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Abstract: Keloid scars, characterized by abnormal fibroproliferation and excessive extracellular
matrix (ECM) production that extends beyond the original wound, often cause pruritus, pain, and
hyperpigmentation, significantly impacting the quality of life. Keloid pathogenesis is multifactorial,
involving genetic predisposition, immune response dysregulation, and aberrant wound-healing
processes. Central molecular pathways such as TGF-β/Smad and JAK/STAT are important in
keloid formation by sustaining fibroblast activation and ECM deposition. Conventional treatments,
including surgical excision, radiation, laser therapies, and intralesional injections, yield variable
success but are limited by high recurrence rates and potential adverse effects. Emerging therapies
targeting specific immune pathways, small molecule inhibitors, RNA interference, and mesenchymal
stem cells show promise in disrupting the underlying mechanisms of keloid pathogenesis, potentially
offering more effective and lasting treatment outcomes. Despite advancements, further research
is essential to fully elucidate the precise mechanisms of keloid formation and to develop targeted
therapies. Ongoing clinical trials and research efforts are vital for translating these scientific insights
into practical treatments that can markedly enhance the quality of life for individuals affected by
keloid scars.
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1. Introduction

A keloid is a type of pathological scarring characterized by excessive growth of fibrous
tissue extending beyond the original wound boundaries. These scars are disfiguring and
can cause pain, itching, and hyperpigmentation, leading to significant physical and mental
distress. Keloid formation is a clinical challenge due to its unpredictable nature and high
recurrence rate even after treatment.

Epidemiological studies have revealed significant disparities in keloid prevalence
among different racial groups, suggesting a strong genetic influence. Individuals with
darker skin tones, such as those of African and Asian descent, are at a higher risk [1,2]. This
is evidenced by the prevalence rate of 2.4% in Black populations, 1.1% in Asians, and 0.4%
in Caucasians [2]. Moreover, global keloid prevalence varies drastically, ranging from 0.09%
in the United Kingdom to 16% in Congo, further underscoring the impact of ethnicity [3].

The familial occurrence of keloids also supports the role of genetic predisposition.
Studies have shown a higher incidence of keloids among family members of affected
individuals [4–6]. For instance, the prevalence rate of keloid in the first, second, and third-
degree relatives of Chinese keloid patients was 7.62%, 0.38%, and 0.035%, respectively [7].

Age is another factor influencing keloid susceptibility, with the highest incidence
occurring between the ages of 10 and 30 years [8]. Gender also plays a role, with keloids
being more common in females, although the reasons for this remain unclear [1,2].
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Apart from these factors, systemic conditions like hypertension, vitamin D deficiency,
and atopic dermatitis have been linked to an increased risk of keloid formation, suggesting
that systemic health may play a role in scar formation [9–15].

The pathogenesis of keloids is complex and multifactorial, involving genetic suscepti-
bility, immune response dysregulation, and aberrant wound-healing processes. Despite
extensive research, the exact mechanisms remain poorly understood, highlighting the need
for further investigation and the development of more effective treatment strategies.

2. Pathogenesis of Keloid Formation

The pathogenesis of keloid formation involves a multifaceted interplay of genetic, im-
munological, and mechanical factors that disrupt normal wound healing, leading to persis-
tent fibroblast activation and excessive extracellular matrix production
(Figure 1) [16–32].
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2.1. Dysregulation of Wound-Healing Process

Normal wound healing involves hemostasis, inflammation, proliferation, and remod-
eling [33]. Dysregulation at any of these stages can lead to pathological scarring, with the
remodeling phase being particularly critical in keloid formation. The abnormal wound-
healing process in keloids is characterized by persistent inflammation, excessive fibroblast
activation, and an imbalance between collagen synthesis and degradation [34–37].

During the inflammatory and proliferative phases, immune cells such as mast cells,
macrophages, and lymphocytes infiltrate the wound site, playing roles in modulating the
healing process [33]. Mast cells, for instance, interact with fibroblasts to enhance collagen
production through pathways such as PI3K/Akt/mTOR and TGF-β1/Smad, contributing
to the persistent fibroblast activation seen in keloids [38–42]. Macrophages, particularly
the M2 subtype, further promote fibroblast proliferation and ECM deposition by secreting
cytokines like TGF-β and PDGF [43–45].

The remodeling phase is where the critical pathological features of keloid forma-
tion become evident. This phase typically involves the replacement of collagen III with
collagen I and the regression of blood vessels to form a mature scar [35,46]. However,
in keloids, this phase is marked by abnormal collagen metabolism, where an imbalance
between collagen synthesis and degradation leads to excessive accumulation of disor-
ganized type I and III collagen [47,48]. This dysregulation is partly due to the altered
expression of matrix metalloproteinases (MMPs) and their inhibitors, known as tissue in-
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hibitors of metalloproteinases (TIMPs) [49]. In keloids, levels of MMP-1, MMP-2, MMP-13,
TIMP-1, and TIMP-2 are increased, while MMP-3 levels are reduced compared to normal
scars [50,51]. These changes contribute to the excessive collagen deposition and increased
type I/III collagen ratio observed in keloid tissue [52]. This pathological remodeling process
leads to the dense, fibrotic tissue that is characteristic of keloids.

2.2. Genetic Predisposition

Familial cases of keloids suggest a genetic predisposition [4–6]. Several immune
pathway-associated susceptible genotypes have been identified, including polymorphisms
of interleukin (IL)-6 and transforming growth factor (TGF)-β receptors [21–23,53–55]. Ge-
netic studies have identified polymorphisms in several single nucleotides that are asso-
ciated with keloid formation [27,56]. These genetic factors may contribute to individual
susceptibility to keloid formation.

