
Citation: Vannelli, A.; Mariano, V.;

Bagni, C.; Kanellopoulos, A.K.

Activation of the 5-HT1A Receptor by

Eltoprazine Restores Mitochondrial

and Motor Deficits in a Drosophila

Model of Fragile X Syndrome. Int. J.

Mol. Sci. 2024, 25, 8787. https://

doi.org/10.3390/ijms25168787

Academic Editors: Dimitrios J.

Stravopodis and Athanassios D.

Velentzas

Received: 16 May 2024

Revised: 28 July 2024

Accepted: 29 July 2024

Published: 13 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Activation of the 5-HT1A Receptor by Eltoprazine Restores
Mitochondrial and Motor Deficits in a Drosophila Model of
Fragile X Syndrome
Anna Vannelli 1,†, Vittoria Mariano 1,†,‡ , Claudia Bagni 1,2,* and Alexandros K. Kanellopoulos 1,*

1 Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
2 Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
* Correspondence: claudia.bagni@unil.ch or claudia.bagni@uniroma2.it (C.B.);

kanellopoulosalex12@gmail.com (A.K.K.)
† These authors have contributed equally to this work and share the first authorship.
‡ Current address: Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.

Abstract: Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis,
neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurode-
velopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited
intellectual disability, which also presents with motor skill deficits. However, the precise role of
mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies
have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the
potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of
FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic
transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these
findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further
investigation is needed in the context of FXS.

Keywords: intellectual disability; synaptic transmission; serotonin; neuromuscular junction; FXS
therapy; eltoprazine

1. Introduction

The brain’s energy demand is high, requiring 20% of the body’s energy supply to
maintain and support various processes involved in brain development and functions
throughout an individual’s life, including neurogenesis, synaptic plasticity, and all types of
behaviors coordinated by brain activity [1–6]. Mitochondria are the primary source of cellu-
lar energy production and reactive oxygen species (ROS) formation. They regulate calcium
signaling and lipid and steroid metabolism, but, most importantly, they are involved in
other cellular functions, such as proliferation, apoptosis, and autophagy [7–12]. In highly
polarized cells like neurons, mitochondria are also present at the synapses to supply energy
for synaptic function and balance Ca2+ signals to coordinate synaptic communication. For
example, mitochondria in the pre- and post-synaptic compartments are essential for main-
taining synaptic activity, producing ATP through oxygen and glucose [3] that can, in part,
be used for processes like local protein synthesis [13,14], endocytosis, exocytosis [15], and
cytoskeleton remodeling [16]. Alterations in mitochondrial function and morphology could
contribute to Fragile X Syndrome (FXS) neuropathology by impairing oxygen supply. Con-
sistently, alterations in mitochondrial homeostasis have been associated with several brain
diseases, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD) [7,17], but also
with neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), epilepsy,
and schizophrenia [18–27]. Understanding mitochondrial pathogenesis in diseases and
applying interventions requires knowing how mitochondrial homeostasis is regulated.
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This study aims to address this question by taking advantage of the well-established
Drosophila model for FXS [23,28,29]. Despite its simplicity, Drosophila exhibits a wide range
of complex behaviors and has well-defined physiological systems, such as a nervous
system, cardiovascular system, and digestive system. This allows for comprehensive
studies of its development, neurobiology, behavior, and disease status. Therefore, genetic or
pharmacological interventions using this model could highlight new therapeutical avenues.

Fragile X Syndrome (FXS) is the most common monogenic cause of ASD [30,31], which
is caused by the absence or mutations of Fragile Ribonucleoprotein 1 (FMRP), an RNA-
binding protein that acts primarily as a regulator of local protein synthesis at synapses [32].
Clinically, FXS patients present a wide spectrum of symptoms such as developmental
delay, hyperactivity, disrupted sleep, social impairments, and intellectual disability [33,34].
Furthermore, post-mortem brain studies using Golgi staining have revealed dendritic
spine structural anomalies, suggesting that FMRP regulates synaptic development and
plasticity [35]. Using different animal models, independent studies have shown that FMRP
plays a role in synaptic transmission and plasticity [36].

dfmr1 is the single homolog of the human gene in the Drosophila genome; dfmr1∆50

mutants, at both larval and adult stages, present altered locomotor activity associated
with altered morphology of the neuromuscular junction (NMJ) and abnormal synaptic
transmission [28,37–39]. In addition, lack of FMRP leads to an increased number and altered
size and distribution of mitochondria at the NMJ level, impairments in mitochondrial
plasticity (their ability to dynamically adapt their structure, function, and metabolism in
response to various physiological and environmental cues), and polarity in dendrites and
axons, respectively, along with elevated mitochondrial membrane proton leak, leading to
increased metabolism and changes in protein synthesis [40–44].

