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Abstract: A peptide-based hydrogel sequence was computationally predicted from the Ala-rich cross-
linked domains of elastin. Three candidate peptides were subsequently synthesised and characterised
as potential drug delivery vehicles. The elastin-derived peptides are Fmoc-FFAAAAKAA-NH2,
Fmoc-FFAAAKAA-NH2, and Fmoc-FFAAAKAAA-NH2. All three peptide sequences were able to
self-assemble into nanofibers. However, only the first two could form hydrogels, which are preferred
as delivery systems compared to solutions. Both of these peptides also exhibited favourable nanofiber
lengths of at least 1.86 and 4.57 µm, respectively, which are beneficial for the successful delivery and
stability of drugs. The shorter fibre lengths of the third peptide (maximum 0.649 µm) could have
inhibited their self-assembly into the three-dimensional networks crucial to hydrogel formation.
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1. Introduction

In 2023, global pharmaceutical revenues reached a total of USD 1.6 trillion [1]. Within
this expansive market, the UK’s pharmaceutical sector is expected to reach USD 31.3 billion
in 2024, representing a substantial and influential segment, accounting for about 2.6%
of the global pharmaceutical market [2]. This growth underscores the UK’s important
role in driving advancements in healthcare and pharmaceuticals worldwide. The three
largest and fastest-growing categories of new biotherapeutic modalities in development
are peptides, monoclonal antibodies, and oligonucleotides. Between 2016 and 2023, a
total of 31 peptide-based drugs received approval from the United States Food and Drug
Administration (FDA) [3]. Peptides are also present in various classes of pharmaceuticals,
such as antibody–drug conjugates (ADCs) and peptide–drug conjugates (PDCs), where
they can function as linkers, payloads, or both [4]. Their significant impact in engaging with
therapeutic targets has made peptides favourable compared to other classes of pharmaceuti-
cals. Interestingly, peptides have also demonstrated the ability to address multiple diseases
beyond their original targets. Over the past five years, there has been a rapid expansion
in the development of new peptide drugs for diabetes, particularly those that mimic the
natural hormone glucagon-like peptide-1 (GLP-1). Notable examples include Trulicity and
Ozempic, which have become major drugs for managing type 2 diabetes [5,6]. Recent
reports have highlighted the potential future impact of these peptide drugs beyond type 2
diabetes treatment, suggesting that they could become frontline medications for addressing
obesity and heart disease [7–9]. Due to their outstanding safety profile, biocompatibility,
and biodegradability, peptides are considered appealing drug classes and drug carriers and
have been incorporated into various medical fields, including cardiology [10], oncology [4],
and wound treatment [6].
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Hydrogels are the first biomaterials to have been used in biomedical applications [11].
They are composed of distinct 3D structures that swell in water but do not dissolve.
Hydrogels can be classified as natural or synthetic biopolymers based on their source,
cross-linking nature (covalent or physical), network nature (homopolymer, copolymer,
interpenetrating, or double networks), and their biodegradability [12–14]. Hydrogels are
being used to augment vocal cords [15], prevent the formation of scar tissue after surgery,
recover perforated ear drums [16], restore detached retinas [17], and aid in cosmetic and
wound dressing applications [18].

Peptides are highly diverse in structure, possessing the ability to self-assemble and
form a novel class of synthetic peptide-based hydrogels [19]. Peptides can self-assemble
into nanostructures and hydrogels under aqueous conditions, resulting in various assem-
blies, such as nanospheres [20], fibrous and plate-like structures [21,22], heterogeneous
nanostructures [23–25], micelles, and nanotubes [26–28]. Peptide assemblies exhibit distinc-
tive physicochemical and biochemical activities, which depend on their morphology and
size and the accessibility of their reactive surface area [29]. They also show extracellular
matrix-mimicking microenvironments, which results in them being used as scaffolds for tis-
sue and cell regeneration applications. For instance, an ultrashort peptide-based hydrogel
derived from the C-region of insulin-like growth factor 1 (IGF-1) formed supramolecular
nanofibers and was used for the treatment of GC-induced sarcopenia, with a biological
activity surpassing that of IGF-1 [30]. Interestingly, peptides naturally possess medicinal
attributes and their self-assembly results in the formation of inherently bioactive hydrogels.
This is demonstrated by the hydrogel developed by Salick and co-workers, whose pep-
tide exhibits antibacterial activity against both Gram-negative and Gram-positive bacteria
without the need for exogenous antimicrobial agents [31]. A fascinating study utilised a
peptide-based hydrogel to construct anti-cancer peptides/polyvinyl alcohol (PVA) double-
network (DN) hydrogels for the treatment of melanomas [32]. These peptides have already
been used previously as antimicrobial agents [32]. Moreover, these hydrogels demonstrate
excellent anti-tumour, antibacterial, and wound-healing-promoting abilities in vivo [32].
For further reading on peptide-based hydrogels, readers are referred to a review by Liu
and colleagues that compiles self-assembling peptide-based hydrogels used for wound
tissue repair [33].