2.3. Molecular Pathways

Dysregulated molecular pathways, particularly the TGF-β/Smad signaling pathway,
play a central role in keloid pathogenesis. Other pathways, including JAK/STAT, MAPK,
PI3K/AKT, and mechanical transduction pathways (integrin, YAP/TAZ), also contribute
to the abnormal behavior of keloid fibroblasts.

2.3.1. TGF-β/Smad Signaling Pathway

TGF-β1 is a multifunctional cytokine implicated in keloid pathogenesis due to its role
as a key regulator of fibrogenesis [57]. TGF-β1 has a pro-fibrotic effect by enhancing human
fibroblast cell proliferation, increasing collagen synthesis, and reducing collagen degrada-
tion [58]. It maintains the ECM by inducing growth factors like connective tissue growth
factor (CTGF) and vascular endothelial growth factor (VEGF) and contributes to chronic
inflammation by downregulating dipeptidyl peptidase-4 (DPP4) expression [59]. Keloid fi-
broblasts are particularly sensitive to TGF-β, showing resistance to apoptosis and increased
cell rigidity through the expression of smooth muscle actin (SMA) [60,61]. TGF-β1 also
increases the expression of C-MYC and its downstream splicing regulator, polypyrimidine
tract-binding protein, in keloid fibroblasts, which is a key factor in tumorous growth [62].

The canonical TGF-β/Smad pathway begins with the binding of TGF-β to a complex
of serine/threonine kinase receptors on the cell surface, composed of type I and type II
receptors [63]. Upon ligand binding, the type II receptor phosphorylates the type I receptor,
which then phosphorylates receptor-regulated Smads (R-Smads), specifically Smad2 and
Smad3 [63]. Phosphorylated Smad2 and Smad3 form a complex with the common mediator,
Smad4 (Co-Smad) [63]. This Smad complex translocates to the nucleus, where it regulates
the transcription of target genes involved in ECM production and fibrosis, including genes
encoding for collagen and connective tissue growth factors [64]. Smad7 acts as an inhibitory
Smad, providing negative feedback by preventing the association of R-Smads with the
TGF-β type I receptor and facilitating their degradation via ubiquitination [65–67].

In keloids, several upstream modulators of the TGF-β1/Smad pathway, including acti-
vating transcription factor 3 (ATF3), CR6-interacting factor 1 (Crif1), NLR family CARD do-
main containing 5 (NLRC5), and nuclear receptor subfamily 3, group C, member 1 (NR3C1),
are overexpressed in keloid fibroblasts, enhancing the TGF-β1/Smad pathway [68–70]. Ad-
ditionally, hypoxia-inducible factor-1α (HIF-1α) and high-temperature requirement factor
A1 (HTRA1) activate the TGF-β1/Smad pathway and promote keloid formation [71,72].

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of mod-
ulating TGF-β/Smad signaling. For instance, pro-fibrotic miR-21, which is upregulated
in keloids, enhances the TGF-β/Smad pathway by downregulating Smad7, thus promot-
ing fibrosis [73]. Conversely, anti-fibrotic miRNAs are typically downregulated in keloid
fibroblasts [74–77]. Several molecules like BMP and activin membrane-bound inhibitor
(Bambi), Dickkopf-3 (DKK3), and the receptor for activated C-kinase 1 (RACK1) can atten-
uate TGF-β1-induced fibrosis but are downregulated in keloid fibroblasts [78–80]. IL-37,
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an inhibitor of inflammation and TGF-β regulator, is found at lower levels in more severe
keloids [81–83].

Strategies targeting the TGF-β/Smad pathway have shown promise in reducing
keloid fibroblast activity. For example, overexpression of inhibitory factors like Smad7 or
using molecules that interfere with Smad2/3 phosphorylation can attenuate the fibrotic
process [84]. Moreover, compounds that inhibit upstream activators of the pathway or
modulate miRNA expression are being explored as potential treatments [33].

2.3.2. JAK/STAT Pathway

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) path-
way is a key signaling pathway activated in response to cytokines, which are small proteins
involved in cell signaling. This pathway plays a crucial role in regulating various cellular re-
sponses, including proliferation, differentiation, migration, apoptosis, and cell survival [85].
In the context of keloids, the JAK-STAT pathway is activated by pro-inflammatory fac-
tors overexpressed in keloid tissues, such as IL-1β, IL-6, IL-17, and tumor necrosis factor
(TNF)-α [86–89]. These cytokines trigger a cascade of events within the JAK-STAT pathway,
ultimately leading to the dysregulated cellular responses observed in keloids.

Research has identified STAT3 signaling as the most significantly enriched gene ontol-
ogy term in keloid fibroblasts (KFs), the primary cells responsible for collagen production
in keloids [90]. STAT3, a protein within the STAT family, is activated through phosphoryla-
tion, a process enhanced in both keloid tissue and KFs [91]. This activation suggests that
STAT3 plays a crucial role in keloid pathogenesis, potentially driving the excessive collagen
production and proliferation characteristic of keloids.

Interleukins (ILs) are a group of cytokines that play a significant role in keloid for-
mation. IL-6 and IL-17, in particular, have been shown to elicit STAT3 phosphorylation in
both healthy and keloid fibroblasts [29,88,89,92,93]. Notably, IL-6 has been identified as the
primary cytokine responsible for triggering STAT3 phosphorylation in these cells [92]. This
finding suggests that targeting IL-6 or its receptor could be a potential therapeutic strategy
for keloids, as it may disrupt the JAK-STAT pathway and its downstream effects on cell
proliferation and collagen synthesis.