In addition to the key role played by the mitochondria, several monoamines regulate
NMJ function [45–51]. For example, serotonin levels were found to be dysregulated in a
mouse model for FXS, namely the Fmr1 KO mouse [52]. The selective activation of the
5-HT receptor was shown to ameliorate behavioral deficits such as hyperactivity, abnormal
sensorimotor gating, and cognitive impairment. It is well established that modulation
of the serotonergic system influences locomotion [47,48,53]. Furthermore, it was shown
that dfmr1∆50 mutant flies present altered levels of serotonin in the brain [54]. 5-HT is a
monoamine with a regulatory effect on locomotion and synaptic activity in flies [47,48,55].
Moreover, 5-HT plays an essential role in mitochondrial biogenesis in neurons and other
cell types [56] through the mitochondrial master regulator PGC-1α [57–59]. These results
suggest that the 5-HT–mitochondrial axis dysregulation in FXS could contribute to some
of the observed deficits in neuronal plasticity and behavior. The critical role of serotonin
in numerous brain functions and its involvement in various neurological and psychiatric
disorders make it a significant target for drug development. Here, we assessed the effects
of eltoprazine, a 5-HT1A agonist, in the Drosophila model of FXS on behavior, neuronal
activity, and neuronal morphology and show how the serotonin pathways affect mitochon-
drial homeostasis.

2. Results

2.1. dfmr1∆50 Mutants Have Locomotion Deficits That Are Rescued upon Eltoprazine Treatment

Here we investigated if eltoprazine, an agonist of the 5-HT1A receptor, could amelio-
rate the deficits in locomotor activity of the dfmr1∆50 mutant larvae, a behavioral feature
that was previously reported [60].

First, we analyzed distance and speed in freely moving crawling larvae as described
in [60]. Consistent with previous observations [38,61], the dfmr1∆50 mutant larvae are less
active than the controls (Figure 1A,B). Feeding of dfmr1∆50 mutant larvae with 1 mM of
eltoprazine for 30 min increased the locomotor activity of the mutants compared to the
controls (w1118). Of note, the same treatment on the control larvae significantly reduced
their locomotion (Figure 1A,B).
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tested. The red arrows indicate the distance that the larvae covered between points d1 and d2. (B) 
Quantification of the locomotor behavior for the control, dfmr1Δ50 mutants, the control treated with 
eltoprazine, and dfmr1Δ50 mutants treated with eltoprazine (elto). The analysis was performed 
automatically with Ethovision by measuring the distance and speed of the larvae. Each dot 
represents a single larva. Left panel: distance traveled by the larvae during a 1 min observation 
period. Right panel: crawling speed, measured as distance moved in cm per second. For each 
condition, n ≥ 15 single larvae. Data are shown as dot plots, and error bars represent the standard 
error of the mean; 2-way ANOVA, multiple comparisons: ** p < 0.01, **** p < 0.001, ns means no 
significant. 
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Figure 1. Activation of the 5-HT1A receptor by eltoprazine rescues motor behavior in dfmr1∆50 larvae.
(A) Representative images of larval tracking on agarose plate for the various conditions tested. The
red arrows indicate the distance that the larvae covered between points d1 and d2. (B) Quantification
of the locomotor behavior for the control, dfmr1∆50 mutants, the control treated with eltoprazine, and
dfmr1∆50 mutants treated with eltoprazine (elto). The analysis was performed automatically with
Ethovision by measuring the distance and speed of the larvae. Each dot represents a single larva.
Left panel: distance traveled by the larvae during a 1 min observation period. Right panel: crawling
speed, measured as distance moved in cm per second. For each condition, n ≥ 15 single larvae. Data
are shown as dot plots, and error bars represent the standard error of the mean; 2-way ANOVA,
multiple comparisons: ** p < 0.01, **** p < 0.001, ns means no significant.

