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Abstract: We investigate the H-theorem for a class of generalized kinetic equations with fractional
time-derivative, hyperbolic term, and nonlinear diffusion. When the H-theorem is satisfied, we
demonstrate that different entropic forms may emerge due to the equation’s nonlinearity. We
obtain the entropy production related to these entropies and show that its form remains invariant.
Furthermore, we investigate some behaviors for these equations from both numerical and analytical
perspectives, showing a large class of behaviors connected with anomalous diffusion and their effects
on entropy.

Keywords: entropy; nonlinear diffusion; anomalous diffusion; H-theorem

1. Introduction

After the seminal contributions of Boltzmann [1], Maxwell [2,3], and Gibbs [4] (see also
Ref. [5]), the kinetic equations have emerged as fundamental tools for characterizing the
dynamics of microscopic particles [6,7] and their interplay with observable thermodynamic
phenomena. These equations find application across various domains, encompassing both
equilibrium and non-equilibrium statistical mechanics frameworks, where they play a
crucial role in extracting valuable insights about a system’s behavior from the underlying
microscopic dynamics. Particularly significant is the pursuit of a functional description of
the probability density whose temporal evolution exhibits a definite minus sign known
as the H-theorem. This theorem serves as a critical characteristic for irreversibility in the
system’s evolution, akin to the second law of thermodynamics, thereby shedding light on
the emergence of macroscopic thermodynamic quantities from microscopic considerations.
This function is directly connected with entropy, a crucial ingredient of this theory, estab-
lishing that non-equilibrium systems will reach equilibrium after long-time evolution. The
H-theorem is also a way of investigating the rule of additivity for systems with different
entropies, as discussed in Refs. [8–11].

The scenarios belonging to non-equilibrium statistical mechanics may be analyzed
by different approaches, particularly Fokker–Planck-like equations. In linear form, the
Fokker–Planck equation can be written as follows:
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∂

∂t
ρ(x, t) =

∂

∂x

{
D

∂

∂x
ρ(x, t)− F(x, t)ρ(x, t)

}
, (1)

where ρ(x, t) is the distribution function and D is the diffusion coefficient. In the absence
of external forces, F(x, t), the solution corresponds to the Gaussian distributions. The
fractional Fokker–Planck equations, incorporating fractional operators, are usually written
as follows:

τγ

∫ t

0
dt′Kγ(t − t′)

∂

∂t′
ρ(x, t′) =

∂

∂x

{
D

∂

∂x
ρ(x, t)− F(x, t)ρ(x, t)

}
, (2)

where τγ is a relaxation time and Kγ(t) is a kernel related to the memory effects, which is
connected to non-Debye relaxation processes [12,13]. The fractional operator can be related
to different scenarios, as described in Refs. [14–17]. Equation (2) has been successfully
applied in different contexts such as electrical impedance [12], anomalous transport in
biological cells [18], anomalous diffusion in crowded environments [19], and in bioengi-
neering [20]. We may also have the nonlinear Fokker–Planck equations, such as:

∂

∂t
ρ(x, t) =

∂

∂x

{
D

∂

∂x
[ρ(x, t)]ν − F(x, t)ρ(x, t)

}
, (3)

where ν gives the degree of nonlinearity, often used to model diffusion in porous media,
where an increase in ν decreases the diffusion. Equation (3) is generally used to describe
anomalous behavior often seen in long-range interaction [21], memory effects [22], porous
media [23,24], drift terms with contributions not derivable from a potential function [25],
and many others (see, for example, Refs. [26–28] and references therein). Equation (3) has
as solutions non-Gaussian distributions in the absence of external forces. Other situations
may consider, for example, a spatial dependence on the diffusion coefficient [29,30]. Both
equations satisfy the H-theorem with deep implications for the dependence on this func-
tion’s probability density in each case. We are leading to the Boltzmann–Gibbs entropy for
Equation (1) and the Tsallis entropy for Equation (3), as discussed in Refs. [31–34]. Each
functional is unique for its respective case and comes from the H-theorem [35,36]. This
implies that dH/dt ⩾ 0 and in equilibrium Heq = Seq, which suggests a relation of the
H-theorem with the second law of thermodynamics, as its microscopic counterpart.

Here, we analyze a possible formulation for the H-theorem applied to kinetic equations
that are fractional, nonlinear, and have a hyperbolic term, which introduces a finite phase
velocity for the relaxation process, such as

τc
∂2

∂t2 ρ(x, t) +
∫ t

0
dt′K(1)

γ (t − t′)
∂

∂t′
ρ(x, t′) =

∂

∂x

{
D(ρ)

∂

∂x
ρ(x, t)− F(x, t)ρ(x, t)

}
, (4)

with K(1)
γ (t) = δ(t) + τγKγ(t), where τc is a relaxation time. D(ρ) is a diffusion coefficient

with a nonlinear dependence on ρ(x, t). In Equation (4), depending on the choice of Kγ(t),
we may obtain different integrodifferential operators with singular or non-singular kernels.
The Caputo fractional operator can be obtained by considering Kγ(t) = t−γ / Γ(1 − γ) [12],
which implies