Other interleukins, such as IL-1β and IL-10, have also been implicated in keloid patho-
genesis through their interactions with the JAK-STAT pathway. IL-1β enhances fibrosis
in the late stage of wound healing, and blocking it has been shown to inhibit keloid pro-
gression [94]. Conversely, IL-10 expression is decreased in keloids, and its overexpression
has been found to decrease inflammation and promote regenerative healing [95,96]. These
findings suggest that modulating the levels or activity of these interleukins could be a
potential avenue for keloid treatment.

The JAK-STAT pathway influences several growth factors involved in keloid pathogen-
esis. JAK2 inhibition reduces the expression of connective tissue growth factor (CTGF), even
in the presence of TGF-β stimulation, highlighting the pathway’s role in fibrosis [97]. Addi-
tionally, STAT inhibition decreases the mRNA expression of vascular endothelial growth
factor (VEGF) in keloid fibroblasts, suggesting a role in angiogenesis regulation [97].

2.3.3. MAPK Pathway

The mitogen-activated protein kinase (MAPK) pathway, a complex network of extracel-
lular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase plays a
multifaceted role in keloid pathogenesis [98]. Primarily, it crosstalks with the TGF-β1/Smad
signaling pathway [99]. TGF-β1, overexpressed in KFs, activates the MAPK pathway, influ-
encing Smad protein phosphorylation and activation of genes like plasminogen activator
inhibitor (PAI)-1, which promotes collagen accumulation [100].

Within the MAPK pathway, ERK1/2 is reportedly significantly activated in KFs,
suggesting a potential contribution to their excessive proliferation, migration, and ECM
synthesis [101]. ERK inhibitors, like FR180204, can counteract these effects [101]. The
p38 MAPK pathway is activated by TGF-β1 and IGF-1, leading to hyperproliferative,
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migratory, and anti-apoptotic behavior of KFs [102]. TNF-α further amplifies this effect via
p38 MAPK [103]. Notably, drugs like thalidomide and nintedanib, targeting p38 MAPK,
have shown promise in limiting KF function and keloid growth [104,105].

Osteomodulin (OMD), a protein highly expressed in keloid tissues, has been shown
to activate p38 MAPK, potentially enhancing the tumor-like characteristics of KFs [106].
Silencing OMD inhibits these effects [106]. Additionally, protein tyrosine phosphatase 1B
(PTP1B), downregulated in keloids, has been suggested to act via the MAPK/ERK pathway
to control KF activity [101]. Its overexpression has been shown to suppress KF function,
suggesting a potential therapeutic avenue [101].

Further, proenkephalin (PENK) from placental mesenchymal stem cells suppresses
p38 MAPK signaling in KFs, reducing proliferation and migration, and promoting apop-
tosis, suggesting another therapeutic target [107]. 2-Methoxyestradiol (2ME2), targeting
p38 within the MAPK/ERK pathway, has been found to inhibit KF proliferation, further
highlighting the potential therapeutic potential of manipulating MAPK signaling in keloid
treatment [108].

2.3.4. PI3K/AKT Pathway

The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a role in reg-
ulating fibroblast proliferation, migration, and differentiation into myofibroblasts [109].
Analysis has revealed that differentially expressed genes in keloid tissues are primarily
associated with the PI3K/AKT signaling pathway [110].

Studies have shown that the knockdown of Runt-related transcription factor 2 (Runx2)
and circCOL5A1 suppressed KF proliferation and migration while promoting KF apoptosis
by suppressing the PI3K/AKT pathway [110,111]. Additionally, other factors like CD26 up-
regulate the proliferation and invasion of KFs through the IGF-1-induced PI3K/AKT/mTOR
pathway [112].

Long non-coding RNAs (lncRNAs) are also implicated in the activation of the PI3K/
AKT pathway in keloids. Specifically, uc003jox.1 is a lncRNA upregulated in keloid tissues
that promote KF proliferation and invasion through this pathway [113]. Another study
showed that knocking down uc003jox.1 leads to decreased phosphorylation of PI3K and
AKT, thereby reducing the activity of the pathway and inhibiting cell proliferation and
invasion [113].

From a therapeutic perspective, targeting the PI3K/AKT pathway with inhibitors
like CUDC-907, sunitinib, or wubeizi (Rhus chinensis Mill.) ointment has shown promise
in preclinical models, suggesting its potential as a therapeutic strategy for keloid treat-
ment [114–116].

2.3.5. Mechanical Transduction Pathways

Mechanical stimulation, such as skin tension and stretching, plays a role in keloid
formation. It leads to excessive proliferation of wound fibroblasts, ECM deposition, and
secretion of pro-fibrotic factors, which in turn increase the stiffness of the keloid matrix [18].
The increased matrix stiffness further activates the fibrotic phenotype of keloid fibroblasts,
creating a continuous loop that invades surrounding normal tissue [18]. Several mechan-
otransduction pathways translate mechanical stimuli into biochemical signals, driving the
cellular behaviors that contribute to keloid pathogenesis.

The TGF-β/Smad signaling pathway is one such pathway. Mechanical forces enhance
TGF-β activation [117]. Upon binding to its receptors, TGF-β activates Smad proteins,
which translocate to the nucleus and regulate fibrosis-related genes [12,33].

The integrin signaling pathway is also involved. Mechanical forces activate integrins,
converting mechanical signals into chemical signals that promote the proliferation and
differentiation of fibroblasts and the secretion of collagen [118]. Integrins also play a role in
TGF-β activation, further contributing to keloid progression [119]. The FAK/Erk pathway
is involved in integrin-induced gene expression [18].
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The YAP/TAZ signaling pathway is another key mechanosensor. YAP (Yes-associated
protein) and TAZ (transcriptional coactivator with PDZ-binding motif) respond to a wide
range of mechanical cues, such as ECM stiffness and shear stress [120]. Increased matrix
stiffness in keloids activates YAP/TAZ, leading to the expression of pro-fibrotic genes,
increased α-SMA expression, and excessive matrix deposition [121,122].