The advantage of self-assembled peptide-based hydrogels is that they allow for drug
encapsulation during the self-assembly and subsequent gelation processes. This results
in coherent and well-loaded drug–hydrogel formulations, unlike drugs diffusing from
an already-formed hydrogel. Furthermore, this strategy makes it easier to accurately
determine the exact concentration of the loaded drug. The ability to easily manipulate
peptide properties plays a crucial role in enhancing the overall performance as a potential
drug delivery system. At a given concentration, reducing the overall positive charge of
a peptide results in faster self-assembly and the formation of a more rigid and cohesive
hydrogel with increased cross-linking [34]. This possibility will be beneficial in terms of
modulating drug release kinetics.

Peptides can be engineered not only to self-assemble but also to engage with active sites
of specific enzymes, resulting in biodegradable hydrogels. These diverse capabilities have
sparked significant interest in leveraging peptides for drug delivery
applications [35–39]. It is important to note that a helical conformation can induce immuno-
genicity and antigenicity through the production of conformation-specific antibodies [40],
particularly when nanomaterials are below 100 nm [41]. This behaviour is ascribed to
the harmful interactions that small-sized nanomaterials can have with biological systems,
which can result in toxicity. Therefore, addressing this behavioural aspect is crucial and can
be effectively managed during both the peptide selection and gelation formation processes.

Elastin-derived peptides have attracted researchers’ attention in preparing hydro-
gels for various applications. This interest is due to their unique properties, including
their tuneable mechanical properties, their high swelling ratios, elasticity, strength, and
biocompatibility, the ability to tailor drug loading and control release kinetics, and, most
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importantly, their enzymatic degradation profiles, which facilitate their use in programmed
drug delivery systems [42–46]. Various studies have incorporated elastin-derived mate-
rials as potential drug delivery systems, including the delivery of salvianolic acid B for
myocardial infarction treatment [47] and the effective delivery of anti-cancer drugs [48] as
a targeted drug delivery system for castration-resistant prostate cancer (CRPC) [49].

In this study, we report the design, synthesis, and characterisation of elastin-inspired
peptide-based hydrogels as potential candidates to effectively encapsulate and deliver
drugs. We envisage that the 3D network of the hydrogel will not only enable the efficient
colonisation and vascularisation of functional native soft tissues but will also provide the
necessary protection for the drug against enzymatic attack.

2. Results and Discussion

Three peptide sequences, computationally derived from elastin protein, were identified
as potential drug delivery carriers. These sequences were chemically synthesised and
characterised for their suitability in drug delivery applications. The experimental results
validated various properties as predicted using computational tools and platforms. The
experiments conducted for this purpose are discussed and analysed herein.

2.1. Sequence Derivation

Elastin is a major component of tissues in our bodies that require stretchiness or elastic
behaviour. Elastin provides the elastic properties essential for vertebrate tissues, offering
the tensile strength and passive elastic recoil required for dynamic organs such as blood
vessels, the heart, and the lungs (Figure 1) [50,51].
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Figure 1. Elastin protein sequence. Colours and underlining represent the abundance of repeated
sequences of the Ala-rich cross-linking domain.

Therefore, the selection of the candidate peptide sequences for the hydrogel has been
inspired by this key protein (Table 1).

The mixing of hydrogels depends on the mixing enthalpy (Emix), characterised by
the Flory–Huggins polymer–solvent interaction (χ), and the cohesive force due to the
number of cross-links linking the polymer chains to form the 3D network. Since hydrogels
contain significant amounts of water, they exist in an equilibrium swollen state where the
balance is between the mixing force and the cohesive force. Therefore, initial modelling
work considered the interaction of the designed peptide sequences with water. Using the
Blends module of Materials Studio software (version 2016, Accelrys Inc., San Diego, CA,
USA), which aids in creating a blended product with optimised physical and chemical
properties, the selection of the framework sequence was carried out. Using the Blends
software module, χ and Emix values were assigned to each peptide sequence. Specifically,
the abundant repeated peptide sequences from the Ala-rich cross-linking domain of this
protein were determined and computationally screened. This domain is involved in the
coacervation process necessary for the final elastin fibre formation, aiding in the alignment
and cross-linking of monomers (Figure 2) [50,52–54].
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Table 1. Analysis of the elastin protein to establish the abundance of sequences of the Ala-rich
cross-linking domain.