∂γ

∂tγ
ρ(x, t) =

1
Γ(1 − γ)

∫ t

0
dt′

1
(t − t′)γ

∂

∂t′
ρ(x, t′), (5)

another one is the Fabrizio–Caputo fractional operator, for Kγ(t) = k′γe−γ′t, i.e.,

∂γ

∂tγ
ρ(x, t) = k′γ

∫ t

0
dt′e−γ′(t−t′) ∂

∂t′
ρ(x, t′) , (6)
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or the Atangana–Baleanu fractional operator, for Kγ(t) = k′γEγ(−γ′tγ), given by

∂γ

∂tγ
ρ(x, t) = k′γ

∫ t

0
dt′Eγ

(
−γ′(t − t′)γ

) ∂

∂t′
ρ(x, t′), (7)

where γ′ = γ/(1 − γ), k′γ = kγ/(1 − γ), and kγ is a normalization constant [14,16,37,38].
It is worth mentioning that the hyperbolic term introduces a finite phase velocity, which is
not present in the standard form of the diffusion equation. It introduces a finite velocity
of information propagation, which can be related to the finite collision frequency [39–41].
Particular cases of Equation (4) arise, for instance, in the analysis of the random walks [42],
generalized master equations with memory effects [43], and heat conduction [44]. Non-
linear cases are essential for capturing phenomena such as thermal hysteresis, thermal
wave propagation in materials with memory effects, overdamped systems with drag [45],
and phase transitions. Other situations can also be connected to the diffusion equations
with hyperbolic terms, such as the random Boltzmann-Lorentz gas with Markovian and
non-Markovian binary fluctuations [41]. Furthermore, we may also describe situations
characterized by different diffusion regimes [46,47] depending on the kernel’s choice or
the diffusion coefficient dependence. These scenarios can be found in active intracellular
transport [48], systems with long-range interactions [49], particle diffusion in a bacterial
bath [50], and motion of organelles and single molecules in living cells [51].

2. H-Theorem and Nonlinear Fractional Diffusion-like Equations

We formulate the H-theorem for a general kinetic equation, extending the hyperbolic
diffusion equations by considering nonlinear terms such as the one present in Equation (4).
For this, we should also note that Equation (4) can be obtained from the combination of the
continuity equation

∂

∂t
ρ(x, t) +

∂

∂x
J (x, t) = 0 , (8)

with a suitable choice for the current density J (x, t). In this sense, the current density
will be obtained from the H-theorem in combination with a suitable entropic form for
the system.

Let us now establish the free energy, i.e., F = U − TS [35,36]. The internal energy and
entropy are defined as follows:

U (t) =
∫ ∞

−∞
ρ(x, t)ϕ(x)dx , (9)

where the potential, ϕ(x), is related to the external force by the equation F(x) = −∂xϕ(x)
and

S(t) = −k
∫ ∞

−∞
dx

{
s[ρ(x, t)] + α[ρ(x, t)]J 2(x, t)

+
∫ t

0
dt′

∫ t′

0
dt′′Kγ(t′ − t′′)ϑ[ρ(x, t′)]J (x, t′)J (x, t′′)

}
,

(10)

for the system’s entropy, where s[ρ(x, t)], ϑ[ρ(x, t)], α[ρ(x, t)], and J (x, t) will be defined
by the H-theorem. Equation (10) extends the one present in [35,36] for a general functional
in terms of s(ρ), which may cover different scenarios. The additional terms in Equation (10)
will be useful for connecting Equation (4) with an extended thermodynamics [52] and
consequently satisfying the H-theorem when memory effects are present in the diffu-
sion process. It is also worth mentioning that in the equilibrium state, J (x, t) = 0 and
S = −k

∫ ∞
−∞ dx s(ρ) will represent the equilibrium entropy related to the dynamics of the

system. In this way, the form of the entropy, that is, how it depends on the probability
density, will depend on Equation (4). In the following, we consider the time evolution
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of the free energy and relate this evolution to the H-theorem to establish the functional
probability, which may be connected to Equation (4). In this sense, we have

d
dt
F (t) =

∫ ∞

−∞
dx

{
ϕ(x) + k T

∂

∂ρ
s(ρ) + k T

[
∂

∂ρ
α(ρ)

]
J 2(x, t)

}
∂

∂t
ρ(x, t)

+ 2k T
∫ ∞

−∞
dx α(ρ)J (x, t)

∂

∂t
J (x, t)

+ k T
∫ ∞

−∞
dx ϑ(ρ)J (x, t)

∫ t

0
dt′′Kγ(t − t′′)J (x, t′′) .

