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Abstract: It is well known that modifiers play a role in ameliorating or exacerbating disease phe-
notypes in patients and carriers of recessively inherited disorders such as sickle cell disease and
thalassemia. Here, we give an overview of the literature concerning a recently described association
in carriers of SUPT5H Loss-of-Function variants with a beta-thalassemia-like phenotype including
the characteristic elevated levels of HbA2. That SUPT5H acts as modifier in beta-thalassemia carriers
became evident from three reported cases in whom combined heterozygosity of SUPT5H and HBB
gene variants was observed to resemble a mild beta-thalassemia intermedia phenotype. The different
SUPT5H variants and hematologic parameters reported are collected and reviewed to provide insight
into the possible effects on hematologic expression, as well as potential disease mechanisms in carriers
and patients.

Keywords: hemoglobin; SUPT5H; beta-thalassemia; hematology; modifying factor; molecular diagnosis;
β-thalassemia intermedia

1. Introduction

Hemoglobinopathies are the most common monogenic disorders in the world, with an
ever-increasing global disease burden each year [1,2]. The thalassemias are characterized
by reduced synthesis of the globin chains of hemoglobin, specifically beta-globin chains
in beta-thalassemia. As most hemoglobinopathies show recessive inheritance, carriers are
usually clinically silent, although they can be identified based on hematological features
including microcytic hypochromic erythrocytes and elevated levels of the minor adult
hemoglobin known as HbA2. Regular hemoglobinopathy diagnostics as well as pre-
marital, pre-conceptional and/or antenatal thalassemia screening programs occasionally
identify individuals with microcytic hypochromic parameters and elevated HbA2 in whom
no beta-thalassemia variants in the HBB gene can be identified [3,4]. In very rare cases,
haplotype analysis may reveal a pattern of inheritance that does not segregate with the
locus of the HBB gene located within the so-called beta-globin gene cluster (chromosome
11 p15), so-called unlinked beta-thalassemia [3]. This can be caused by other genes in the
human genome involved in regulating beta-globin gene expression. Several erythroid-
specific genes have been reported to carry variants causing elevation of the percentage
of HbA2, such as GTF2E2, GATA1, ASH1L and KLF1 [5–9], although not necessarily with
beta-thalassemia traits like red cell indices.
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Recently, Whole Exome Sequencing (WES) identified Loss-of-Function (LoF) variants
in SUPT5H (NM_001111020.3) in several members of two independent Dutch families
showing microcytic hypochromia and elevated HbA2 but no beta-thalassemia variants in
the HBB genes [3]. The discovery of splicing variants (including both donor- and acceptor
variants) in SUPT5H in these two independent families and subsequent RNA sequencing
confirmed an altered splice pattern leading to intron retention and a premature stop codon.

Additional LoF variants in SUPT5H were found in several other individuals of Dutch,
French and Italian ancestry, all of whom presented hematological characteristics consistent
with beta-thalassemia traits but were negative for variants in the HBB genes [3,10,11].
Three individuals from two independent Greek families expressing a non-transfusion-
dependent beta-thalassemia intermedia phenotype were characterized to have co-inherited
a known Mediterranean beta-thalassemia variant and an additional variant in SUPT5H.
These findings indicated that SUPT5H may play a role in regulating beta-globin gene
expression. Elevated HbA2 in the absence of a beta-thalassemia variant in the HBB gene
is one of the key hematological findings that may suggest the presence of a variant in
SUPT5H. More cases have been reported with unknown SUPT5H variants expressing
beta-thalassemia traits after the first publication by Achour et al. in 2020 [3].