Peptide Sequence Number of Recurrences

AA 16

AAA 8

AAAA 3

AAAAA 1

AAAAAAA 2

AAAAAKAA 1

AAAAAAAAAA 1

AAAAAAAKAAA 2

AAAAKAA 2

AAAKAA 1

AAAKAAA 1

AAAAAAAAAAKAA 1

AAAAAAAKAAAKAA 2
The colours and underlined sequences above represent the abundance of repeated sequences of the Ala-rich
cross-linking domain, as per Figure 1.
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Our goal was to identify sequences containing Lysine (Lys), as Lysine is crucial for
cross-linking. It plays a key role in the lysyl oxidase-mediated formation of desmosine
cross-links, which are necessary for the formation of insoluble elastin [55–57]. Furthermore,
molecules such as drugs can be anchored through the amine group on the side chain of
Lysine. Additionally, this amine group carries a positive charge at physiological pHs,
enhancing solubility and facilitating ionic interactions with proposed molecules, thereby
boosting the solubility of the final peptide. Therefore, we believe that it is important to
include Lysine in our desired candidate sequences.

To select candidate sequences, we applied the Blends software module to a peptide se-
quence derived from the hydrophobic domain of the same protein. This sequence, VPGVG,
was successfully used to prepare a hydrogel for myocardial infarctions (Figure 3) [47].
Consideration was also given to including fluorenylmethyloxycarbonyl (Fmoc)-FF in our
candidate sequence to enhance self-assembly through π-π stacking interactions, promote
the formation of nanofibers, and facilitate the transition into a hydrogel [58]. Numerous
studies have demonstrated that the FF dipeptide and its derivatives can self-assemble into
highly ordered structures, manifesting in various forms with nanoscale order [21,27]. The
C-terminal has been amidated to maintain neutrality for future conjugation purposes.

The peptide sequences EDP-1 (Fmoc-FFAAAAKAA-NH2), EDP-2 (Fmoc-FFAAAKAA-
NH2), and EDP-3 (Fmoc-FFAAAKAAA-NH2) showed similar χ and Emix values
to the reference peptide (VPGVG). Therefore, these sequences were selected for
further experiments.
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2.2. I-TASSER

The three peptides selected were evaluated by I-TASSER software (version 5.1) for
protein structure prediction [59–61]. Since the software requires a sequence length of 10
residues and does not recognise the Fmoc group, we incorporated an additional pheny-
lalanine (F) group to meet the ten-residue requirement and to represent the Fmoc group.
Therefore, the following sequences were submitted:

EDP-1, FFFAAAAKAA
EDP-2, FFFFAAAKAA
EDP-3, FFFAAAKAAA
The software analysis results showed that EDP-1 adopted an α-helical secondary

structure, with residues 2 to 7 participating in the α-helix, while residues 1 and 8–10
adopted a coil structure (Figure S1). EDP-2 adopted a β-sheet structure, with residues 2 to
6 participating in the β-sheet secondary structure, while residues 1 and 7–10 adopted a coil
structure (Figure S2). EDP-3 adopted an α-helical secondary structure, with residues 3 to 7
forming the α-helix, residues 1 and 2 adopting a coil conformation, and residues 8 to 10
also assuming a coil structure (Figures S3 and 4).
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0.400 Å) using I-TASSER [59–61].

As observed in structures EDP-1 and EDP-3, two helices associate through the hy-
drophobic interface between residues 2 through 5 and 7 to 9, which are orientated outward.
Residues 1, 6, and 10 contribute to the overall stability of the α-helical structure. This
arrangement is a significant feature of α-helices, allowing functional groups within the
helix to engage in crucial intermolecular interactions.
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In conclusion, the secondary structure predicted for EDP-1 and EDP-3 corresponds
to a typical α-helical structure known as a 7/2 repeat, where seven amino acids span two
helical turns.

2.3. MolProbity

MolProbity 4.5.2 is a modelling tool from Duke University that was used to evaluate
the secondary structure of the three peptides [62]. The dihedral angles (Φ and Ψ) of the
central N-Cα bond in the amino acids involved in the secondary structure were calculated
for the three peptides. In EDP-1 and EDP-3, it was confirmed that residues 2 to 9 participate
in the helical structure, with Φ values ranging between −50 and −80 and Ψ values ranging
between −25 and −60. However, deviations were observed: in EDP-1, residue 7 had an
out-of-range Ψ value, and in both EDP-1 and EDP-3, residues 8 and 9 showed out-of-range
Φ values. Furthermore, the calculated Rama-Z (Ramachandran plot Z-score) was less than
2 for all residues involved in the helical structure of both peptides. Despite the deviations
noted in specific residues, these values predominantly fell within the well-populated
region in the lower left quadrant of the Ramachandran plot, indicative of an ideal α-helix
conformation for EDP-1 and EDP-3.