2.2. Eltoprazine Restores the Synaptic Transmission at the NMJ of dfmr1∆50 Mutants

Locomotor defects in dfmr1∆50 larvae have been associated with altered synaptic
function in the neuromuscular junction (NMJ) [28,62]. To explore a potential therapeuti-
cal approach, we measured the amplitude and frequency of the spontaneous Excitatory
Junctional Potential (sEJP) in both control and dfmr1∆50 mutant larvae upon eltoprazine
treatment. We show that the dfmr1∆50 mutant exhibits an increased amplitude and fre-
quency of sEJP, and, upon electric stimulation of the NMJ, increased EJP amplitude in
comparison with control flies (Figure 2A,C and Figure 2B,D, respective). It is known that
5-HT can directly modulate synaptic transmission at the NMJ [47,48]. Therefore, to test if
the modulation of the 5-HT1A receptor can modulate NMJ transmission in the dfmr1∆50

mutant larvae, we applied eltoprazine acutely to the tissue. Recordings of spontaneous
synaptic transmission in the presence of the drug revealed a significant amelioration of
the sEJP frequency and partial rescue of the sEJP amplitude in the dfmr1∆50 mutant lar-
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vae (Figure 2C). Moreover, treatment with eltoprazine normalized the evoked EJP of the
dfmr1∆50 mutant larvae to control levels (Figure 2D). These findings indicate that increased
synaptic transmission could contribute to reduced larvae locomotion due to improper acti-
vation of the muscles and, consequently, uncoordinated muscle contractions. Restoration
of synaptic activity with eltoprazine most probably acts by modulating the motoneuronal
response to reduce the exaggerated release of glutamate.
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Figure 2. Activation of the 5-HT1A receptor ameliorates NMJ synaptic transmission of the dfmr1∆50

larvae. Representative traces of spontaneous (A) and evoked (B) activity in larvae from the control,
dfmr1∆50, the control treated with eltoprazine, and dfmr1∆50 treated with eltoprazine. (C) Quantifi-
cation of spontaneous event frequency (Hz) (left) and amplitude (mV) (right). Each dot represents
the measurement of a single NMJ. (D) Quantification of evoked EJP amplitude (mV). n ≥ 7 larvae
for each condition. All the data are presented as dot plots, and error bars show the standard error
of the mean. 2-way ANOVA, multiple comparisons: * p < 0.05, ** p < 0.01, *** p < 0.001, n.s. means
no significant.

2.3. Eltoprazine Restores Mitochondrial Dysregulations in dfmr1∆50 Mutants

To investigate mitochondrial activity in dfmr1∆50 mutants based on FMRP regulation
of mitochondrial function, morphology, and distribution in mammals [40,41], we measured
oxygen consumption in the NMJs as previously described in [23]. We found that dfmr1∆50

mutants exhibit increased Complex I, Complex II, and electron transport of mitochondrial
Oxidative Phosphorylation (OXPHOS) compared to control larvae (Figure 3A). Markedly,
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eltoprazine treatment normalized the increased mitochondrial activity in dfmr1∆50 mutant
larvae (Figure 3A).
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Figure 3. Eltoprazine treatment rescues NMJ mitochondrial hyperactivity in dfmr1∆50 larvae.
(A) Quantification of oxygen consumption normalized per protein content and to the control. n ≥ 4
independent experiments per genotype (each with 3 NMJs), mean ± standard error of the mean.
** p < 0.01, ns means no significant, multiple t-test, corrected for multiple comparisons using the
Sidak–Bonferroni method. (B) Quantification of ATP production levels in control and dfmr1∆50 larvae
NMJs. Data represent n ≥ 4 independent experiments per genotype (each with 3 NMJs), expressed as
mean ± standard error of the mean. Statistical significance was determined by t-tests (** p < 0.01)
comparing the ATP levels of dfmr1 mutant flies to those of wild-type control flies.

In addition, we analyzed the energy status of the NMJ and found that adenosine
triphosphate (ATP) production is increased in dfmr1∆50 mutant larvae (Figure 3B).

