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Abstract: The Brassicaceae genus consists of many economically important mustards of value for
food and medicinal purposes, namely Asian mustard (Brassica juncea), ball mustard (Neslia paniculata),
black mustard (B. nigra), garlic mustard (Alliaria petiolata), hedge mustard (Sisymbrium officinale), Asian
hedge mustard (S. orientale), oilseed rape (B. napus), rapeseed (B. rapa), treacle mustard (Erysimum
repandum), smooth mustard (S. erysimoides), white ball mustard (Calepina irreqularis), white mustard
(Sinapis alba), and Canola. Some of these are commercially cultivated as oilseeds to meet the global
demand for a healthy plant-derived oil, high in polyunsaturated fats, i.e., B. napus and B. juncea.
Other species are foraged from the wild where they grow on roadsides and as a weed of arable land,
i.e., E. repandum and S. erysimoides, and harvested for medicinal uses. These plants contain a diverse
range of bioactive natural products including sulfur-containing glucosinolates and other potentially
valuable compounds, namely omega-3-fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins,
S-methyl cysteine sulfoxide, and trace-elements. Various parts of these plants and many of the
molecules that are produced throughout the plant have been used in traditional medicines and
more recently in the mainstream pharmaceutical and food industries. This study relates the uses of
mustards in traditional medicines with their bioactive molecules and possible mechanisms of action
and provides an overview of the current knowledge of Brassicaceae oilseeds and mustards, their
phytochemicals, and their biological activities.

Keywords: Brassicaceae; bioactive constituents; canola; mustard; glucosinolates; pharmacological
activity; traditional medicine; Brassica; Calepina; Erysimum; Sinapis and Sisymbrium species

1. Introduction

Mustards are commonly cultivated worldwide and valued for their oil content in their
seeds as well as for the chemical compounds they produce [1]. They are members of the
Brassicaceae (syn. Cruciferae) family, commonly known as ‘mustard family’ (Table 1), and
have been consumed for centuries as vegetables, and their seeds are used as a spice in
condiments and as edible and industrial oils [2]. Rapeseed mustard is one of the highest
oil-yielding and high protein-containing crop species, supplying around 20% of world oil
production and 12 to 15% of world protein meal production [3,4]. In this study, the species
of Brassicaceae that are valued for their oil content in the seed are included, other relevant
species were included if they showed similar chemical constituents [1].
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Syn.: Erysimum officinale

Barbara’s Hedge Mustard, common
hedge, singer’s plant, and thalictroc.