2. SUPT5H Gene and hSpt5 Protein: Structure and Function

Promoter proximal pausing is an important regulatory step in eukaryotic transcrip-
tion catalyzed by the enzyme RNA polymerase II (RNA Pol II). Participation in the gen-
eral transcription factor DSIF is required for normal RNA synthesis. Human DSIF is
a heterodimer composed of two subunits, hSpt4 and hSpt5. From the N-terminus, the
hSpt5 protein contains an acidic domain, a region that is homologous to the bacterial
transcription factor NusG (NGN domain), which interacts with Spt4h, followed by five
Kyrpides–Ouzounis–Woese (KOW) domains, two C-terminal repeat regions and another
two C-terminal KOW domains (Figure 1). The two C-terminal repeat regions (CTR-1 and
CTR-2) can be phosphorylated by the positive transcription elongation factor pTEFb activat-
ing RNA Pol II elongation [12]. The C-terminal region of hSpt5 includes the tandem KOW
domain, designated KOW6 and 7 in Figure 1, which is near the exiting RNA and might play
a role in recruiting factors for RNA capping and in 3′RNA processing [13,14]. Zuber et al.
(2018) [12] demonstrated a tight domain interaction between KOW4, KOW6 and KOW7,
a typical beta-barrel fold that possibly enlarges the structure of the basic KOW fold com-
pared to other KOW domains of hSpt5. This extended structure might be of importance
to present a larger binding surface for additional molecular interactions. The KOW6-7 do-
mains were shown to interact exclusively with protein factors necessary for RNA elongation
and/or processing during transcription termination.

If an SUPT5H LoF variant leads to a truncated Spt5 protein, parts of the C-terminal
domains are predicted to be missing. Depending on the domains that are missing, important
regions include the NGN region (critical for Spt4 dimerization), the CTR-1 and 2 regions
(sensitive to phosphorylation and, therefore, activation of the DSIF complex) and the
KOW6-7 domains (necessary for binding protein factors involved in RNA elongation,
processing and termination). It is currently unclear whether a non-functional truncated
protein product is formed or whether the transcript is degraded by Nonsense-Mediated
Decay (NMD). In any case, there is no apparent correlation between the location of the
premature stop position and the hematologic indices observed amongst carriers of the
diverse SUPT5H variants. For example, heterozygotes for the nonsense variants c.193C>T
and c.142G>T, both predicted to lead to a truncated protein missing all functional domains,
present with hematologic parameters comparable to those in heterozygotes for the most
terminal c.3032_3033delTG frameshift variant. The latter codes for an almost intact Spt5
protein in which only the last KOW domain and the C-terminus are missing [4,15]. These
findings could support the hypothesis of NMD; however, more studies are necessary to
shed light on how the reduction of Spt5 levels affects the beta-globin LCR recruitment of
transcription factors to eventually reduce the expression of the HBB genes.
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Figure 1. Schematic presentation of the SUPT5H gene. The white boxes are the untranslated regions,
and the black boxes are the coding exons. Arrows indicate the position and HGVS annotation of the
variants. The protein structure is shown below from left (N-terminus) to right (C-terminus). The
functional domains are the acidic region, the NGN domain which interacts with Spt4, the five KOW
domains (Kyrpides–Ouzounis–Woese domains), two C-terminal repeat domains (CTR-1 and CTR-2)
which can be phosphorylated and, finally, two KOW domains (KOW6 and 7). The numbers below
the domains indicate the amino acid (a.a.) positions in the protein chain and the arrows correspond
with the arrows in the upper graph, indicating the a.a. position of each variant.

3. Molecular SUPT5H Variants Reported

A total of 28 SUPT5H variants have been reported to date. In the first report describing
SUPT5H as a gene associated with a beta-thalassemia trait, eight different variants were
observed [3]. Subsequent papers have reported an additional 20 variants. Heterozygotes
may present either near-to-normal hematology or microcytic hypochromic parameters, but
all were observed to have elevated HbA2 levels comparable to those in beta-thalassemia
traits [4,10,11,15–17]. To date, there are no further reports of cases with double heterozygos-
ity for variants in SUPT5H and HBB, and the only reason SUPT5H variants were suspected
was due to elevated HbA2 levels with or without microcytic hypochromic indices in the
absence of variants in the HBB gene.

The SUPT5H variants presently known are listed in Table 1 and shown in Figure 1.
The majority are either nonsense or frameshift variants leading to a premature stop codon.
Of four variants reported which alter the splice consensus sequence, one splice donor
variant and one splice acceptor variant (c.458+1G>A and c.2259-3C>A, respectively) have
been studied at the RNA level, demonstrating intron retention and an altered reading
frame leading to a premature stop codon. Of the other splicing variants, two have not been
examined at the RNA level, but in silico prediction software suggests an effect on splicing.
The in silico prediction of two missense variants, SUPT5H:c. 2245C>T, p.(Arg749Trp) and
c.2507A>G, p.(Tyr836Cys), also indicates alternative splicing, a subsequent altered reading
frame and a premature stop codon. All variants, therefore, are consistent with the synthesis
of a truncated protein, missing the 3′carboxy-terminus. The only exception is the variant
SUPT5H: c.3034T>A, p.(Cys1012Ser), a missense variant in the penultimate exon of the
gene without a clear in silico prediction in favor of alternative splicing.