To determine if the increased mitochondrial activity was generated by increased mito-
chondrial mass, we measured the number and distribution of mitochondria at the synapses
of motor neurons. Using the UAS/GAL4 system, we expressed mito-GFP (UAS) under the
control of the motor neuron-specific D42 promoter (GAL4) which allows its expression in
the motor neurons of the dfmr1∆50 mutant and control larvae (Figure 4A). Notably, dfmr1∆50

mutant larvae show increased expression of mito-GFP compared to controls, suggesting an
increased number of mitochondria at the synapses of the NMJ (Figure 4A,B). Importantly,
treatment with eltoprazine yielded a significant improvement in the quantity of mito-
chondria at the NMJ (Figure 4A,B). This observation strongly aligns with recent research
underscoring the role of serotonin in regulating mitochondrial biogenesis [57,59,63] and
supports the hypothesis that a dysregulation of energy metabolism in the NMJ of dfmr1∆50

mutant larvae may underlie the NMJ synaptic transmission [64,65] and motor impairments
in FXS.



Int. J. Mol. Sci. 2024, 25, 8787 6 of 16Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 4. Eltoprazine restores mitochondrial puncta and distribution in the NMJ of dfmr1Δ50 larvae. 
(A) Representative images of the NMJ (neuromuscular junction) synaptic boutons expressing mito-
GFP (mitochondrial-targeted green fluorescent protein) and stained with a-HRP (anti-Horseradish 
Peroxidase). To visualize synaptic boutons at the Drosophila NMJ, a TRITC-HRP conjugated 
antibody was used, which provided visualization of the presynaptic terminals, facilitating the clear 
observation of their structure and organization. Arrows indicate the close-up magnification of 
axonal processes. Scale bar 10 um for all images. (B) Quantification of the mito-GFP puncta 
normalized to the synaptic boutons’ area and number. Each dot represents a single NMJ where at 
least 3 branches and 5 boutons for each branch were analyzed. n ≥ 15 NMJs. All data are shown as 
dot plots ± standard error of the mean; 2-way ANOVA (two-way analysis of variance), multiple 
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Figure 4. Eltoprazine restores mitochondrial puncta and distribution in the NMJ of dfmr1∆50 larvae.
(A) Representative images of the NMJ (neuromuscular junction) synaptic boutons expressing mito-
GFP (mitochondrial-targeted green fluorescent protein) and stained with a-HRP (anti-Horseradish
Peroxidase). To visualize synaptic boutons at the Drosophila NMJ, a TRITC-HRP conjugated antibody
was used, which provided visualization of the presynaptic terminals, facilitating the clear observation
of their structure and organization. Arrows indicate the close-up magnification of axonal processes.
Scale bar 10 um for all images. (B) Quantification of the mito-GFP puncta normalized to the synaptic
boutons’ area and number. Each dot represents a single NMJ where at least 3 branches and 5 boutons
for each branch were analyzed. n ≥ 15 NMJs. All data are shown as dot plots ± standard error of the
mean; 2-way ANOVA (two-way analysis of variance), multiple comparisons, * p < 0.05, ns means
no significant.

2.4. Mitochondrial Biogenesis Regulates Locomotor Behavior in dfmr1∆50 Mutants

The increased mitochondrial density and activity in dfmr1∆50 larvae may result from
higher mitochondrial biogenesis, potentially regulated by serotonin through PGC1α, which
is a target of FMRP [66]. Therefore, we hypothesize that the dfmr1∆50 larvae have a dysreg-
ulation of the serotonin–PGC1α–mitochondrial axis, ultimately affecting motor behavior in
this FXS model. To test this hypothesis, we crossed a Drosophila mutant of the homolog of
the mammalian PGC1α [67] called Spargel (SrlKG08646) expressing a hypofunctional allele
with the dfmr1∆50 and assessed its locomotor behavior. This double mutant does not ex-
hibit differences in motor behavior compared to control flies (Figure 5A,B). These findings
further validate the dysregulation of the serotonin–mitochondrial axis in the NMJ of dfmr1
mutant flies and elucidate the mechanistic effect of eltoprazine.
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Figure 5. Genetic modulation of mitochondrial biogenesis marker PGC1A rescues motor behavior in
dfmr1∆50 larvae. (A) Images representing larval tracking across various conditions. (B) Measurement
of larval movement distance observed over 1 min. (C) Quantification of the crawling speed, measured
as distance moved in cm per second. For each condition, n ≥ 7 single larvae. Data are shown as
dot plots, and error bars represent the standard error of the mean; Kruskal–Wallis test followed by
Dunn’s multiple comparisons test, * p < 0.05, ns means no significant.