(11)

By using Equation (8) and performing integration by parts with the boundary condition
J (x → ∞, t) → 0, we can write the previous equation as follows:

d
dt
F (t) = −

∫ ∞

−∞
dx

{
ϕ(x) + k T

∂

∂ρ
s(ρ) + k T

[
∂

∂ρ
α(ρ)

]
J 2(x, t)

}
∂

∂x
J (x, t)

+ 2 k T
∫ ∞

−∞
dx α(ρ)J (x, t)

∂

∂t
J (x, t) + k T

∫ ∞

−∞
dx ϑ(ρ)J (x, t)

∫ t

0
dt′′Kγ(t − t′′)J (x, t′′) ,

=
∫ ∞

−∞
dxJ (x, t)

{
∂

∂x
ϕ(x) + k T

[
∂2

∂ρ2 s(ρ)
]

∂

∂x
ρ(x, t)

}
+ k T

∫ ∞

−∞
dxJ (x, t)

∂

∂x

[
J 2(x, t)

∂

∂ρ
α(ρ)

]
+ 2 k T

∫ ∞

−∞
dx α(ρ)J (x, t)

∂

∂t
J (x, t)

+ k T
∫ ∞

−∞
dx ϑ(ρ)J (x, t)

∫ t

0
dt′′Kγ(t − t′′)J (x, t′′) ,

=
∫ ∞

−∞
dx

J (x, t)
ρ(x, t)

{
ρ(x, t)

∂

∂x
ϕ(x) + k Tρ(x, t)

[
∂2

∂ρ2 s(ρ)
]

∂

∂x
ρ(x, t)

}
+ k T

∫ ∞

−∞
dx

J (x, t)
ρ(x, t)

ρ(x, t)
{

∂

∂x

[
J 2(x, t)

∂

∂ρ
α(ρ)

]
+ 2 α(ρ)

∂

∂t
J (x, t)

}
+ k T

∫ ∞

−∞
dx

J (x, t)
ρ(x, t)

ρ(x, t)
{

ϑ(ρ)
∫ t

0
dt′′Kγ(t − t′′)J (x, t′′)

}
.

(12)

To verify the H-theorem and preserve the negative character of Equation (12), i.e.,

d
dt
F (t) ≤ 0 , (13)

we consider that

J (x, t) = −ρ(x, t)
∂

∂x
ϕ(x)− kTρ(x, t)

[
∂2

∂ρ2 s(ρ)
]

∂

∂x
ρ(x, t)

− kTρ(x, t)
{

∂

∂x

[
J 2(x, t)

∂

∂ρ
α(ρ)

]
− 2α(ρ)

∂

∂t
J (x, t)

}
− kTρ(x, t)

{
ϑ(ρ)

∫ t

0
dt′′Kγ(t − t′′)J (x, t′′)

}
.

(14)

Following the discussion present in Refs. [35,52,53], we consider 2kTρα(ρ) = τc =
const, kTρϑ(ρ) = τγ = const and neglect the term J 2(x, t) [35] to obtain Equation (4) from
the Equations (14) and (8). By substituting Equation (14) in Equation (8), we can obtain
Equation (4), i.e.,

τc
∂2

∂t2 ρ(x, t) +
∫ t

0
dt′K(1)

γ (t − t′)
∂

∂t′
ρ(x, t′) =

∂

∂x

{
D(ρ)

∂

∂x
ρ(x, t)− F(x, t)ρ(x, t)

}
, (15)
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where K(1)
γ (t) = δ(t) + τγKγ(t) (τc is a relaxation time) and the relation to be satisfied:

kTρ(x, t)
∂2

∂ρ2 s(ρ) = D(ρ) , (16)

which connects s(ρ) with D(ρ). This feature implies that different dynamics are related to
different forms of entropy (for example, the Tsallis [54,55] and Kaniadakis [56] entropies)
to describe the system in consideration. These features can be verified by choosing D(ρ) ∝
νkTρν−1, which yields

s(ρ) =
1

ν − 1
(
ρν − ρ

)
, (17)

which is essentially connected to the Tsallis entropy [11,57], i.e.,

ST(t) = − k
ν − 1

∫ ∞

−∞
dx

[
ρν(x, t)− ρ(x, t)

]
. (18)

Note that the standard form of the Boltzmann–Gibbs entropy is recovered when taking the
limit as ν → 1, i.e.,

SBG(t) = −k
∫ ∞

−∞
dxρ(x, t) ln ρ(x, t) , (19)

and Equation (4) may be related to the fractional diffusion equation of distributed order [58].
Other forms of entropy imply different choices for dependence present on the diffusion
coefficient, D(ρ). These scenarios may allow us to consider the presence of different regimes
of diffusion, which can be obtained by considering, for example, D(ρ) = D1 + νDνρν−1

with D1 ∝ T and Dν ∝ T. This scenario implies that s(ρ) comprises two different entropic
forms, i.e.,

s(ρ) = ρ ln ρ +
1

ν − 1
(
ρν − ρ

)
, (20)

one is connected to the linear term and the other to the nonlinear term.