In EDP-2, the analysis confirmed the formation of a loop involving residues 1 and
2, while the remaining residues adopted a helical structure. However, Φ and Ψ values
exhibited significant variability and often deviated from the ideal α-helix conformation
range. This variability may be attributed to intramolecular interactions resulting from the
loop conformation adopted by residues 1 and 2. Overall, the observed Φ and Ψ values,
along with the Rama-Z scores, confirm the ideal α-helical conformation of EDP-1 and
EDP-3, while highlighting the unique structural features of EDP-2 [14] (Supplemental
Tables S1–S3).

2.4. Peptide Synthesis

The three sequences were synthesised using a microwave-assisted automatic synthe-
siser (CEM) (Figure 5). Peptides were analysed by HPLC and were confirmed by LC-MS to
have good purity: EDP-1 and EDP-2 showed purity of 98.2%, while EDP-3 exhibited 91.8%
purity (Figures S4–S9).
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2.5. Critical Aggregation Concentration (CAC) Determination

A range of concentrations of the selected peptides were prepared in buffered-CH3CN
(1:1) and analysed using a fluorescence spectrometer at concentrations of 0.4, 0.3, 0.2, 0.1,
0.05, 0.02, and 0.01 mM. Purine was added to all samples at a final concentration of 1 µM.
The critical aggregation concentration (CAC) for all three peptides was determined to be
0.16 mM (Figure 6).

1 

 

 

A 

 

D 

 

B 

 

C 

 

 
Figure 6. Critical aggregation concentration (CAC) of the selected peptides (left). Image of the three
peptides to show the hydrogel formation (right). (A) EDP-1, (B) EDP-2, (C) EDP-3. (D) Digital images
of the formed EDP-1 and EDP-2 hydrogels. Sigmoidal function fitted within the yellow region, where
the red tangent shows the CAC.
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Despite all three peptides sharing the same CAC value of 0.16 mM, only peptides
EDP-1 and EDP-2 formed hydrogels within 1 h, with EDP-2 producing a more cohesive
hydrogel than EDP-1 (Figure 6D). The short fibres of EDP-3 (maximum 0.649 µm) could
explain its inability to efficiently self-assemble into the three-dimensional (3D) network
necessary for hydrogel formation (Figure 6D). Interestingly, due to the long nanofibers, our
peptides are not expected to induce immunogenicity or antigenicity. Computational data
from Figure 3 indicated that the χ and Emix values for EDP-2 were not as high as those for
the other two peptides, suggesting a better balance of miscibility between the peptide and
water and hence better gelation kinetics.

Injectable hydrogels are more suitable as drug delivery vehicles than solutions. There-
fore, peptides EDP-1 and EDP-2 are considered promising candidates for drug formulation.
Interestingly, after the gelation process completed within 1 h, excess solvent was expelled
from the hydrogel, as confirmed using infrared spectroscopy (IR) (Figure S10). The com-
position of the expelled solvent was characterised by IR. No traces of the peptide were
found in the expelled solvent. Therefore, we can conclude that at the concentration used
to dissolve the peptide (1% wt/v), all the peptide quantity has contributed to hydrogel
formation. This also confirms the opportunity to incorporate an additional amount of the
peptide to achieve a more robust hydrogel structure.

2.6. Transmission Electron Microscope (TEM) Imaging

The three peptides have been examined using transmission electron microscopy anal-
ysis (TEM) (Figure 7). As can be visually observed, in addition to the coherent hydro-
gel that peptide EDP-2 could form, it has also shown better nanofibers than both the
investigated peptides.

It is evident that all three peptides formed nanofibers, but their lengths varied: peptide
EDP-2 exhibited the longest and densest fibres (at least 4.57 µm), peptide EDP-1 had
intermediate fibres (at least 1.86 µm), and peptide EDP-3 had the shortest fibres (no more
than 0.649 µm). Interestingly, the obtained TEM images confirm the secondary structures
predicted by the computational studies (Section 2.2).

2.7. UV Analysis

To investigate the driving force behind the self-assembly processes, UV experiments
were conducted. A red shift in the aromatic groups was observed from 288 nm to 303 nm
for one peptide and from 299 nm to 335.7 nm for another, confirming the presence of π-π
stacking interactions (Figure S11). It is noteworthy that the amino acid compositions of
these three peptides are highly prone to self-assembly, which has played a crucial role in
the assembly process.