3. Discussion

Over the past three decades, numerous studies have investigated the pathophysiology
of Fragile X syndrome, the most prevalent form of intellectual disability and a monogenic
cause of autism [68]. The discovery of many different mechanisms working in neuronal
and non-neuronal cells, at synapses, and in the cell body since the human gene FMR1 was
identified [69] has highlighted that multiple pathways are affected in FXS. Those identified
mechanisms have propelled major efforts leading to more than 50 clinical trials, which
unfortunately have not been very successful (clinicaltrials.gov).

Several pharmacological approaches have been working to tackle the metabotropic
glutamate receptors (mGluRs) and the GABAergic system [70], which are considered lead-
ing players in FXS pathophysiology [38,71]. However, the unsuccessful clinical trials have
highlighted the need to identify new molecules that could be used as targeted therapeutic
approaches for specific clinical and behavioral phenotypes.

One promising target is the serotonergic system, which has been implicated in FXS
and other neurodevelopmental disorders like autism spectrum disorder (ASD) and Rett
syndrome [72–74]. Specifically, the 5-HT7A receptor has shown potential as a therapeutic
target, with selective activation improving behavioral deficits in FXS mouse models [53,75].
Additionally, the 5-HT1A receptor, which modulates neuronal firing rates, has emerged as

https://clinicaltrials.gov/
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a potential target for treating motor deficits in FXS, given its association with neurodevel-
opmental disorders [53,54,76].

Previous studies demonstrate that eltoprazine, an agonist of the 5-HT1A receptor,
can ameliorate dyskinetic movements in parkinsonian rats and monkeys and clinical
studies [76–80]. A delay in motor development and problems in motor balance are often
among the first notable signs of atypical development in children with FXS or ASD [81].
Specifically, it has been reported that an altered gait pattern associated with abnormal
muscle activity in FXS subjects reduced knee and excessive hip and ankle flexion [82].
Hence, targeting 5-HT1A could potentially address certain motor deficits in FXS.

The Drosophila neuromuscular junction (NMJ) is an effective model system for studying
synaptic development and function, giving us the advantage of translating physiological
observations into behavioral phenotypes such as locomotion.

Consistent with previous findings, our data demonstrate that dfmr1∆50 mutants show
decreased locomotion compared to controls [28,83,84]. Most importantly, upon eltoprazine
treatment, the motor deficits of the dfmr1∆50 mutants were restored, indicating a role of
5-HT1A in modulating motor behavior (Figure 1). Serotonin modulates different aspects of
locomotion, like forward locomotion and turning behavior in larvae [47,48,55], which is in
line with our findings.

Locomotor behavior is considered a functional readout of synaptic transmission at the
NMJ level, which was altered in dfmr1∆50 larvae [28,83,84]. Intracellular recordings of the
NMJ revealed that the frequency and amplitude of the sEJP are increased compared to the
controls, indicating dysfunction in both the pre-synaptic and post-synaptic components of
the NMJ. Previously, this abnormal synaptic transmission was linked to altered subunit
composition of glutamate receptors (GluRs) expressed in the muscles [28,62]. Here, we
restored the synaptic transmission upon eltoprazine treatment (Figure 2). The rescue of the
frequency of spontaneous activity is generally associated with presynaptic release, which is
most probably acting on the soma of the motoneuron upstream of the GluRs. However, we
noted only a partial restoration of the sEJP amplitude. This suggests that while this pathway
can enhance the function of glutamate receptors, which are predominantly expressed at
the Drosophila NMJ, it does not fully address all the synaptic deficits present in the FXS
genetic model. This incomplete recovery likely stems from intrinsic defects in the glutamate
receptors themselves, additional imbalances in other neurotransmitter systems, or broader
abnormalities in synaptic architecture. These findings underscore the multifaceted nature
of FXS pathology and highlight the need for a combination of therapeutic strategies to
achieve a more comprehensive rescue of synaptic function.

Next, we attempted an initial characterization of the molecular mechanism down-
stream of the 5-HT1A receptor activity and its modulation by eltoprazine. It was reported
that, in a mammalian system, the serotonergic system can modulate not only mitochon-
drial motility along the axons [85], but also mitochondrial biogenesis (MB) in cortical
neurons, through the SIRT1-PGC1α axis [57,86]. In addition, mitochondria play an essen-
tial role in the modulation of synaptic transmission in neurons through ATP production
and Ca2+ buffering and modulate the mobility of synaptic vesicles and neurotransmitter
release [1,87,88]. By expressing mito-GFP in the punctal area (the synaptic level of the
NMJ), we found not only an increased mitochondrial population and altered distribution
(Figure 4), but also increased mitochondrial activity in dfmr1∆50 larvae in comparison to the
controls (Figure 3). Of note, upon eltoprazine treatment, these phenotypes were comparable
to control conditions.