Calcium ion signaling is also involved. The Gq-coupled receptor, activated by stretch
stimulation, can activate PLCβ and produce DAG and IP3 [123]. IP3 acts on the intra-
cellular calcium pool to release Ca2+, resulting in increased intracellular free calcium ion
concentration and the subsequent intracellular reaction of the Raf/MEK/Erk pathway [124].
Mechanical stimuli also increase Piezo1 channel expression, which is a mechanically ac-
tivated channel (MAC) and promotes fibroblast proliferation, migration, and differentia-
tion [125,126].

3. Established Treatments for Keloids

Established treatments for keloids include silicone dressings, topical corticosteroids,
cryotherapy, surgical options, radiation therapy, laser therapies, and various intralesional
injections (triamcinolone, 5-fluorouracil, verapamil, and botulinum toxin A). These treat-
ments aim to reduce scar size and symptoms but are associated with variable success rates
and potential side effects (Table 1).

Table 1. Established treatments for keloid management.

Treatment Mechanism of
Action Clinical Efficacy Advantages Potential Side

Effects References

Silicone Dressing

Create an occlusive
barrier, maintain

hydration of stratum
corneum, reduce

collagen production

Effective in reducing
scar height, redness,
and pruritus when
used consistently

Non-invasive, easy
to use, transparent,

can be worn
discreetly, suitable
for various body

parts

Minimal side effects,
occasional skin

irritation or
maceration

[127–130]

Topical
Corticosteroids

Penetrate skin,
interact with

glucocorticoid
receptors, reduce

production of
inflammatory

mediators

Effective in
flattening keloid

scars and reducing
symptoms when

used in conjunction
with other therapies

Non-invasive,
suitable for patients
not candidates for

aggressive
treatments

Long-term use can
lead to skin atrophy
telangiectasia and

requires careful
monitoring

[131–148]

Cryotherapy

Freezes scar tissue,
causing cell injury

and ischemic
necrosis, reducing
keloid volume and

symptoms

Reduces keloid scar
volume by an

average of 51% to
63%; scar recurrence
rates range from 0%

to 24%

Non-invasive, can be
combined with other

treatments

Hypopigmentation,
particularly in

darker skin types
[149–157]

Surgical Options

Remove keloid
tissue, often

combined with
adjuvant therapies to
minimize recurrence

Effective for large or
resistant keloids,

recurrence rates vary

Directly removes the
bulk of keloid, which

can improve the
cosmetic appearance

High recurrence
rates, if not

combined with
adjuvant therapies,

potential for
infection and

scarring

[158–174]

Radiation Therapy

Inhibits fibroblast
proliferation and

collagen production,
usually administered

post-surgery

Reduces recurrence
rates significantly
when used as an

adjuvant to surgery

Non-invasive,
effective in

combination with
surgery

Temporary skin
erythema and

hyperpigmentation,
rare long-term

effects such as skin
atrophy and

telangiectasia

[175–188]



Int. J. Mol. Sci. 2024, 25, 8776 7 of 24

Table 1. Cont.

Treatment Mechanism of
Action Clinical Efficacy Advantages Potential Side

Effects References

Laser Therapies

Target scar tissue
with specific

wavelengths of light,
reduce size, color,

and symptoms

Effective in
improving

appearance and
reducing symptoms,

especially when
combined with other

treatments

Non-invasive to
minimally invasive,

can be tailored to
scar characteristics

Temporary redness,
swelling, and

changes in skin
pigmentation;

requires multiple
sessions

[189–195]

Intralesional
Injections

Deliver therapeutic
agents directly into

keloid tissue to
reduce size and

symptoms

Effective in
flattening scars and

alleviating
symptoms, varies by

agent

The targeted
approach minimizes
systemic side effects

Skin atrophy,
hypopigmentation,
telangiectasia with

repeated
corticosteroid

injections

[196–237]

3.1. Silicone Dressings

Silicone dressings (silicone gel sheets, silicone gels) are a non-invasive treatment option
for the prevention and treatment of keloid scars. This treatment modality is considered safe
and effective, gradually improving the color, size, erythema, pliability, pain, and pruritus of
scars [127]. Silicone dressings work primarily through skin occlusion and hydration rather
than direct anti-scarring effects. The mechanism of action of silicone dressings is due to the
hydration of the stratum corneum and the modulation of cell signaling between fibroblasts
and keratinocytes, which is mediated by cytokines [127].

Silicone gel sheets showed statistically significant reductions in scar thickness and
color improvement compared to no treatment [128]. Silicone gel was later developed to
treat scars on areas where it is difficult to fix a silicone sheet, such as the scalp or joints,
or on the face where silicone dressing is not cosmetically desirable [129]. Significant scar
improvement was observed following the twice-daily application of silicone gel for two
months after surgical procedures [130].

3.2. Topical Corticosteroids

Topical corticosteroids, including creams, ointments, and lotions, are commonly
used in clinical practice for managing keloid scars. Corticosteroids prevent and treat
keloids through anti-inflammatory, immunomodulatory, anti-fibroblast proliferation, anti-
angiogenesis, and ECM remodeling effects [131]. They bind to glucocorticoid receptors,
regulating gene expression and reducing pro-inflammatory cytokine production [132–138].
Corticosteroids suppress T cell activation, inhibit Th1 and Th17 responses, and promote
Th2 and regulatory T cells [139,140]. They reduce fibroblast proliferation by halting the
cell cycle and inducing apoptosis [141,142]. Additionally, corticosteroids decrease VEGF
mRNA, reduce angiogenesis, and regulate TGF-β1 and bFGF to suppress collagen synthe-
sis while enhancing collagen degradation [141,143–148]. These mechanisms make them
effective in treating and preventing scars.