2.8. Circular Dichroism (CD) Measurements

The three peptides underwent CD analysis to assess their secondary structure [63].
The experiment was conducted in the presence and absence of 40% 2,2,2-trifluoroethanol
(TFE) as a secondary structure enhancer [64]. Indeed, a clear enhancement in the spectra
was noticed upon the addition of TFE (Figure 8).

The CD data confirmed the computational predictions and assigned the secondary
structures for the three peptides designed in this study. EDP-1 and EDP-3 exhibited
characteristic CD spectra indicative of α-helix conformation, featuring two negative bands
of similar magnitude at 222 and 208 nm, along with a positive band around 190 nm [65].
The α-helical structure was more pronounced in EDP-3 compared to EDP-1, although
EDP-1 clearly exhibited structure and was not a random coil. It is important to note that
the solvent used can influence these experiments. On the other hand, EDP-2 displayed
a negative band between 210 and 220 nm and a positive band between 195 and 200 nm,
confirming the adoption of a β-sheet conformation in this case [65].
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Figure 8. CD spectra for the three peptides investigated in this work.

2.9. Dynamic Light Scattering (DLS) and Zeta Measurements

Table 2 summarises the characteristic zeta potential, hydrodynamic size (DH, nm), and
polydispersity index (PDI) of EDP-1 and -2.

Table 2. Zeta potential and hydrodynamic size of EDP-1 and -2.

Peptide Zeta Potential (mV) DH (nm) PDI

EDP-1 −10.04 ± 1.00 3808.3 ± 1334.8 0.926
EDP-2 −0.74 ± 0.50 3087 ± 1788.0 0.786

A high absolute zeta potential (positive or negative) aids the dispersion of nanopar-
ticles by electrostatic repulsion. In dispersed systems, a zeta potential between ±10 mV
and ±30 mV is associated with incipient instability, while a zeta potential below ±5 mV
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characterises dispersion instability due to coagulation or flocculation [66]. In the case of
EDP-1 and -2, the low zeta potentials indicate weak electrostatic repulsion between the
peptide nanofibers, which would allow them to come into proximity and thus facilitate
their self-assembly into hydrogels. The hydrodynamic diameters of EDP-1 and EDP-2 were
~3 µm. The high PDI values (0.7–0.9) indicate a heterogenous particle size distribution. This
could be due to the ongoing self-assembly of the peptides while running measurements
(Figures S12 and S13). It is conceivable that during the DLS measurement, the samples
contained a mixture of the peptide nanofibers of different sizes, because they were at
various stages of self-assembly.

2.10. Storage Modulus (G′) and Loss Modulus (G′′)

Peptides EDP-1 and EDP-2 exhibited characteristics of a viscoelastic solid (G′ > G′′).
The gelation process was evident from a sharp increase in both G′ and G′′, followed by
a plateau, indicating complete gelation (Figure 9). In addition to having higher initial G′

and G′′ values, which signify a stronger viscoelastic material, peptide EDP-2 completed
gelation sooner (approximately 25 min, with values of 81.33 Pa for G′ and 26.88 Pa for
G′′) compared to peptide EDP-1 (around 40 min, with values of 57.13 Pa for G′ and 10.08
Pa for G′’) (Supplemental Tables S4 and S5). Interestingly, these findings are consistent
with the TEM images obtained (Figure 7). EDP-1 (Figure 7 EDP-1) and EDP-2 (Figure 7
EDP-2) both exhibit long nanofibers, which are believed to contribute to the gelation and
mechanical strength of the resulting hydrogels. In contrast, EDP-3 (Figure 7 EDP-3) formed
much shorter nanofibers, which did not result in gelation. The nanofibers in EDP-2 were
more tightly intertwined than those in EDP-1, likely explaining the greater strength of the
hydrogel formed from EDP-2. This behaviour is evident from the higher initial G′′ and G′

values and the faster gelation observed.
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The rapid gelation of peptide EDP-2 confirms its favourable performance compared to
EDP-1. However, since EDP-1 adopts a helical conformation, it is also a strong candidate,
particularly compared to peptides that adopt β-sheet structures, such as EDP-2. Therefore,
it is anticipated that both peptides have the potential to be efficient vehicles for drug
delivery applications, though this hypothesis will need to be evaluated in future work. It is
important to note that the initial rheological study was conducted on 1% (wt/v) peptide
solution, whereas future investigations will establish the optimum peptide concentration
for a robust hydrogel that can then be used for drug loading.
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3. Experimental Details
3.1. Methods and Materials

