscopic

Indentation

Stiffness
Stiffness of the resurfaced area

similar to the surrounding
hyaline cartilage (no numerical

data)

Peterson et al.
[250] ACI Human Indentation

Stiffness
2.4 ± 0.3 N—grafted area

3.2 ± 0.3 N—normal cartilage
3.0 ± 1.1 N—mean value at

hyaline repair
1.5 ± 0.35—mean value at

fibrous repair

Vasara et al.
[252] ACI Human Indentation

Stiffness
2.04 ± 0.83 N—repair tissue

3.58 ± 1.04 N—normal cartilage

Henderson
et al. [253] ACI Human Arthroscopic

Indentation

Stiffness
3 ± 1.5 N—maximum stiffness

of the repair
Avg. normalized

stiffness—104% of the
surrounding hyaline cartilage

Lee et al.
[259] MACI Animal

model—canine Indentation Aggregate modulus
15% of the native cartilage
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Table 2. Cont.

Study Operative
Technique Tissue Type Measurement

System Biomechanical Results Additional Findings

Griffin et al.
[261] MACI Animal

model—equine Custom tribometer

Avg. values of boundary mode
friction coefficients—from 0.42

to 0.52
Shear modulus

0.2 to 0.5 MPa—repaired
cartilage

1.0 to 1.5 MPa—normal cartilage

Franke et al.
[220]

MACI
(periosteal

cells)

Animal model—
miniature pigs Nanoindentation

Stiffness
0.5 kN m−1—repaired cartilage
4.0 kN m−1—normal cartilage

Tanaka et al.
[267]

Tissue Engi-
neering PLLA scaffolds Indentation Elastic moduli

3000–28,000 kPa

6. Conclusions

As shown in this review, the articular cartilage is one of the most sophisticated tissues
in human body. Although it can withstand various forces without harm, once injured,
it gives rise to the development of osteoarthritis due to ECM breakdown, resulting in
increased load transmitted to the subchondral bone. This review has also demonstrated
the impact of various mechanical and tribological properties on cartilage deterioration
and repair techniques. Out of the mentioned repair techniques, OATS showed the closest
resemblance to the native hyaline cartilage with regard to mechanical properties. This
is attributed to the healthy subchondral bone, which is implemented with the overlying
cartilage. Cartilage repair techniques which do not utilize subchondral bone, such as ACI
and MACI, showed a decrease in mechanical properties, especially in shear modulus and
stiffness. On the other hand, these are techniques which do not require harvesting of
high-volume healthy cartilage to fill the defect. Up to date, there is no strong consensus
regarding cartilage repair methods and mechanical testing. Therefore, more studies are
required to find the best solution for the patient. In future, not only mechanical properties
but also signaling pathways and inflammation modulation will play a role in finding the
best solution for cartilage repair.
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