Multiple daily applications of corticosteroid cream have demonstrated excellent out-
comes in treating existing keloids, as shown in case series studies [238]. Also, the pruritus
and pain symptoms of keloids were notably relieved with treatment with TAC lotion [239].
Another study combining TAC injections (once every 2 weeks, five times in total) and
corticosteroid ointments (twice a day, 6 months in total) showed reduced recurrence rates
of 14.3% for keloids when applied postoperatively [240]. While effective, topical corticos-
teroids have limited transdermal efficiency due to their short action time, requiring frequent
application and occlusion for optimal results [131]. Additionally, continuous use increases
the risk of adverse reactions like skin atrophy, telangiectasia, and depigmentation [131].
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3.3. Cryotherapy

Intralesional (IL) cryotherapy for keloid scar treatment involves freezing the scar tissue
from the inside, aiming to reduce keloid scar volume and alleviate pain and pruritus [149].

The mechanism of action involves two phases: a physical phase where rapid freezing
causes direct cell injury and a vascular phase where microcirculation damage leads to
ischemic necrosis, further destroying the scar tissue [150,151]. Cryotherapy also prevents
keloid recurrence by inducing the differentiation of abnormal fibroblasts into a normal
phenotype and preventing wound contraction [152–157].

A systematic review of eight studies found that IL cryotherapy reduces keloid scar vol-
ume by an average of 51% to 63%, with scar recurrence rates ranging from 0% to 24% [149].
However, complete scar eradication was not achieved on average [149]. Hypopigmentation
was predominantly observed in patients with Fitzpatrick skin types IV–VI [149].

IL cryotherapy could potentially complement existing treatments, particularly in cases
where non-surgical options have failed, as combination therapy, or as an alternative to
excision with adjuvant radiation when radiotherapy is unsuitable [149].

3.4. Surgical Options

Small keloids can be radically resected, while larger or more numerous keloids may
benefit from partial or core excision to reduce their size or quantity [158]. However, rad-
ical or complete keloid resection can stimulate collagen synthesis, increasing the risk of
recurrence and potentially leading to a larger keloid than the original [159]. Therefore, intra-
marginal (core) excision is sometimes preferred to minimize this risk [160–163]. Regardless
of the excision technique, adjuvant therapies like radiation therapy should always follow
surgery to minimize recurrence rates [164]. Additionally, surgical techniques aimed at re-
ducing tension, such as subcutaneous and deep fascial tensile-reduction sutures, Z-plasties,
and local flaps, can further decrease the likelihood of recurrence [165–171].

Z-plasties, combined with excision, tension-reducing sutures, and radiotherapy, have
shown promising results in reducing keloid recurrence in the chest and upper
arms [168,170].

For large keloids, flaps are preferred over skin grafts as they allow for post-operative
expansion and reduce the risk of scarring [158]. However, donor sites require careful
management to prevent new keloids [171].

Ear keloids have specific recommendations: wedge excision for earlobe keloids and
core excision for auricular cartilage keloids [172]. Both techniques, when combined with ad-
ditional therapies like radiotherapy or steroid injections, have demonstrated good outcomes
in minimizing recurrence [169,173,174].

3.5. Radiation Therapy

Radiation therapy is a common adjuvant therapy after keloid excision. Post-surgical
radiotherapy for keloid management acts by slowing down angiogenesis and prolifera-
tion of new fibroblasts [175]. This effect is particularly potent during the early phases of
wound healing when developing endothelial vascular beds, which are highly radiosensi-
tive [176]. Therefore, studies recommend starting radiation therapy within 72 h of surgical
excision [177,178].

There are several radiotherapy techniques available. While brachytherapy has shown
superior local control compared to X-rays in one meta-analysis, its invasiveness and limited
availability are disadvantages [179,180]. External beam radiotherapy using electrons or pho-
tons is a good alternative due to its accessibility, feasibility, and non-invasive nature [180].
Hypofractionated radiotherapy with a BED of more than 28 Gy (α/β value of 10) within
24 h after excision is recommended [180].

Numerous studies confirm the effectiveness of combining surgical excision with
adjuvant radiotherapy, reporting local control rates between 67% to 98% and significantly
lower recurrence rates (<20%) compared to primary radiotherapy alone [179,181–184].
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Radiotherapy for keloid treatment is generally well-tolerated, with side effects such as
erythema, desquamation, and pigmentation changes being mild and transient [185,186].
While there’s concern about secondary malignancies after keloid radiotherapy, the risk is
considered very low. Ogawa et al. found five cases of radiation-induced tumors in keloid
patients, but the relationship with radiotherapy was unclear [182]. Other studies have found
no association between secondary malignancy and keloid radiotherapy [179,183,186–188].

3.6. Laser Therapies

Laser therapies are a widely used modality for the treatment of keloid scars, utilizing
high-energy light to selectively target and remodel abnormal collagen while minimizing
damage to surrounding healthy tissue [189–191]. This approach effectively reduces scar
size, thickness, and redness [189,192]. Various laser modalities are employed, each with
unique mechanisms and advantages.

Ablative CO2 lasers remove the top skin layer, stimulating new collagen growth and
effectively treating deeper scars, but with the potential for longer recovery times [189]. PDL
targets blood vessels, reducing redness and inflammation in superficial scars, often requir-
ing multiple sessions [193]. Fractional lasers, including fractional CO2 (FCO2) and Er:YAG,
create microscopic thermal zones that induce controlled injury and promote skin remodel-
ing, effectively treating both superficial and deep scars with minimal downtime [192,193].