Rink amide resin (0.5 mmol/g, per the supplier’s specifications) was used for all
syntheses. Reagents and solvents were sourced from commercial suppliers and used as
received, unless otherwise specified. Analytical HPLC was conducted using a Shimadzu
LC20 system with LabSolution software (version 5.92) for data analysis. The LC column
used was a Symmetry Luna C18 (3.6 µm, 4.6 × 150 mm), with a flow rate of 1.0 mL/min
and UV detection at 280 nm. The mobile phase consisted of 0.1% trifluoroacetic acid (TFA)
in H2O (Phase A) and 0.1% TFA in CH3CN (Phase B). LCMS analysis was performed on a
Velos Pro mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA), a hybrid linear
trap quadrupole (LTQ)-Orbitrap, using positive electrospray ionisation mass spectrometry
(ESI+-MS) with direct sample infusion. A Liberty Blue™ automated microwave-assisted
peptide synthesiser (CEM) was used for the peptide synthesis. The fluorescence spectrom-
eter used was a Shimadzu-RF6000, Hitachi HT7800 TEM (Tokyo, Japan), using an Emsis
Xarosa camera with Radius software (version 2.3). The Fourier transform infrared spec-
troscopy (FTIR) was performed with an Agilent Cary 630 with the diamond-ATR sampling
module. UV-vis spectroscopy was conducted with an Agilent Carry 100 UV-Vis spectrom-
eter. The mean particle size, polydispersity index (PDI), and zeta potential of the parti-
cles were determined by dynamic light scattering (DLS) using the Malvern Nanosizer ZS
(Model: ZEN3600, Malvern Inc., Malvern, UK) at 25 ◦C. DTS1070 folded capillary cells were
used for zeta potential measurements, and disposable cuvettes (DTS0012) were used for
DLS measurements.

3.2. Computational Study

Computational studies were carried out using BIOVIA Materials Studio 2018, Accelrys
Inc. (San Diego, CA, USA).

All the generated assemblies were energy minimised, and their geometry was op-
timised using the “Forcite module” with smart algorithms. The forcefield was set to
“Dreiding”, and charges were assigned using “Charge using QEq”. Miscibility was simu-
lated with the “Blends module”, maintaining the same forcefield and charge settings as
used in the geometry optimisation. The calculation option was set to “mixing”, which
performs both binding energy and coordination number calculations to predict the fol-
lowing values: Emix, interaction energy, and χ parameter values. The peptide–solvent
interaction parameter (χ) and Emix values that were computationally obtained reflect the
predicted degree of miscibility between the solutes and solvents. Higher χ and/or Emix
values indicate a lower miscibility or swelling capacity.

3.3. I-TASSER

The three peptide sequences were inputted into the online platform
https://zhanggroup.org/I-TASSER/, and the programme was executed (accessed on
9 August 2024).

3.4. MolProbity

The three peptide sequences were inputted into the online platform http://molprobity.
biochem.duke.edu/, and the programme was executed (accessed on 9 August 2024).

3.5. Peptide Synthesis

Within the automated SPPS method, the protocol provided by CEM corporation was
adhered to [67]. The coupling of the amino acid to the growing peptide chain was achieved
through the addition and heating of Fmoc-AA-OH acid (0.25 mmol, 5 equiv, 0.2 M in DMF),
OxymaPure (0.25 mmol, 5 equiv, 0.5 M in DMF), and DIC (0.50 mmol, 10 equiv, 0.5 M in
DMF) at 90 ◦C for 2 min (single-coupling) or 2 × 2 min (double-coupling). N-terminal
deprotection of the growing peptide chains was achieved through Fmoc-cleavage via the

https://zhanggroup.org/I-TASSER/
http://molprobity.biochem.duke.edu/
http://molprobity.biochem.duke.edu/
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addition of piperidine (20% v/v in DMF) in OxymaPure (0.1 M in DMF) and heating at
90 ◦C for 1.5 min.

3.6. Critical Aggregation Concentration (CAC)

Six concentrations of the three peptides were prepared in CH3CN -Buffer pH 7.4 (1:1).
All levels were examined using fluorescence spectrometry at an excitation wavelength of
374 nm and an emission wavelength of 384 nm.

3.7. Hydrogel Formation

Solutions of the three peptides were prepared at a concentration of 1.0% (wt/v) in
CH3CN-Buffer pH 7.4 (1:1). After 6 hr at room temperature, the solutions were examined
using vial inversion to check their ability to form hydrogels.

3.8. IR and UV Measurements

The excluded solvent (supernatant) from the hydrogel was analysed by FTIR and
compared with fresh solvent. For UV spectroscopy, a spectrum scan was obtained from
200 nm to 400 nm for both a freshly prepared peptide sample and after complete gelation.

3.9. TEM Imaging

A 0.2% (wt/v) solution in CH3CN–water (1:1) of the three peptides was investigated
using TEM. In brief, 10 µL of the sample was settled onto a glow-discharged, copper mesh
grid for 30 sec, wicked away, then placed on a droplet of 2% uranyl acetate (UA), then
wicked, and then placed on a second droplet of UA. The grid was dried under a lamp. For
TEM, the images were collected from different areas of the copper mesh grid.