In recent years, mitochondria have emerged as significant contributors to FXS. Loss of
FMRP in a mouse model for FXS results in impaired synaptic maturation associated with
deficits in mitochondrial fusion [89] and increased mitochondrial activity in the cerebral
cortex with preserved ATP production [90]. Moreover, ATP synthase c-subunit leakage in
Fragile X is associated with synaptic morphology and behavioral deficits [43].

The increased mitochondrial distribution and activity suggest that the dfmr1 mutants
might present with an increased mitochondrial biogenesis, leading to altered motor be-
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havior. In mammals, PGC1 (with three isoforms, PGC1α, PGC1β, and PRC) is a major
transcription factor that induces the expression of genes encoding for mitochondrial pro-
teins and regulates mitochondrial biogenesis [67]. The generation of double heterozygous
mutants for Spargel, the single homolog of PGC1, and Fmr1 genes shows normal locomo-
tion comparable to control levels (Figure 5). This finding further supports our hypothesis
that increased mitochondrial biogenesis leads to heightened mitochondrial activity, re-
sulting in altered synaptic transmission at the NMJ and ultimately contributing to motor
deficits in dfmr1 mutant larvae. Of note, PGC1α mRNA has been reported to be a target of
FMRP [91,92], therefore the observed alteration may be attributed to excessive translation
of this mRNA, which is consistent with FMRP role as a repressor.

In conclusion, we propose a mechanism wherein the activation of the 5-HT1A re-
ceptor by eltoprazine modulates mitochondrial biogenesis and activity. By stabilizing
mitochondrial function, it reduces neurotransmitter release and synaptic transmission,
thereby facilitating proper motor behavior in dfmr1∆50 larvae. Our study indicates that
targeting the 5-HT1A receptor–mitochondrial axis holds promise as a therapeutic approach
for alleviating motor deficits in FXS. However, additional research is necessary to assess its
viability for human therapeutic intervention.

4. Materials and Methods
4.1. Drosophila Stocks

Homozygous dfmr1 mutant flies, dfmr1∆50 (Bloomington Drosophila Stock Center,
#6930), were used in our study [28]. Flies were cultured in vials containing a standard
Drosophila medium at 25 ◦C with 60–80% humidity in a 12 h light/dark cycle. The Canton-S
w1118 (iso1CJ) wild-type line served as a control. The dfmr1∆50 mutant flies were isogenized
for 6 generations with the Cantonized w1118 background. The D42-Gal4 and UAS-mito-
GFP flies were kindly provided by Prof. Patrik Verstreken (VIB/KULeuven). Briefly, The
UAS-GAL4 system in Drosophila melanogaster enables precise control of gene expression.
This system uses two components: the GAL4 gene, which encodes a yeast-derived tran-
scriptional activator, and the UAS (Upstream Activating Sequence). Transgenic flies are
created with GAL4 under a tissue-specific or inducible promoter. When these flies are
crossed with flies carrying a UAS-linked gene of interest, GAL4 binds to UAS, activating
gene transcription. This method allows for spatial and temporal control of gene expression,
facilitating studies on gene function, development, and disease models [93]. The Spargel
(Srl) mutant flies were a kind gift from Prof. Hugo Stocker (ETH Zurich). Third-instar
larvae were used for all the experiments.

4.2. Larval Collection and Treatment

Third-instar larvae were collected by applying a solution of 20% sucrose on top of the
food. The collected larvae were rinsed 3 times with 1X PBS at room temperature. Then, the
larvae were exposed to eltoprazine hydrochloride (Santa Cruz Biotechnology, Dallas, TX,
USA, cat. 98224-03-4) at a final concentration of 1 mM diluted in 5% sucrose solution for at
least 30 min as described before [94]. Control larvae were treated with the vehicle in the
same solution simultaneously.

For the electrophysiological experiments, a single larva was collected, and a neuro-
muscular junction (NMJ) fillet was prepared. After the NMJ preparation, the larva was
exposed for 30 min to a modified minimal hemolymph-like solution, HL3.1 [95], containing
10 µM of eltoprazine or vehicle before the recording.