Fractional ablative lasers like CO2 and Er:YAG are effective in improving excessive
scars, with FCO2 alone showing significant results [189,194]. A network meta-analysis
of 18 studies (550 patients) revealed that FCO2 plus 5-FU was most effective in reducing
scar severity (Vancouver Scar Scale) and thickness compared to other interventions and
controls [195]. However, it showed no significant effect on erythema, vascularity, or
pigmentation [195]. FCO2 plus CO2 was most effective for pliability improvement [195].

Pulsed dye laser (PDL) is another commonly used laser for scar treatment. While
it may not be as effective as FCO2 plus 5-FU in reducing scar thickness and improving
pliability, some studies suggest its potential to reduce erythema when combined with TAC
and 5-FU [193].

Laser treatments are generally well-tolerated but can cause side effects such as pain,
hyperpigmentation, hypopigmentation, scarring, and infection [190,191].

3.7. Intralesional Injections

Intralesional injections provide a direct method to deliver therapeutic agents into the
keloid scar tissue. This approach aims to reduce the size, symptoms, and recurrence of
keloids by targeting the underlying pathological processes.

Intralesional corticosteroids, such as triamcinolone acetonide (TAC), are among the
most commonly used agents for this purpose. When used immediately after surgery,
it reduces the likelihood of keloid recurrence by 50% to 91.90% within 5 weeks post-
surgery [196–198]. TAC induces a specific protein involved in the System A amino acid
transport in human keloid fibroblasts, leading to reduced collagen production and in-
hibition of alpha-2-macroglobulin, which subsequently inhibits collagenase. Injections
should be administered in the papillary dermis, where collagenase is produced, rather
than in the subcutaneous tissue to avoid causing underlying fat atrophy [199,200]. For the
appropriate dosage per cm2 of the injection, 1–10 mg of TAC, depending on the size of
the lesion, is recommended to be administered at four-week intervals [201]. It is crucial
to monitor patients for potential side effects, such as skin atrophy and hypopigmentation,
which remain for between six and twelve months [200,202]. The combination of TAC with
cryotherapy appears to be more effective, or at least comparable, to other combinations
such as 5-fluorouracil or the 585 nm flashlamp-pumped pulsed-dye laser [203–205].

In addition to corticosteroids, other agents are also used for intralesional injections.
For instance, 5-fluorouracil (5-FU) is a chemotherapeutic agent that has shown effectiveness
in keloid treatment by inhibiting fibroblast activities such as proliferation, invasion, and
matrix production and inducing endothelial cell apoptosis and destroying neovascular
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structures in keloids [206–210]. When combined with corticosteroids, 5-FU can enhance
therapeutic outcomes [211–215]. In combination therapy, the most commonly used ratios
of 5-FU and TAC are 1:9 or 1:3, with protocols displaying considerable variation in session
intervals, ranging from once a week to every four weeks [216].

Bleomycin, an antitumor drug that disrupts DNA synthesis in proliferating cells, is
another agent used in intralesional injections [217]. Its effectiveness in treating keloids
is attributed to its inhibition of lysyl oxidase, an enzyme crucial for collagen maturation
and TGF-β1 expression, thereby reducing collagen production and fibroblast activity [218].
Additionally, bleomycin may inhibit collagen synthesis by fibroblasts and induce fibroblast
apoptosis [219–221]. Intralesional injections of bleomycin for keloids are well-tolerated,
with minimal local and systemic side effects, indicating that this treatment can be considered
as a first-line therapy for keloids [222]. However, intralesional bleomycin is painful, which
can be alleviated by injecting triamcinolone acetonide immediately afterward, as the
pain was reduced in minutes or even seconds, suggesting that this combination could be
beneficial [221]. Regarding the bleomycin dose, 0.4 mL/cm2 (equivalent to 0.60 IU/cm2)
was applied following a local anesthetic in a previous study using the dermojet, but a recent
study suggested applying 0.375 IU of bleomycin per 1 cm2 using insulin syringes, injecting
the bleomycin while slowly withdrawing the 1 cm-long needle [221,223]. It is simpler
to inject 0.25 mL with 0.5 mL or 1 mL insulin syringes [221]. The maximum volume per
session is 2 mL (3 IU), which is sufficient to treat eight keloids of 1 cm2 or eight quadrants in
larger keloids [221]. This dosage is considered effective and safe regardless of the technique
used [221]. When combined with 4 mg of triamcinolone acetonide per 1 cm2, side effects
such as necrosis and pain are minimal, although there may be an increased risk of dermal
atrophy [221].

Intralesional verapamil (calcium channel blocker) injections are also used for keloid
treatment. It has demonstrated the ability to reduce fibrous tissue production by stimulating
procollagenase synthesis in keloids [224]. Research suggests that while monthly verapamil
injections (2.5 mg/mL) may be safe, they might not be as effective as TAC (10 mg/mL)
in preventing keloid recurrence after surgical excision [225]. However, a combination of
verapamil with TAC injections showed promising results, significantly improved keloid
scars, and long-lasting results [226]. Additionally, verapamil injections combined with
surgical excision and core fillet flaps have proven to be a reliable and cost-effective method
for treating earlobe keloids with a low recurrence rate [227]. Although the recurrence
rate of keloids after verapamil treatment varies widely (1.4% to 48%), it remains a viable
option, particularly when used in conjunction with other treatments like triamcinolone and
surgery [225].