3.10. Circular Dichroism (CD) Measurements

The experiment was conducted on the peptides in CH3CN (1:1) at a concentration of
0.3 mg/mL, both in the presence and absence of 40% 2,2,2-trifluoroethanol.

3.11. DLS and Zeta Potential

The samples (in CH3CN) were prepared by dispersion in McIlvaine buffer (3.63 mM
Na2HPO4, 0.18 mM citric acid and 0.13 mM KCl; pH 7.0). The cells were filled slowly to
avoid air bubbles and measured in triplicate. The final concentration of the peptide was
1% (wt/v).

3.12. Storage Modulus (G′) and Loss Modulus (G′′)

The rheological properties of peptides EDP-1 and EDP-2 were determined by oscilla-
tory rheology on the Kinexus Pro+ rotational rheometer (Malvern Panalytical) using the
parallel plate geometry. Freshly reconstituted peptide solutions were loaded immediately
on the rheometer. A viscoelastic characterisation was performed with a gap size of 0.5 mm,
a strain of 1%, and a frequency of 0.1 Hz to simulate low shear/resting conditions. The
storage modulus (G′) and loss modulus (G′′) were monitored for up to 180 min to verify
time-dependant behaviour.

4. Conclusions

In this study, a series of novel peptide-based hydrogels were successfully designed,
synthesised, and characterised. Three peptide sequences were derived from the Ala-rich
cross-linking domain of the elastin protein. The Ala-rich cross-linking domain is crucial in
the coacervation process for the formation of elastin fibres. Experimental data were aligned
with computational work to both derive and predict the behaviour of the selected peptides.
Among the designed peptides, EDP-1 and EDP-2 showed promising results in forming
both nanofibers and robust hydrogels.

Based on these findings, it can be anticipated that these peptide-based hydrogel
candidates will be well suited for delivering drugs in a sustained release pattern over
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an extended period. Implanting external biomaterials such as hydrogels is considered to
be ideal for application in tissue regeneration. In Al Musaimi’s group, we are currently
working on applying EDP-1 and EDP-2 as a drug delivery system to control the release of
a potential peptide-based drug for aesthetic applications. Moreover, it is anticipated that
our designed peptide hydrogels will have additional applications not only in soft tissue
engineering but also in the field of wound healing.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/gels10080531/s1, Figure S1. The normalized B-factor
(called B-factor profile, BFP) of EDP-1; Figure S2. The normalized B-factor (called B-factor pro-
file, BFP) of EDP-2; Figure S3. The normalized B-factor (called B-factor profile, BFP) of EDP-3;
Figure S4. Mass of Fmoc-FFAAAAKAA-NH2. Calculated: 1088.28; found: 1088.98 [M+H]+, 545.29
[M+2H]2+; Figure S5. Fmoc-FFAAAAKAA-NH2. 5−95% in 30 min gradient elution.
λ = 280 nm. Mobile phase A: 0.1% TFA in H2O; mobile phase B: 0.1% TFA in CH3CN; Symmetry
Luna C18 (3.6 µm, 4.6 × 150 mm) column. Purity 98.2%; Figure S6. Mass of Fmoc-FFAAAKAA-NH2.
Calculated: 1017.20; found: 1017.94 [M+H]+, 545.39 [M+2H]2+; Figure S7. Fmoc-FFAAAKAA-
NH2. Refer for legend of Figure S5 for chromatographic conditions. Purity 98.2%; Figure S8.
Mass of Fmoc-FFAAAKAAA-NH2. Calculated: 1088.53; found: 1088.98 [M+H]+, 545.29 [M+2H]2+;
Figure S9. Fmoc-FFAAAKAAA-NH2. Refer for legend of Figure S5 for chromatographic conditions.
Purity 91.8%; Figure S10. FTIR Overlaid spectra of peptide EDP-2 supernatant after gelation (red)
and Buffer-ACN solvent (blue); Figure S11. UV spectra of peptide EDP-2 before (black) and after
gelation (red); Figure S12. Size distribution measurement of EDP-1. Figure S13. Size distribution
measurement of EDP-2; Table S1. MolProbity computational data of EDP-1; Table S2. MolProbity
computational data of EDP-2; Table S3. MolProbity computational data of EDP-3; Table S4. Rheology
experiment of EDP-1; Table S5. Rheology experiment of EDP-2.