4.3. Larval Crawling Behavior

The larval crawling behavior assay was performed as described before [60] with minor
modifications. Briefly, a single larva was gently placed in the middle of a 10 cm arena
which had been previously filled with 2% agar solution. The larva was allowed to acclimate
for 30 s and then recorded with a Basler camera (Basler AG, Ahrensburg, Germany) for
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1 min. Speed and distance were acquired and analyzed with EthoVision XT 13 (Noldus,
Wageningen, The Netherlands).

4.4. Electrophysiology

Intracellular NMJ recording from third-instar larvae was performed on muscles 5
and 6 in the abdominal segments 2/3/4. The recordings were made at room temperature
with sharp glass electrodes filled with 3 M KCl. The nerves were stimulated by a brief
(0.5–0.8 ms at 1 Hz) positive current via a suction electrode. The recording bath solution
(HL3.1) had the following composition: 110 mM NaCl, 5 mM KCl, 10 mM NaHCO3, 10 mM
MgCl2, 30 mM sucrose, 5 mM Trehalose, 5 mM HEPES (pH 7.2), and 1 mM CaCl2. A
total of 60 responses were recorded per NMJ and averaged to give each datum. Miniature
excitatory junctional potential (mEJP) was recorded for 1–2 min. The recordings were
acquired with Clampex 10.7. (Molecular Devices, San Jose, CA, USA). The data were
extracted with Clampfit software 10.7 (Molecular Devices, San Jose, CA, USA) and then
analyzed with GraphPad Prism 7.03 (Boston, MA, USA).

4.5. Immunohistochemistry, Confocal Microscopy, and Image Analysis

Third-instar larvae carrying the UAS-mito-GFP marker driven by the motor neuron-
specific D42-Gal4 driver were quickly dissected in 1X PBS and fixed in 4% formaldehyde
for 20 min. Larvae were washed with 1X PBS containing 0.1% Triton X-100 (PBT) and
blocked in 10% normal goat serum (NGS) (Sigma-Aldrich, Burlington, MA 01803, USA,
cat. G9023) in PBT for 1 h, followed by overnight incubation with primary antibody in 5%
NGS in PBT: Rhodamine (TRITC)-conjugated anti-horseradish peroxidase (HRP) (1:500,
Jackson ImmunoResearch, West Grove, PA, USA). This dual-conjugated antibody combines
the anti-horseradish peroxidase (HRP), that labels neuronal membranes in Drosophila with
the tetramethylrhodamine isothiocyanate (TRITC) allowing the direct visualization of the
presynaptic terminals of the NMJ. The TRITC component provided a distinct fluorescent
signal, facilitating the observation of bouton morphology and distribution under a fluo-
rescence microscope. After the washes in PBT, samples were mounted in Mowiol 4-88
mounting medium and imaged with a Leica SP8 confocal microscope in high-resolution
mode (Hyvolution module from Leica) using a 60× oil immersion objective. Pictures were
then deconvolved using Huygens 2 software (Scientific Volume Imaging B.V., Hilversum,
The Netherlands).

All images analyzed were complete Z-stacks through NMJ 6/7 of abdominal segments
A3 and A4. For mitochondrial density analysis, the sum area of the GFP+ puncta (UAS-
mito-GFP) inside the synaptic bouton delineated by the TRITC-HRP staining was divided
by the area of the synaptic bouton measured by the TRITC-HRP staining.

4.6. Mitochondrial Function Assays

High-resolution respirometry (OROBOROS Oxygraph-2k, Innsbruck, Austria) to mea-
sure mitochondrial respiration in Drosophila larvae was used as described before [23]. Ten
third-instar larvae were rapidly dissected, removing the tracheal system and the rest of
the organs under a microscope, and mechanically homogenized in Miro 6 Buffer (20 mM
Hepes, 110 mM sucrose, 10 mM KH2PO4, 20 mM taurine, 60 mM lactobionic acid, 3 mM
MgCl2, 0.5 EGTA, pH 7.1, 1 mg/mL fatty acid-free BSA, catalase 280 U/mL) [96], then
immediately loaded into an Oroboros Oxygraph-2K chamber filled with Miro 6 buffer
equilibrated at 25 ◦C.