Intralesional botulinum toxin A has shown promise in keloid treatment due to its
ability to decrease muscle tension, halt fibroblast cell cycles in the non-proliferative stage,
and modulate TGF-β1 expression [228,229]. Studies have reported improved patient satis-
faction and reduced erythema, pain, pliability, and itching following intralesional injections
of botulinum toxin A [230,231]. A study showed that botulinum toxin A (70–140 units
per session every three months) led to peripheral regression and lesion flattening without
recurrence after one year [232]. Another RCT found that intralesional botulinum toxin A
(5 IU/cm3 every eight weeks) significantly reduced keloid volume and height and softened
lesions [233]. However, another study found no effect on keloid regression or fibroblast
activity [229]. A double-blinded study revealed botulinum toxin A was not superior to
corticosteroids in preventing keloid recurrence [234]. Despite mixed results, recent research
highlighted botulinum toxin A’s adjuvant properties [235]. Combining it with intrale-
sional TAC significantly improved pain and pruritus compared to TAC alone [235]. Bo-
tulinum toxin A combined with surgery also effectively treated post-otoplasty keloids [236].
A systematic review and meta-analysis of 15 RCTs concluded that intralesional botulinum
toxin A was more effective for keloids than corticosteroids or placebo [237].
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4. Novel and Emerging Therapies for Keloids

Emerging therapies focus on biologics targeting specific immune pathways, small
molecule inhibitors, RNA interference, and gene therapy approaches (Table 2).

Table 2. Novel and emerging therapies for keloid management.

Therapy Mechanism of Action Advantages Potential Side Effects References

Biologics and Small
Molecule Inhibitors

Target specific
molecular pathways

such as TGF-β/Smad
and STAT3 to reduce

fibroblast proliferation
and ECM production

Targeted approach,
potential to address

underlying molecular
causes

Varies by agent, the
potential for immune

reactions and off-target
effects

[90,91,97,115,116,
241–248]

RNA Therapy
Use siRNA to modulate

gene expression
involved in fibrosis

Specific and targeted
modulation of gene

expression, potential for
long-term effects

Delivery challenges,
potential for off-target

effects and immune
responses

[110,248–256]

Mesenchymal Stem
Cell Therapy

Inhibit fibroblast
proliferation and

activity via paracrine
signaling and immune

modulation

Potential to regenerate
damaged tissue,

modulate immune
response

Survival and engraftment
challenges, long-term
safety and efficacy not

fully understood

[257–272]

4.1. Biologics and Small Molecule Inhibitors

Biologics and small molecule inhibitors are emerging as promising therapeutic options
for the treatment of keloid scars. These therapies target specific molecular pathways
involved in the pathogenesis of keloids, aiming to disrupt the signaling processes that drive
excessive fibroblast proliferation and collagen production.

One of the key targets for biologics in keloid treatment is the TGF-β/Smad signaling
pathway. TGF-β1 and TGF-β2, which are involved in fibrosis and inflammation, are
elevated in keloids, and specifically, TGF-β1 has been linked to increased collagen and
fibronectin synthesis in keloids [241,242]. Fresolimumab, a monoclonal antibody that
neutralizes all three TGF-β isoforms, has shown potential in reducing fibrosis in clinical
trials for various fibrotic and cancer disorders [243]. In fibrotic diseases like systemic
sclerosis, fresolimumab treatment has been shown to reduce biomarkers and improve
clinical symptoms by decreasing the expression of TGF-β and collagen-related genes and
inhibiting fibroblast infiltration [244]. Given the role of fibroblasts in keloid pathogenesis,
fresolimumab may offer a novel therapeutic strategy for keloids.

Various inhibitors targeting the JAK-STAT pathway have also shown potential thera-
peutic effects on keloids. Ruxolitinib, a JAK1/2 inhibitor, blocks accelerated wound closure
in keloid fibroblasts [245]. AG490, a JAK2 inhibitor, induces apoptosis and cell cycle ar-
rest, reducing STAT3 phosphorylation and collagen production [97]. Other inhibitors like
ASC-J9, Cucurbitacin I, STAT3 small interfering RNA (siRNA) and green tea polyphenol
epigallocatechin gallate also suppress STAT3 signaling, decreasing collagen synthesis and
fibroblast proliferation [90,91,246,247].

Additionally, small molecule inhibitors targeting the MAPK and PI3K/AKT path-
ways are under investigation for their potential to reduce keloid formation. Sorafenib has
been shown to induce cell cycle arrest in keloid fibroblasts by inhibiting the TGF-β/Smad
and MAPK/ERK signaling pathways [248]. Also, a recent study suggested that suni-
tinib effectively inhibits keloid development through suppression of the Akt/PI3K/mTOR
pathway [115]. This study, using a keloid explant model in nude mice, demonstrated
complete keloid regression after sunitinib treatment [115]. Sunitinib effectively inhibited
keloid fibroblast proliferation, invasion, and collagen production while inducing apoptosis
and cell cycle arrest [115]. These effects were associated with a marked inhibition of the
PI3K/AKT/mTOR signaling pathway in keloid fibroblasts [115]. Also, CUDC-907, which
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is a PI3K/AKT/mammalian target of rapamycin (mTOR) pathway inhibitor, has demon-
strated efficacy in proliferation, migration, invasion, and ECM deposition of KFs [116].

4.2. RNA Therapy

RNA interference (RNAi) is a cellular mechanism that utilizes small interfering RNAs
(siRNAs), typically 21–22 nucleotides long, to silence specific gene expression through
targeted mRNA degradation [248,249]. This approach has shown promise in keloid treat-
ment by inhibiting gene expression in keloid fibroblasts. For instance, siRNA targeting
TIMP-1/-2 has been observed to degrade collagen type I in keloid fibroblasts, while siRNA
knockdown of heat shock protein 70 has resulted in significantly reduced collagen produc-
tion [250,251]. Also, siRNA targeting the human wingless-related mouse mammary tumor
virus integration site 2 has demonstrated the ability to slow down the growth and delay
the cell doubling time of transfected keloid fibroblasts [252]. A recent study investigated
the use of Runx2 siRNA to knockdown Runx2 mRNA in hypertrophic keloid fibroblasts
(HKFs) and found that si-Runx2 transfection significantly inhibited the biological functions
of HKFs, including proliferation, migration, and extracellular matrix deposition [110]. In
another study, dissolvable hyaluronic acid (HA) microneedle patches loaded with siRNA
for secreted protein acidic and cysteine-rich (SPARC) have effectively reduced collagen
production and improved scar appearance and symptoms, demonstrating the practical
benefits and efficacy of RNA-based treatments for pathological scars [253].