As almost the entire spectrum of SUPT5H variants in individuals expressing an
unlinked beta-thalassemia phenotype from different geographic areas lead to an LoF, this
suggests that an intact C-terminus is essential for the correct function of the Spt5 protein.
The haplo-insufficiency of Spt5, or a truncated Spt5 which misses the carboxy-terminus, is
apparently the mechanism which gives rise to the typical phenotype of beta-thalassemia
traits with the characteristically elevated levels of HbA2.
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Table 1. Variants in SUPT5H (NM_001111020.3). * Delta score [0–1.0] generated by SpliceAI # GnomAD v4.0.0.

Nr. HGVS Annotation Molecular Effect In Silico Prediction * Description Etnic Origin GnomAD Allele Frequency # Reference

1 c.142G>T p.Glu48* nonsense Chinese [4]

2 c.193C>T p.Arg65* nonsense Chinese 7.15 × 10−7 [15]

3 c.397C>T p.Arg133* nonsense Chinese 3.05 × 10−6 [17]

4 c.458+1G>A 1.00 Donor loss Dutch [3]

5 c.631C>T p.Gln211* nonsense Chinese [4]

6 c.817delC p.Leu273* nonsense French [3]

7 c.1195C>T p.Gln399* nonsense Chinese [16]

8 c.1374+2T>C 0.71 Donor loss Greek [3]

9 c.1405delA p.Arg469Glufs*10 Frameshift Chinese [4]

10 c.1741_1744dupAACC p.Arg582Glnfs*21 Frameshift Greek [3]

11 c.1782_1785delCCAT p.Ile594Metfs*2 Frameshift Chinese? [3]

12 c.1789A>T p.Leu597* nonsense ? [11]

13 c.1855C>T p.Arg619* nonsense ? [4]

14 c.1901dupG p.Met635Hisfs*19 Frameshift Chinese [4]

15 c.1979delG p.Gly660Valfs*6 Frameshift Dutch [3]

16 c.1993_1994delTA p.Met665Glufs*19 Frameshift ? [11]

17 c.2245C>T p.Arg749Trp 0.69 Donor gain ? 2.40 × 10−6 [11]

18 c.2247delG p.Leu750Serfs*11 Frameshift ? [11]

19 c.2259-3C>A 0.09 - Dutch [3]

20 c.2368C>T p.Gln790* nonsense French [10]

21 c.2507A>G p.Tyr836Cys Alternative splicing ? [11]

22 c.2725delC p.Gln909Argfs*45 Frameshift Dutch [3]

23 c.2823_2850dup p.Ser951* nonsense Chinese [4]

24 c.3032_3033delTG p.Met1011Metfs*9 Frameshift Chinese [17]

25 c.3034T>A p.Cys1012Ser 0.02 - ? [11]

26 EXON 21 -2 A>G Splice acceptor ? [11]

27 p.Glu455Aspfs*23 Frameshift ? [11]

28 del(chr19:39936531-40030719) ? Chinese [4]
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4. In Vitro Studies of SUPT5H LoF

The SUPT5H gene codes for human Spt5, a protein known to play a role in controlling
the release of promoter-proximal pausing of RNA Pol II, which is crucial for gene regu-
lation and cellular differentiation. That RNA pol II pausing plays a role in modulating
hematopoietic stem cell emergence was already shown previously in zebrafish [18,19]. Dur-
ing erythropoiesis, cell cycle genes are largely paused as cells transition from progenitors to
precursors. RNA Pol II pauses ~30 to 50 bp downstream of promoters and its release into
productive elongation is a highly regulated process [20–23]. One of the factors involved in
the convergence from paused to released RNA Pol II is the DRB (5,6,-dichloro-1-beta-D-
ribofuranosylbenzimidazole) sensitivity-inducing factor (DSIF complex), composed of Spt5
and Spt4. As Spt5 is an essential and highly conserved elongation factor, depletion often
leads to cell death and its role in cellular differentiation is therefore difficult to study [24–28].
The identification of LoF mutations in SUPT5H in patients with a beta-thalassemia trait-like
phenotype in the absence of HBB mutations created a unique opportunity to study RNA
Pol II pausing [11]. By perturbing SUPT5H in human hematopoietic stem and progenitor
cells (HSPCs) using CRISPR-Cas9 to generate a heterozygous population of cells with
a 50% reduced level of Spt5 protein levels, it was possible to study the effect on globin
expression and cell differentiation.