2.1. Some Solutions

Let us now consider the solutions of Equation (15) for some cases. We start with the
stationary case where the kernel Kγ(t) is a power law. The solution for this case is obtained
by considering t → ∞ for an external force connected with a potential with at least one
minimum. In this case, Equation (15) can be simplified and yields the following equation:

D(ρst)
∂

∂x
ρst(x)− F(x)ρst(x) = 0 , (21)

where ρ(x, t → ∞) = ρst(x). For the case D(ρst) = νkTρν−1
st , it results in

νkTρν−1
st

∂

∂x
ρst(x)− F(x)ρst(x) = 0 , (22)

and, consequently,

ρ(x, t) =
1
Z expq

[
− β

νkT
ϕ(x)

]
, (23)

with Z1−νβ = 1 and q = 2 − ν. The above function is the q-exponential, and it is defined as
follows:

expq[x] =

{
[1 + (1 − q)x]

1
1−q , x ≥ 1/(q − 1)

0 , x < 1/(q − 1)
. (24)
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It is worth mentioning that the q-exponential naturally emerges from the Tsallis framework.
The solution can be found using standard calculation techniques for the linear case,

i.e., ν = 1. In particular, for the external force F(x, t) = −k f x, where k f is a constant, it is
possible to obtain the solution using the eigenfunctions of the spatial operator related to
Equation (4), i.e.,

ρ(x, t) =
∞

∑
n=0

Cn(t)ψn(x) (25)

with

ψn(x) =

√
2D√
πk f

e−
k f
2D x2√

2nΓ(1 + n)
Hn

√
k f

2D
x

 , (26)

where Hn(x) are the Hermite polynomials [59]. By using the orthogonality of the eigen-
functions, we can obtain an equation for the time-dependent functions Cn(t) and show that
it is given by

τc
∂2

∂t2 Cn(t) +
∫ t

0
dt′Kγ(t − t′)

∂

∂t′
Cn(t′) +

∂

∂t
Cn(t) = −λnDCn(t) , (27)

with λn = nk f and, for simplicity, τγ = 1. The solution of Equation (27) for an ar-
bitrary initial condition, ρ(x, 0) = φ(x) can be found by using the Laplace transform
(L{ρ(x, t); s} = ρ̂(x, s) and L−1{ρ̂(x, s); t} = ρ(x, t)), and it is given by

Cn(t) = Φn(t)
∫ ∞

−∞
dx′φ(x′)ψn(x′) (28)

with

Φn(t) = L−1

{
1 + sτc + K̂γ(s)

s2τc + s + sK̂γ(s) + λnD
; t

}
. (29)

The inverse of the Laplace transform can be found in terms of the convolution integrals,

Φn(t) = Ξn(t) +
∞

∑
j=1

(−1)j
∫ t

0
dtjΥ(t − tj) · · ·

∫ t2

0
dt1Υ(t2 − t1)Ξn(t1) , (30)

Ξn(t) =
e−

t
2τc

2∆(1)
n

{(
∆(1)

n − 1
)

e−
t∆(1)n
2τc

(
∆(1)

n + 1
)

e
t∆(1)n
2τc

}
+ Υn(t) (31)

with ∆(1)
n =

√
1 − 4Dλnτc and

Υn(t) =
∫ t

0
dt′Kγ(t − t′)

2τce−
t′

2τc
√

1 − 4Dλnτc
sinh

(
t′

2τc

√
1 − 4Dλnτc

)
. (32)

For some particular choices of Kγ(t) with τc = 0, it is possible to simplify the previous
equation. For example, for τc = 0 and Kγ(t) = kγt−γ/Γ(1 − γ), we have

Φn(t) =
∞

∑
j=0

(−kγtγ)j

Γ(1 + j)

{
E(j)

1,jγ(−λnDt) + kγtγE(j)
1,(1+j)γ(−λnDt)

}
(33)

with

E(n)
α,β(t) =

dn

dtn Eα,β(t) , (34)



Entropy 2024, 26, 673 7 of 18

where Eα,β(t) is a generalized Mittag–Leffler function [60]. Equation (33) can be written in

terms of the H Fox function by using the fact that E(n)
γ,β(x) = n! En+1

γ,β+γn(x), n ∈ N and

Eδ
γ,β(x) =

∞

∑
k=0

(δ)k
Γ(γk + β)

xk

k!
=

1
δ
H1,1

1,2

[
x
∣∣∣(1−δ,1)
(0,1),(1−β,γ)

]
, (35)

where Eδ
γ,β(x) is the three-parameter Mittag–Leffler function. By using these results, we

have

Φn(t) =
∞

∑
j=0

(−kγtγ)j

1 + j

{
H1,1

1,2

[
−λnDt

∣∣∣(−j,1)
(0,1),(1−jγ,1)

]
+ kγtγH1,1

1,2

[
−λnDt

∣∣∣(−j,1)
(0,1),(1−(1+j)γ,1)

]}
. (36)

For the kernel Kγ(t) = k′γe−γ′t (k′γ = kγ/(1 − γ) and γ′ = γ/(1 − γ)) with τc = 0, we
have

Φn(t) =
1

2∆(2)
n

e−
γ′ t
2 µn

{(
∆(2)

n − σn

)
e

γ′ t∆(2)n
2 +

(
∆(2)

n + σn

)
e−

γ′ t∆(2)n
2

}
. (37)

with ∆(2)
n =

√(
(Dλ + k′γ)2/γ′ − 2Dλ + 2k′γ

)
/γ′ + 1, σn = Dλn/γ′ − k′γ/γ′ − 1, and

µn = Dλn/γ′ + k′γ/γ′ + 1. By using the previous results, we can write Equation (25)
as follows:

ρ(x, t) =
∫ ∞

−∞
dx′φ(x′)

∞

∑
n=0

Φn(t)ψn(x′)ψn(x) . (38)

Now, we perform some numerical analysis on the solutions of Equation (4) with
D(ρ) = νDρν−1(x, t) by using the explicit method [61] to obtain the time–space evolution
of the equation for the nonlinear fractional equation of distributed order. It is worth
mentioning that this numerical solution does not converge for all sets of parameters.
The numerical solution was obtained by considering the following discretized equation
connected to Equation (4):

ρi,j+1 = β2ρi,j −
τ

h2
t β1

ρi,j−1 +
D

h2
xβ1

Ω(ν) +
k f

β1
F (ρi,j)−

1
β1

M(ρi,j) (39)

with

Ω(ν) =
(
ρν

i+1,j − 2ρν
i,j + ρν

i−1,j
)

, F (ρi,j) =

(
ρij + i

ρi+1,j − ρi−1,j

2

)
,

M(ρi,j) = ∑
j′
Kγ(j, j′)

(
ρi,j′+1 − ρi,j′

)
, β1 =

τ

h2
t
+

1
ht

, and β2 =
1
β1

(
2τ

h2
t
+

1
ht

)
.

(40)

The numerical analysis was carried out with the Caputo [12], Kγ(t) = kγt−γ/Γ(1− γ),
and Caputo–Fabrizio [15], Kγ(t) = k′γe−γ′t, kernels for γ = 1/2. In Figures 1 and 2, we
show trends for the distributions and the mean square displacement for both kernels with
ν = 0.8, and ν = 1.3. They also show different diffusion regimes for the Caputo and
Caputo–Fabrizio kernels. Figure 3 shows the diffusion process for Equation (4) with ν = 0.7
for two initial conditions ρ(x, 0) = δ(x) with k f = 0.5 for both kernels in absence of the
hyperbolic term.
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Figure 1. (a,b) show the behavior of Equation (15) with the probability density distribution for
t = 4.9 with hx = 0.15, ht = 0.01, in the absence of external forces, for ν = 0.8 with τc = 0.02 and
ν = 1.3 with τc = 0.01. (c,d) show the mean square displacement σ2(t) = ⟨(x − ⟨x⟩)2⟩. We consider
Kγ(t) = kγt−γ/Γ(1 − γ), γ = 0.5, D(ρ) = νDρν−1, τγ = 1, D = 0.5, and different values of kγ.
We also added straight lines to highlight the different behaviors present in the system during the
time evolution.

-5 0 5
0.0

0.2

0.4

 k

 k

 k

 k

 k

 k

(
x,

t)

x

(a)   = 0.8
c= 0.02

10-1 100

10-2

10-1

100

101

   
  t



(
)

   
 t

(
)


(t

)

t

  
  t



(


)

(c)

-5 0 5
0.0

0.1

0.2

0.3

0.4

0.5
 kγ = 0.1
 kγ = 0.5
 kγ = 1.0
 kγ = 1.5
 kγ = 2.0
 kγ = 2.5ρ(

x
,t

)

x

(b)

 ν = 1.3

τc = 0.01

10
-2

10
-1

10
0

10
-2

10
-1

10
0

(d)

   σ
2  ∼ t

ζ

(ζ ∼ 0.73)

  σ
2  ∼ t

β

(β ∼ 0.4)

σ2 (t
)

t

    σ
2  ∼ t

η

(η ∼ 0.85)

Figure 2. (a,b) show the behavior of Equation (15) with the probability density distribution at
t = 4.9 with hx = 0.15, ht = 0.01, in the absence of external forces, for ν = 0.8 with τc = 0.02 and
ν = 1.3 with τc = 0.01. (c,d) show the mean square displacement σ2(t) = ⟨(x − ⟨x⟩)2⟩. We consider
Kγ(t) = k′γe−γ′t, γ = 0.5, D(ρ) = νDρν−1, τγ = 1, D = 0.5 and different values of kγ. We also added
straight lines to highlight the different behaviors present in the system during the time evolution.
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Figure 3. Probability density maps for a pair of initial conditions with hx = 0.10, ht = 0.01. In (a,b),
the kernel Kγ = kγt−γ/Γ(1 − γ) was used and in (c,d), the kernel Kγ = k′γe−γ′t was used. For
simplicity, we consider ν = 0.7, D = 0.5, τγ = 1, τc = 0, k f = 0.5, and γ = 0.5 for all systems. Note
that Kγ(t) governed by a power-law is less diffusive than Kγ governed by an exponential.

For more numerical results and the deduction of Equation (39), see Appendix A.