Oxygen consumption rates were measured before and after the addition of the fol-
lowing sequence of substrates and specific inhibitors: (1) A volume of 2.5 mM pyruvate,
1 mM malate in flies, and a mixture of 2.5 mM pyruvate, 10 mM glutamate, and 1 mM
malate in human cells (CI leak), followed by 2.5 mM ADP to determine complex I-driven
phosphorylating respiration (CI OXPHOS). (2) A volume of 5 mM succinate to determine
the phosphorylating respiration driven by complex I and II (CI + II OXPHOS). (3) Titration
of the mitochondrial uncoupler CCCP concentrations to reach the maximal, uncoupled



Int. J. Mol. Sci. 2024, 25, 8787 11 of 16

respiration (CI + II electron transfer system, ETS). (4) A volume of 200 nM rotenone to fully
inhibit complex I-driven respiration and measure complex II-driven uncoupled respiration
(CII electron transfer system, CII ETS). (5) A volume of 0.5 µM Antimycin A to block
mitochondrial respiration at the level of complex III. (6) A volume of 2 mM ascorbate and
0.5 mM TMPD to measure cytochrome c oxidase (CIV)- driven respiration. Residual oxygen
consumption was measured by adding Sodium Azide that blocks cytochrome c oxidase.

ATP levels were measured from third-instar larvae lysates using the ADP/ATP Ratio
Bioluminescence Assay Kit, ApoSENSOR (Biovision, Milpitas, CA, USA).

4.7. RNA Extraction and RT-qPCR

Total RNA was extracted from third-instar larvae using Trizol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions. cDNA was prepared
using M-MLV Reverse Transcriptase (200 U/uL, Invitrogen, Waltham, MA, USA, cat.
28025013) and random primers (Promega, Madison, WI, USA). qPCR was performed
on a Light Cycler 96 (Roche, Switzerland) with the SYBR Green-based detection system
(Roche, Basel, Switzerland, cat. 04887352001) with primers of our genes of interest: RLP32
forward AGCATACAGGCCCAAGATCG; RLP32 reverse TGTTGTCGATACCCTTGGGC;
SLR1 forward ACTGCAACTGACAGATACACTG; and SLR1 reverse CCTCCCGGTTATG-
GTTGAGC. Two technical replicates for each biological replicate were assessed. SLR1
(PGC1α) levels were normalized to RPL32 using the comparative ∆∆CT method.

4.8. Statistical Analysis

All data were analyzed using appropriate statistical methods to ensure the validity
and reliability of the results. For the locomotor behavior experiments (Figure 1), data were
quantified automatically with EthoVision, measuring the distance and speed of larvae. Each
condition included a minimum of 15 individual larvae, with data presented as dot plots
and error bars representing the standard error of the mean (SEM). Statistical significance
was determined using 2-way ANOVA with multiple comparisons (* p < 0.05, ** p < 0.01,
*** p < 0.001).

For the analysis of NMJ synaptic transmission (Figure 2), both spontaneous and
evoked recordings were quantified. Each dot represents the measurement from a single
NMJ, with a minimum of 7 independent larvae NMJs per condition. Data were presented
as dot plots, with error bars showing SEM. Statistical significance was assessed using 2-way
ANOVA with multiple comparisons (* p < 0.05, ** p < 0.01, *** p < 0.001).

Mitochondrial activity was assessed by quantifying oxygen consumption normalized
to protein content (Figure 3A) and ATP production levels (Figure 3B). Each condition
included at least 4 independent experiments per genotype (each with 3 NMJs). Data were
expressed as mean ± SEM. Oxygen consumption data were analyzed using multiple t-tests
corrected for multiple comparisons with the Sidak–Bonferroni method (** p < 0.01). ATP
production levels were compared using t-tests (** p < 0.01).

Mitochondrial populations and distributions were quantified using mito-GFP expres-
sion and anti-HRP staining (Figure 4). Each dot represents a single NMJ, with at least
15 independent NMJs analyzed per condition. Data were shown as dot plots ± SEM
and statistical significance was determined by 2-way ANOVA with multiple comparisons
(* p < 0.05).

For the modulation of mitochondrial biogenesis and its effect on motor behavior
(Figure 5), locomotor behavior was quantified by measuring the distance moved by larvae
in 1 min and their crawling speed. Each condition included a minimum of 7 single larvae.
Data were shown as dot plots with error bars representing SEM. Statistical significance was
determined using the Kruskal–Wallis test followed by Dunn’s multiple comparisons test
(** p < 0.01).

These comprehensive statistical analyses ensure the robustness and reliability of our
findings across various experimental conditions.
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