Martell et al. (2023) [11] observed that RNA Pol II pause release, which facilitates
productive elongation, was hindered in human hematopoiesis with disrupted SUPT5H
expression. As these cells began transitioning from progenitors to precursors, both cell
cycle kinetics and the onset of erythroid gene expression programs were delayed, although
cells still underwent terminal differentiation. This suggests that RNA Pol II pausing
plays a role in the regulation of cell cycle progression during erythroid differentiation as
cells begin transitioning from progenitors into more mature erythroid precursors. The
authors also examined the level of non-coding enhancer-derived RNAs (eRNAs) in the
regulatory regions of both the beta- and alpha-globin gene clusters, as eRNA transcription
is considered a reliable marker of enhancer activity [29,30]. The reduced levels of eRNA
within the beta-globin Locus Control Region (beta-LCR) observed in SUPT5H-edited cells
suggests that this may contribute to the reduced HBB expression in carriers of SUPT5H
LoF variants. HBB expression is more susceptible than HBA expression to transcription
perturbations, particularly at a later stage of erythropoiesis, when there is a higher demand
for globin expression. It is not clear why HBB expression is affected more than HBA
expression, but as the modes of regulation of gene expression in the beta- and alpha-globin
gene clusters are different, it is possible that the effect of perturbation of RNA Pol II pausing
may also be different. As Martell et al. (2023) [11] clearly state, patients harboring these
mutations are relatively healthy, exhibiting subtle but consistent phenotypes characterized
by mild or no anemia but clear signs of beta-/alpha-globin chain imbalance. This was
confirmed by the imbalance in globin chain-synthesis results in one of the SUPT5H carriers
reported by Achour et al. (2020) [3] and supports a down-regulation of HBB expression but
not of HBA1/2 expression, or at least not to the same extent. The fact that HBB expression
is regulated through the recruitment of Spt5 via the beta-LCR suggests that this may be
an explanation for the reduced HBB expression observed in carriers of SUPT5H variants.
In contrast, HBA enhancer sites were largely unaffected in SUPT5H-edited cells, with the
exception of one site which was significantly up-regulated, which suggests that LoF variants
can have differential effects on enhancer transcription across these different co-expressed
genes [31].

5. Hematologic Phenotype of Carriers of LoF SUPT5H Variants

How do carriers of SUPT5H variants compare to carriers of known beta-thalassemia
variants at the hematological level? The mean and range of hemoglobin concentration (Hb
g/L), Mean Cellular Volume (MCV fL), Mean Corpuscular Concentration of Hemoglobin
(MCH pg) and HbA2 values were collected from 47 SUPT5H heterozygotes reported in
the literature (Table S1) and compared to the mean values and ranges for Hb, MCV, MCH
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and HbA2 levels for the normal [32] and beta-thalassemia carriers [1] as known from
the literature. For SUPT5H/HBB double heterozygotes, the numbers were too limited to
determine a mean or range; they are depicted as values in the graph (Figure 2).
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Figure 2. Schematic presentation of the effect of reduced SUPT5H expression in carriers and in double
heterozygous beta-thalassemia trait carriers. The SUPT5H gene is indicated as an open box, HBB
and HBA1/2 genes as blue and red boxes respectively. The proteins are indicated below the genes as
oval (Spt5h) and circles (alpha-/beta-globin). The tetramer represents hemoglobin HbA, the yellow
arrows at the genes indicate the reduced levels of expression and reduction of protein synthesis, the
curved lines indicate a suspected influence of reduced Spt5h synthesis on the HBB expression, for
which the exact mechanism is unknown.