2.2. Entropy Production

We can examine the entropy production associated with Equation (10) by looking at
the dynamics of ρ(x, t) given by Equation (15). Differentiating Equation (10) with respect
to time and performing some integration by parts (with J (x → ±∞, t)), we obtain that

d
dt
S(t) = −k

∫ ∞

−∞
dx

{
∂

∂ρ
s(ρ) +

[
∂

∂ρ
α(ρ)

]
J 2(x, t)

}
∂

∂t
ρ(x, t)

−
∫ ∞

−∞
dxα(ρ)J (x, t)

∂

∂t
J (x, t)−

∫ ∞

−∞
dxϑ(ρ)J (x, t)

∫ t

0
dt′′Kγ(t − t′′)J (x, t′′)

= k
∫ ∞

−∞
dx

{
∂

∂ρ
s(ρ) +

[
∂

∂ρ
α(ρ)

]
J 2(x, t)

}
∂

∂x
J (x, t)

− k
∫ ∞

−∞
dxα(ρ)J (x, t)

∂

∂t
J (x, t)− k

∫ ∞

−∞
dxϑ(ρ)J (x, t)

∫ t

0
dt′′Kγ(t − t′′)J (x, t′′)

= −k
∫ ∞

−∞
dx

{
∂2

∂ρ2 s(ρ)
∂

∂x
ρ(x, t) +

∂

∂x

[(
∂

∂ρ
α(ρ)

)
J 2(x, t)

]}
J (x, t)

− k
∫ ∞

−∞
dxα(ρ)J (x, t)

∂

∂t
J (x, t)− k

∫ ∞

−∞
dxϑ(ρ)J (x, t)

∫ t

0
dt′′Kγ(t − t′′)J (x, t′′) .

(41)

Now, by utilizing the equations from the H-theorem,

kTρ
∂2

∂ρ2 s(ρ) = D(ρ) , (42)

which connects s(ρ) with D(ρ) and

J (x, t) = −ρ(x, t)
∂

∂x
ϕ(x)− kTρ(x, t)

[
∂2

∂ρ2 s(ρ)
]

∂

∂x
ρ(x, t)

− kTρ(x, t)
{

∂

∂x

[
J 2(x, t)

∂

∂ρ
α(ρ)

]
− 2α(ρ)

∂

∂t
J (x, t)

}
+ kTρ(x, t)

{
ϑ(ρ)

∫ t

0
dt′′Kγ(t − t′′)J (x, t′′)

}
.

(43)
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We obtain that

d
dt
S(t) = − 1

T

∫ ∞

−∞
dxF(x)J (x, t) +

1
T

∫ ∞

−∞
dx

J 2(x, t)
ρ(x, t)

. (44)

Equation (41) can also be written as follows:

d
dt
S = Π − Φ , (45)

where

Φ =
1
T

∫ ∞

−∞
dxF(x)J (x, t), (46)

and the entropy-production term:

Π =
1
T

∫ ∞

−∞
dx

J 2(x, t)
ρ(x, t)

. (47)

Since T and ρ(x, t) are positive, the desired result is Π ≥ 0. This result for the entropy
production, given by Equation (44) and, thus, Equation (45), can also be confirmed for any
entropy condition.

We performed some numerical calculations using the previous results for the entropy
production where hx and ht are increments in position and time, respectively. We perform
the numerical simulation via the continuity Equation (8), and ρi,j obtained via Equation (39),
which, after the discretization process, yields:

Ji+1,j = −
ρi,j+1 − ρi,j

ht
+ Ji,j ,

J0,j =
∫ ∞

0
dx

∂

∂t
ρ(x, t) ≈ hx

ht
∑

i

(
ρi,j+1 − ρi,j

)
.

(48)

Assuming the initial condition ρ(x, 0) = δ(x), we have that Ji,j = J−i,j, and the entropy, in
the absence of external forces, can be evaluated by using the following equation:

T
d
dt
S ≈ hx ∑

i

J 2
i,j

ρi,j
= S ′

j

TSj = ht

j′=j

∑
j′=0

S ′
j′ .

(49)

Figures 4–6 illustrate the entropy and the entropy production for different scenarios to show
that different behaviors can be obtained connected to the different choices of the kernels.
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Figure 4. (a,b) show the behavior of the entropy and (c,d) show the behavior of Equation (44) for
ν = 0.8 and ν = 1.3 with γ = 0.5, D(ρ) = νDρν−1, D = 0.5, τγ = 1, and different values of kγ. We
considered, for simplicity, ρ(x, 0) = δ(x) for the initial condition.
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Figure 5. (a,b) show the behavior of entropy for the power-law kernel, i.e., Kγ(t) = kγt−γ/Γ(1 − γ),
in the absence of external forces, for ν = 0.8 and ν = 1.3 with τc = 0.02. (c,d) show the behavior of
Equation (44) for ν = 0.8 and ν = 1.3. We consider hx = 0.15, ht = 0.01, γ = 0.5, D(ρ) = νDρν−1,
D = 0.5, τγ = 1, and different values of kγ. We considered, for simplicity, ρ(x, 0) = δ(x) for the
initial condition.
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Figure 6. This figure shows the behavior of entropy and Equation (44) for the exponential Kγ(t) =
k′γe−γ′t (a,c) and power-law Kγ(t) = kγt−γ/Γ(1 − γ), (b,d) kernels in the absence of external forces.
We consider hx = 0.15, ht = 0.01, γ = 0.5, D(ρ) = νDρν−1, D = 0.25, τγ = 1, and different values of
τc. We considered, for simplicity, ρ(x, 0) = δ(x) for the initial condition.