RNA therapeutics offer several advantages. They can target a wide range of genes,
including those previously considered “undruggable”, and their high specificity can poten-
tially reduce side effects compared to traditional small molecules [253,254]. Despite these
advantages, challenges remain in the application of RNA therapeutics, such as effective
delivery to target tissues, RNA instability, off-target effects, and potential immunogenic-
ity [253–256].

4.3. Mesenchymal Stem Cell Therapy

Mesenchymal stem cell (MSC) therapy has garnered significant interest as a novel
approach to treating keloid scars due to its anti-inflammatory and anti-fibrotic proper-
ties [257–259]. MSCs can be harvested from various sources, including bone marrow and
adipose tissue, and expanded ex vivo under specific conditions to enhance their therapeu-
tic potential [260,261]. These cells exhibit low immunogenicity, allowing for allogeneic
transplantation [262].

MSC transplantation has been shown to effectively improve macroscopic and histo-
logical outcomes in keloid scars without significant complications [263]. MSCs exert their
effects through the secretion of chemokines and microvesicles, which mediate the transi-
tion of macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2
phenotype, thereby attenuating inflammation and promoting tissue homeostasis [264–266].

Furthermore, MSCs have been found to reduce collagen deposition and contrac-
tion in scar tissues, which is a critical factor in the formation and persistence of keloid
scars [267–270]. The potential of MSC-conditioned media, which contains bioactive
extracellular vesicles, has also been highlighted as a promising cell-free therapeutic
option [268,270–272]

However, there are no human clinical trials to date that have investigated the efficacy
of MSC therapy for keloid scars. Future research needs to focus on identifying optimal
MSC sources, standardizing delivery methods, and establishing reliable animal models to
facilitate the translation of these findings to human applications.

5. Discussion and Conclusions

Keloid scars represent a significant clinical challenge due to their multifactorial na-
ture and complex pathogenesis. They are characterized by dysregulated wound healing
processes, chronic inflammation, and persistent fibroblast activation, leading to excessive
extracellular matrix (ECM) production. Despite extensive research, the exact mechanisms
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underlying keloid formation remain incompletely understood, and effective treatments are
limited. The involvement of key molecular pathways, including TGF-β/Smad, JAK/STAT,
MAPK, and PI3K/AKT, plays a critical role in the development of keloids by promoting
fibroblast proliferation, collagen synthesis, and ECM deposition.

The TGF-β/Smad pathway is central to keloid formation, enhancing fibroblast pro-
liferation and collagen synthesis. Overexpression of TGF-β1 in keloid fibroblasts leads to
increased ECM production and resistance to apoptosis. The JAK/STAT pathway, activated
by pro-inflammatory cytokines, contributes to the dysregulated cellular responses observed
in keloids, with STAT3 signaling particularly upregulated in keloid fibroblasts. The MAPK
pathway interacts with the TGF-β/Smad pathway, influencing fibroblast proliferation and
collagen accumulation. The PI3K/AKT pathway regulates fibroblast proliferation and
differentiation into myofibroblasts, contributing to the fibrotic phenotype of keloids.

Current treatments for keloids, including silicone dressings, topical corticosteroids,
cryotherapy, surgical excision, radiation therapy, laser therapies, and intralesional injec-
tions, aim to reduce scar size and symptoms but often result in high recurrence rates and
potential side effects. Silicone dressings are effective in reducing scar thickness and color
improvement through hydration and modulation of cell signaling. Topical corticosteroids
reduce inflammation and fibroblast proliferation but require frequent application and
monitoring for adverse effects. Cryotherapy reduces keloid volume and symptoms but
is associated with hypopigmentation in darker skin types. Surgical options are effective
for large keloids but have high recurrence rates if not combined with adjuvant therapies.
Radiation therapy significantly reduces recurrence rates when used post-surgery but carries
risks of skin atrophy and pigmentation changes. Laser therapies improve scar appearance
and reduce symptoms, often requiring multiple sessions. Intralesional injections deliver
therapeutic agents directly into keloid tissue, effectively flattening scars and alleviating
symptoms.

Emerging therapies focus on targeting specific molecular pathways to disrupt the
signaling processes driving keloid formation. Biologics and small molecule inhibitors target
pathways such as TGF-β/Smad and STAT3 to reduce fibroblast proliferation and ECM
production. RNA interference utilizes siRNAs to silence specific gene expression, showing
promise in reducing collagen synthesis and fibroblast activity. Mesenchymal stem cell
therapy exhibits anti-inflammatory and anti-fibrotic properties, potentially regenerating
damaged tissue and modulating the immune response.

The multifactorial nature of keloid pathogenesis and the limitations of current treat-
ments underscore the need for continued research and development of more effective
therapies. While established treatments provide varying degrees of success, emerging
therapies targeting specific molecular pathways offer promising new avenues for keloid
management. Future research should focus on elucidating the precise mechanisms under-
lying keloid formation and translating these scientific discoveries into practical treatments
to significantly improve the quality of life for individuals affected by keloid scars. By
advancing our understanding of keloid pathogenesis and refining therapeutic strategies,
we can move towards more effective and durable treatment outcomes, ultimately reducing
the burden of keloid scars on patients.
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