The comparison between the four groups, consisting of normal, beta-thalassemia
carriers, SUPT5H carriers and double heterozygotes for SUPT5H and HBB variants, shows
a decrease in Hb, MCV and MCH values between the normal and the beta-thalassemia car-
riers (Figure 3a–c). The comparison of hematologic indices (Hb, MCV and MCH) between
the SUPT5H carriers, the normal range and the beta-thalassemia carrier range demonstrates
that SUPT5H carriers show anemia due to a decrease in hemoglobin concentration equiva-
lent to that seen in beta-thalassemia carriers. As far as MCV and MCH are concerned, the
mean value for the SUPT5H carriers is between the normal and beta-thalassemia carriers,
while the range overlaps between normal and beta-thalassemia carriers; this is a finding
consistent with the relatively mild effect on the bi-allelic reduction in beta-gene expression
of the SUPT5H carriers. Only three cases of double heterozygosity for an SUPT5H variant
and a beta-thalassemia determinant in the HBB gene have been reported, showing Hb levels
falling within the lower range of beta-thalassemia carriers. The MCV and MCH values seem
to be below average compared to the beta-thalassemia group. Even though the number
of double heterozygotes is not enough to calculate reliable statistical differences, these
findings suggest that there is a modifying effect induced by SUPT5H haplo-insufficiency
that down-regulates the beta-globin gene expression in beta-thalassemia heterozygotes.
As the SUPT5H protein Spt5 acts transiently, it seems most likely that HBB expression on
both alleles is down-regulated, enhancing the imbalance between alpha- and beta-globin
polypeptide synthesis. Considering that carriers of SUPT5H variants have a hematologi-
cal phenotype comparable to that of beta-thalassemia carriers, the expected phenotypic



Int. J. Mol. Sci. 2024, 25, 8928 7 of 10

expression of double heterozygotes is more severe, which seems to be confirmed by the
hematologic data.
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Figure 3. (a). Mean and 95% range of red cell indices for reference values from Dacie and Lewis, Prac-
tical Haematology 12th ed. [32], β-thalassemia carriers from Weatherall and Clegg, The Thalassemia
Syndromes 4th ed. (1), SUPT5H carriers and double heterozygous carriers of SUPT5H and HBB
variants (Table S1). (a). Hb (g/L) mean ± 2SD for reference group of men is 150 ± 20 g/L and that
for women is 135 ± 15 g/L; Hb (g/L) mean ± 2SD for SUPT5H carriers is 119.5 g/L (91–149 g/L),
which overlaps largely with the Hb of β-thalassemia carriers (men, 118 ± 15 g/L, and women,
108 ± 9.0 g/L). Mean Hb level of double heterozygote β-thalassemia and SUPT5H carriers is 98 g/L
(SD = 2.89). (b). Mean MCV of reference men and women is 92 ± 9 femtoliter; the MCV of SUPT5H
carriers is 79 femtoliter (69–91); the MCV of β-thalassemia carriers is 70.5 + 4.2 fl. The mean MCV
of double heterozygote β-thalassemia and SUPT5H carriers is 53.3 femtoliter (SD = 6.35). (c). Mean
MCH of reference is 29.5 ± 2.5 picogram, that of β-thalassemia carriers is 21.5 ± 1.3 picogram and that
of SUPT5H carriers is 25.60 picogram (21.6–27.4). Mean MCH of double heterozygote β-thalassemia
and SUPT5H carriers is 16.6 (SD = 1.42). (d). Mean HbA2 percentage for reference group is 2.2–3.5,
mean HbA2% of SUPT5H carriers is 5.2% (3.6–6.4), and mean HbA2% of β carriers is 4.9 ± 0.5%.
Mean of HbA2% for double heterozygote β-thalassemia and SUPT5H carriers is 10.67% (SD = 1.99).

No significant differences are seen in the percentage of HbA2 in beta and SUPT5H
carriers (Figure 3d). However, HbA2 levels were significantly elevated in double het-
erozygous SUPT5H/beta-thalassemia carriers. As there are only three reported cases of
combined beta-thalassemia and SUPT5H LoF variants, it is difficult to determine if this is
due to the specific feature of the beta-thalassemia variant or the effect of the interaction
of the two variant alleles. Two of the cases described to date are double heterozygotes
for HBB:c.118C>T and SUPT5H:c.1374+2T>C (with HbA2 levels of 8.5% and 11.1%, re-
spectively). Heterozygotes for HBB:c.118C>T usually present with relatively lower HbA2
levels of 4.89 ± 0.84%. The third case is a double heterozygote for HBB:c.92+1G>A and
SUPT5H:c.1741_1744dup (HbA2 12.4%). The heterozygote HBB:c.92+1G>A presents with
a higher HbA2 of approximately 9–10%. The extra-ordinary elevation in HbA2 percentage
seen in two double heterozygotes, HBB:c.118C>T and SUPT5H:c.1374+2T>C, cannot be
attributed to the HBB variant. In beta-thalassemia carriers expressing a more severe clinical
phenotype than expected from beta-thalassemia traits, such elevated HbA2 percentages
might be an indication for a co-inherited SUPT5H variant.