3. Conclusions

Considering the memory effect, we have investigated the H-theorem for nonlinear
fractional diffusion equations, which may present different forms of nonlinearity on the
diffusive term. We followed the approaches employed in Ref. [36] by extending the entropy,
an arbitrary probability density function, to cover different scenarios. Consequently, the
entropy results from the H-theorem may have properties different from the usual, as
pointed out in Refs. [33,62,63]. The nonlinear hyperbolic diffusion-like equations emerging
from this approach have been analyzed from both analytical and numerical points of
view. Analytically, we found the solutions for the linear case by expanding in terms of
the eigenfunctions. Numerically, we studied the solutions of Equation (4) by using its
discretized form, given by Equation (39), to investigate the dynamics of the nonlinear
case. In particular, we considered exponential and power-law kernels to investigate the
different dynamics and their relaxation processes; see Figures 1–3. We have also analyzed
the entropy production for different scenarios, as shown in Figures 4–6. Finally, we hope the
results presented here may be useful in discussing nonlinear hyperbolic diffusion equations,
the H-theorem, and, consequently, the entropies.
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Appendix A. Numerical Results

In Appendix A.1 we discuss the steps involved in obtaining Equation (39) from
Equation (4) via the explicit method [61]. In Appendix A.2 some numerical results ob-
tained will be discussed.

Appendix A.1. Explicit Method

Let us start with the nonlinear fractional partial differential equation to be solved:

τc
∂2

∂t2 ρ(x, t) +
∫ t

0
dt′Kγ(t − t′)

∂

∂t′
ρ(x, t′)

+
∂

∂t
ρ(x, t) =

∂

∂x

{
D

∂

∂x
[ρ(x, t)]ν + k f xρ(x, t)

}
,

(A1)

where, for simplicity, τγ = 1. The first step is to discretize Equation (A1) to a cell ρi,j, where
i denotes an increment in space of size hx and j is an increment in time with size ht. We
now define three numerical approximations for partial differentiation, starting with the
forward rules:

∂

∂t
ρ(x, t) ≈

ρi,j+1 − ρi,j

ht
,

∂

∂x
ρ(x, t) ≈

ρi+1,j − ρi,j

hx
, (A2)

the backward rules,

∂

∂t
ρ(x, t) ≈

ρi,j − ρi,j−1

ht
,

∂

∂x
ρ(x, t) ≈

ρi,j − ρi−1,j

hx
, (A3)

and the centered rule:
∂

∂x
ρ(x, t) ≈

ρi+1,j − ρi−1,j

2hx
. (A4)

We now may solve the integral of Equation (A1) using a Riemann sum and applying the for-
ward derivative rule to ∂t′ρ(x, t′), assuming the use of the Caputo kernel for didactic purpose:

Kγ(t − t′) =
kγ

Γ(1/2)
√

t − t′
, Kγ(j − j′) =

kγ

Γ(1/2)
√

ht(j − j′)
, and

∫ t

0
dt′Kγ(t − t′)

∂

∂t′
ρ(x, t′) ≈ 1

Γ(1/2)

j′<j

∑
j′=0

htkγ√
ht(j − j′)

(
ρi,j′+1 − ρi,j′

ht

)
= M(ρi,j) .

(A5)

For the temporal derivatives, using the forward derivative rule, we have the following:

τc
∂2

∂t2 ρ(x, t) +
∂

∂t
ρ(x, t) ≈ τc

∂

∂t

(
ρi,j+1 − ρi,j

ht

)
+

ρi,j+1 − ρi,j

ht
. (A6)

Applying the backward rule to the first term and the forward rule to the second term of the
derivative, we have the following:
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τc
∂2

∂t2 ρ(x, t) +
∂

∂t
ρ(x, t) ≈ τc

(
(ρi,j+1 − ρi,j)− (ρi,j − ρi,j−1)

h2
t

)
+

ρi,j+1 − ρi,j

ht

τc
∂2

∂t2 ρ(x, t) +
∂

∂t
ρ(x, t) ≈ τc

(
ρi,j+1 − 2ρi,j + ρi,j−1

h2
t

)
+

ρi,j+1 − ρi,j

ht
,

(A7)

which yields the follwoing:

τc
∂2

∂t2 ρ(x, t) +
∂

∂t
ρ(x, t) ≈ ρi,j+1

(
τc

h2
t
+

1
ht

)
− ρi,j

(
2τc

h2
t
+

1
ht

)
+ ρi,j−1

(
τc

h2
t

)
. (A8)

Let β1 = τ/h2
t + 1/ht, and the temporal part becomes

τc
∂2

∂t2 ρ(x, t) +
∫ t

0
dt′Kγ(t − t′)

∂

∂t′
ρ(x, t′) +

∂

∂t
ρ(x, t) ≈ β1ρi,j+1

− ρi,j

(
2τc

h2
t
+

1
ht

)
+ ρi,j−1

(
τc

h2
t

)
+M(ρi,j) .