Author Contributions: Conceptualisation, O.A.M.; methodology, O.A.M. and K.W.N.; software,
O.A.M. and O.M.M.-V.; validation, O.A.M., K.W.N. and D.R.W.; formal analysis, O.A.M., K.W.N.,
V.G., O.M.M.-V., H.B.H. and D.R.W.; investigation, O.A.M., K.W.N., V.G., O.M.M.-V., H.B.H. and
D.R.W.; resources, O.A.M., K.W.N. and D.R.W.; data curation, O.A.M., K.W.N., V.G., O.M.M.-V. and
H.B.H.; writing—original draft preparation, O.A.M., K.W.N., V.G. and H.B.H.; writing—review and
editing, O.A.M., K.W.N., V.G., O.M.M.-V. and D.R.W.; visualisation, O.A.M., O.M.M.-V., supervision,
O.A.M.; project administration, O.A.M.; funding acquisition, O.A.M., K.W.N. and D.R.W. All authors
have read and agreed to the published version of the manuscript.

Funding: The work in this paper has been funded by the faculty of Medical Sciences (FMS)—
Newcastle University, Research Excellence Development Award 171.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article or Supplementary Materials.

Acknowledgments: The authors would like to express gratitude towards the Electron Microscopy
Core Facility—EMRS facility for their support and assistance in this work, BB/R013942/1. We
would also like to thank Anna Barnard and Joshua Tomkins (Department of Chemistry) for giving
us access to the Liberty Blue (CEM) synthesiser. Also, special thanks to Alex Charlton and Ka-
rina Scurupa Machado (School of Natural and Environmental Sciences) for giving us access to the
fluorescence spectrometer.

Conflicts of Interest: The authors declare no competing financial interests.

References
1. Revenue of the Worldwide Pharmaceutical Market from 2001 to 2023. Available online: https://www.statista.com/statistics/26

3102/pharmaceutical-market-worldwide-revenue-since-2001/#:~:text=The%20global%20pharmaceutical%20market%20has,
billion%20dollars%20compared%20to%202022 (accessed on 9 August 2024).

2. Pharmaceuticals-United Kingdom. Available online: https://www.statista.com/outlook/hmo/pharmaceuticals/united-
kingdom (accessed on 9 August 2024).

3. Al Shaer, D.; Al Musaimi, O.; Albericio, F.; de la Torre, B.G. 2023 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceu-
ticals 2024, 17, 243. [CrossRef]

https://www.mdpi.com/article/10.3390/gels10080531/s1
https://www.statista.com/statistics/263102/pharmaceutical-market-worldwide-revenue-since-2001/#:~:text=The%20global%20pharmaceutical%20market%20has,billion%20dollars%20compared%20to%202022
https://www.statista.com/statistics/263102/pharmaceutical-market-worldwide-revenue-since-2001/#:~:text=The%20global%20pharmaceutical%20market%20has,billion%20dollars%20compared%20to%202022
https://www.statista.com/statistics/263102/pharmaceutical-market-worldwide-revenue-since-2001/#:~:text=The%20global%20pharmaceutical%20market%20has,billion%20dollars%20compared%20to%202022
https://www.statista.com/outlook/hmo/pharmaceuticals/united-kingdom
https://www.statista.com/outlook/hmo/pharmaceuticals/united-kingdom
https://doi.org/10.3390/ph17020243


Gels 2024, 10, 531 15 of 17

4. Al Musaimi, O. Peptide Therapeutics: Unveiling the Potential against Cancer—A Journey through 1989. Cancers 2024, 16, 1032.
[CrossRef]

5. Al Musaimi, O.; Al Shaer, D.; de la Torre, B.G.; Albericio, F. 2017 FDA Peptide Harvest. Pharmaceuticals 2018, 11, 42. [CrossRef]
6. Al Musaimi, O. Exploring FDA-Approved Frontiers: Insights into Natural and Engineered Peptide Analogues in the GLP-1, GIP,

GHRH, CCK, ACTH, and &alpha;-MSH Realms. Biomolecules 2024, 14, 264. [CrossRef]
7. Del Olmo-Garcia, M.I.; Merino-Torres, J.F. GLP-1 Receptor Agonists and Cardiovascular Disease in Patients with Type 2 Diabetes.

J. Diabetes Res. 2018, 2018, 4020492. [CrossRef]
8. Bailey, C.J.; Flatt, P.R.; Conlon, J.M. An update on peptide-based therapies for type 2 diabetes and obesity. Peptides 2023, 161,

170939. [CrossRef]
9. Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.;

Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [CrossRef]
10. Al Musaimi, O. FDA’s stamp of approval: Unveiling peptide breakthroughs in cardiovascular diseases, ACE, HIV, CNS, and

beyond. J. Pept. Sci. 2024, e3627. [CrossRef]
11. Wichterle, O.; LÍM, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [CrossRef]
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