6. Conclusions

LoF variants in SUPT5H are associated with a beta-thalassemia-like phenotype in
so-called unlinked beta-thalassemia cases with typically elevated HbA2 and, in most cases,
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microcytic hypochromic erythrocyte parameters. SUPT5H is a modifying factor which
may play a role in beta-thalassemia carriers who express a more severe phenotype than is
seen in simple beta-thalassemia heterozygotes. However, examples from the literature are
apparently scarce, with only three reported cases to date.

Recent studies have demonstrated that diminished SUPT5H expression levels can
induce a stage-specific delay in erythroid differentiation [11]. In spite of extensive analysis
of the Spt5 mutations in human HSPCs, we do not fully understand the mechanism with
which Spt5 acts on beta-globin gene expression. It is also not clear why Spt5, which seems
to play such an important role in RNase II polymerase pausing and elongation, has no
detectable effect on alpha-globin gene expression in these cell lines, nor gives rise to a more
severe pathological phenotype in carriers with abnormal development in other tissues.

The comparison of red cell indices amongst different groups of reference samples,
beta-thalassemia carriers and carriers of SUPT5H variants and compound heterozygotes
provided more insight into the clinical phenotype of reduced SUPT5H expression. The
elevated levels of HbA2 in the absence of a beta-thalassemia trait causing variants in the
HBB gene is one of the most suggestive elements to identify variants in the SUPT5H gene.
Carriers of SUPT5H LoF variants express a mild beta-thalassemia trait, while double het-
erozygotes for SUPT5H and a beta-thalassemia variant present with a mild beta-thalassemia
intermedia phenotype. For the latter, elevated HbA2 levels of 10.7% (SD = 2.0%) potentially
implicate a diagnosis of combined SUPT5H/HBB in beta-thalassemia carriers expressing
beta-thalassemia intermedia. However, little is known about the clinical impact of double
heterozygosity as detailed information about increased transfusion need, splenomegaly,
manifestations of extramedullary hematopoiesis, etc., is missing, with only three cases
reported in the literature. The clinical severity may also impact genetic counseling when
couples are identified as being carriers of an SUPT5H LoF variant and a regular beta-
thalassemia trait variant in HBB, respectively. As only a few cases are known from the
literature, it remains difficult to predict the severity of the beta-thalassemia intermedia
phenotype in an affected double heterozygous child. If both parents are carriers of SUPT5H
LoF variants, 25% of pregnancies will not lead to a viable embryo as the total lack of
SUPT5H expression is likely incompatible with life, with hSpt5 playing such an essential
role in the biologically essential mechanism of RNA Pol II pausing and elongation.

As the modifying effect of SUPT5H LoF is relatively subtle, it might be underdiagnosed
amongst beta-thalassemia carriers with a more severe clinical expression. The extraordinar-
ily elevated HbA2 levels may be a biomarker for the presence of an additional SUPT5H
variant in cases in which a single HBB variant does not explain the clinical phenotype. Next
Generation Sequencing (NGS) to investigate the SUPT5H gene would be the next diagnostic
step or, if not available, contacting local, more specialized clinical genetic laboratories for
further testing.

More studies are necessary to investigate the mechanism underlying reduced beta-
gene expression in carriers of SUPT5H variants. The hemoglobinopathy network INHER-
ENT (URL https://www.inherentnetwork.org (accessed on 14 August 2024)) is instru-
mental in investigating this topic further. International collaboration between diagnostic
laboratory scientists and hematologists is essential in identifying cases where the clinical
severity is not fully explained by the genotype or the elevated HbA2 is not explained by
variants in the HBB gene.
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