(A9)

Solving the force term and using the centered rule:

k f
∂

∂x
xρ(x, t) = k f

(
ρ(x, t) + x

∂

∂x
ρ(x, t)

)
,

≈ k f

(
ρi,j + ihx

ρi+1,j − ρi−1,j

2hx

)
,

≈ k f

(
ui,j + i

ρi+1,j − ρi−1,j

2

)
.

(A10)

We now may begin by applying the forward rule to the diffusion term of Equation (A9):

∂2

∂x2 ρ(x, t)ν ≈ D
hx

∂

∂x
(ρν

i+1,j − ρν
i,j) . (A11)

Next, we derive again using the backward rule for the first term and the forward rule
for the right term:

∂2

∂x2 ρ(x, t)ν ≈ D
h2

x

(
(ρν

i+1,j − ρν
i,j)− (ρν

i,j − ρν
i−1,j)

)
∂2

∂x2 ρ(x, t)ν ≈ D
h2

x

(
ρν

i+1,j − 2ρν
i,j + ρν

i−1,j

)
.

(A12)

Combining and rearranging all previously obtained terms, we get Equation (39):

ρi,j+1 = β2ρi,j −
τ

β1h2
t

ρi,j−1 +
D

h2
xβ1

Ω(ν) +
k f

β1
F (ρi,j)−

1
β1

M(ρi,j) ,

Ω(ν) =
(
ρν

i+1,j − 2ρν
i,j + ρν

i−1,j
)

, F (ρi,j) =

(
ρij + i

ρi+1,j − ρi−1,j

2

)
,

M(ρi,j) =
1

Γ(1/2)

j′<j

∑
j′=0

kγ√
ht(j − j′)

(
ρi,j′+1 − ρi,j′

)
,

β1 =
τ

h2
t
+

1
ht

, and β2 =
1
β1

(
2τ

h2
t
+

1
ht

)
.

(A13)

Appendix A.2. Numerical Results

Using the results from the previous section, we can perform numerical calculations. In
particular, we perform some numerical calculations by using the kernels:
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Kγ(t) =
kγ

1 − γ
e−γ′t

(
γ′ =

γ

1 − γ

)
, and Kγ(t) =

kγt−γ

Γ(1 − γ)
, (A14)

in absence of external forces with τc = 0 (see, Figures A1 and A2).

-5 0 5
0.0

0.2

0.4

 k

 k

 k

 k

 k

 k

(
x,

t)

x

 = 0.8
(a)

10-2 10-1 100

10-2

10-1

100

101


  t



(
)

 
 t



()

 t



(


)


(t

)

t

(b)

-5 0 5
0.0

0.2

0.4

 k 

 k 

 k 

 k 

 k 

 k 

(
x,

t)

x

 = 1.3
(b)

10-2 10-1 100

10-2

10-1

100

   
  t



(
)

   
   t

(
)

2 (t
)

t

(d)

    
  t



(


)

Figure A1. (a,b) illustrate the behavior of Equation (15) in the absence of external forces. (c,d) show
the mean square displacement σ2(t) = ⟨(x − ⟨x⟩)2⟩, for ν = 0.8 and ν = 1.3. We consider hx = 0.15,
ht = 0.01, Kγ(t) = k′γe−γ′t, τγ = 1, γ = 0.5, D(ρ) = νDρν−1, and different values of kγ. We
also added straight lines to highlight the different behaviors present in the system during the
time evolution.

-5 0 5
0.0

0.2

0.4

0.6
 k= 0.1

 k= 0.5

 k= 1,0

 k= 1.5

 k= 2.0

 k= 2.5

(
x,

t)

x

= 0.8
(a)

10-2 10-1 100

10-3

10-2

10-1

100

101

  
  t



(
)

 (
t
)

t

  
  t



(
)

(c)

-5 0 5
0.0

0.2

0.4

0.6
 k = 0.1

 k = 0.5

 k = 1.0

 k = 1.5

 k = 2.0

 k = 2.5

(
x,

t)

x

 = 1.3(b)

10-2 10-1 100

10-3

10-2

10-1

100

101

   
 t

(
)

(d)

 (
t
)

t

   
  t



(
)

Figure A2. (a,b) illustrate the behavior of Equation (15) in the absence of external forces. (c,d) show
the mean square displacement σ2(t) = ⟨(x − ⟨x⟩)2⟩, for ν = 0.8 and ν = 1.3. We consider hx = 0.15,
ht = 0.01, Kγ(t) = kγt−γ/Γ(1 − γ), τγ = 1, γ = 0.5, D(ρ) = νDρν−1, and different values of kγ.
We also added straight lines to highlight the different behaviors present in the system during the
time evolution.

In the following figure, Figure A3, we consider different values of γ with τc ̸= 0.
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Figure A3. This figure shows the behavior of Equation (15) in the absence of external forces, and
the mean square displacement σ2(t) = ⟨(x − ⟨x⟩)2⟩, for ν = 0.8, τγ = 1, kγ = 2.5, and τc = 0.02. We
consider hx = 0.15, ht = 0.01, Kγ(t) = k′γe−γ′t in (a,c) and Kγ(t) = kγt−γ/Γ(1 − γ) in (b,d), γ = 0.5,
D(ρ) = νDρν−1, and different values of γ.
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