area, northern Africa, Scandinavia to
north Africa, and Asia and naturalized in
New Zealand.
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Table 1. Different mustards in Brassicaceae species.
Scientific Name Common Name Habitat References
.y . . A biennial herb, native to various regions
ég‘l]agz Z i(l:{)léiiill\c/llé Bieb.) Garlic mustard, hedge garlic mustard, of Africa, temperate and tropical Asia, [5-7]
Svn: Alliaire o ﬁ‘icinal,is and jack-by-the-hedge mustard. and Europe, and naturalized to the
ym: United States and Canada.
Field mustard, wild turnip mustard, . . . .
. . . . A winter annual or biennial plant native
Brassica rapa var. campestris L. bird rape, turnip rape, and . [8-11]
. to central Asia and Europe.
winter mustard.
Brassica carinata A. Braun. EtthPla.n mustard and jfradlt%one.al Aﬁ.‘lcan vegetable cultivated [7,12]
Abyssinian mustard. in Ethiopian highlands.
Sinapis alba Boiss. (Hook f. & . Best known mustard in Europe, grown in
Th.), Syn: B. hirta Moench, B. Wh ite mustard, yellow mustard, and the Mediterranean region, India, [13,14]
. rai mustard. .
alba Linn. and China.
Brown mustard, Asian mustard, An annual herb native to Eastern and
Oriental Mustard, Chinese mustard, Southern Asia. It is widely cultivated
Brassica juncea (L.) Czerniak. Indian mustard, leaf mustard, giant throughout India, central Africa, south [15-19]
Coss., Syn: B. integrifolia red, sarepta mustard, Asiatic mustard, Russia, and steppes of the northeast
mustard green, and wild Caspian Sea. It is a natural hybrid of
Brazilian mustard. B. rapa and B. nigra.
Native to South-East Asia and Eurasia
Rapeseed, oilseed rape, colza, and is most commonly grown in northern
Brassica napus (var. napus or rutabaga, swede, Swedish turnip, leaf temperate regions including northern [8,20-23]
var. oleifera) rape winter oilseed rape, and Asia, Japan, Korea, Northern China, ! -
summer rape. Scandinavia, and Russia. Dominant
species in Europe.
o Black mustard, brown mustard, An annual herb I.1atlve to most Parts of
Brassica nigra (L.) W.D.]. Koch. ; Europe, the Mediterranean region, and
Lo, cadlock, Scurvy mustard, Senvil .
Syn.: Sinapis nigra, other parts of north Africa, and has been  [15,24-27]
T mustard, short-pod mustard, true . . ..
B. sinapioides naturalized in Great Britain and
mustard, and warlock. .
North America.
211:?:6?: ra[; elzsliiil(zﬂcsslezde; l;?i(ei Izlpi' The most cultivated oilseed in many
Brassica rapa L. ba, Tappl, keb ’ ’ P& countries like Australia, Canada, [28,29]
rape mustard, field mustard,
and Poland.
or rapeseed.
Native to the countries in central Asia,
Calepina irregularis White ball mustard, smooth the Mediterranean basin and naturalized [30,31]
(Asso) Thellung. ball mustard. in central Europe, North America, o
& p
and Australia.
Camelina, false flax, wild flax,
Camelina sativa gold-of-pleasure, linseed dodder, Central Asia and northern Europe [32,33]
German sesame, and Siberian oilseed.
Native to temperate Eurasia
. L (Southeastern Europe), North Africa and
Erysimum corinthium Wormseed mustard and wallflower. Macaronesia, and North America south [34]
to Costa Rica.
Spreading wallflower, bushy
Erysimum repandum L. wallflower, and spreading NF
treacle-mustard.
. . Ball mustard, common ball mustard, Natlye Eurosiberian south?rn—t?mp erate
Neslia paniculata (L.) Desv. 1 4. nesli li species commonly naturalized in South
Syn.: Myagrum paniculatum yeliow weed, nesa, neste, Australia, Canada, Europe, and Asia [35,36]
" or moutarde. L ! ’ !
South America.
An annual or biennial mustard found on
Erysimum, English watercress, roadsides and wastelands as a weed of
Sisymbrium officinale L. Scop., mustard, hedge mustard, St. arable land in Eurasia, the Mediterranean [37-41]
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Table 1. Cont.
Scientific Name Common Name Habitat References
. . . Asian hedge mustard, Indian hedge Native to Egrope, Asia, .and north Africa,
Sisymbrium orientale - . and further introduced in much of the
mustard, eastern rocket, oriental wild . . [37,42,43]
Syn.: S. columnae Jacq. rest of the world, including parts of
rocket, and London rocket. . .
North America and Australia.
A desert plant native to Middle Eastern
. . . Smooth mustard, and Arab countries and naturalized in
Sisymbrium erysimoides Desf Mediterranean rocket. Australia, North America, and [44-46]
New Zealand.

Syn.: Synonym; NF: Information not found.

Mustards of the Brassicaceae family originated from the Mediterranean to the Middle
East with a secondary center of origin in Asia [47]. Among the family members, Brassica ni-
gra was believed to be introduced into Egypt from Asia by Aesculapius, the god of medicine,
and Ceres the deity of seeds as both a potential source of food and as medicine [15]. In
ancient Greece, the leaves of the young plants were eaten as spinach and the seeds were
used as spices and in medicines [48]. Documentation shows that the Greek physicians
including Aesculapius and scientists including Pythagoras and Hippocrates exploited the
seeds for their healing powers [15,24]. Oceania, comprising the countries of Australia, New
Zealand, New Guinea, Micronesia, Melanesia, and Polynesia have one of the oldest living
cultural histories in the world, which goes back 50,000-65,000 years. Proof of the consump-
tion of mustards is documented in early literature of this region [1,49-54]. Evidence of the
antimicrobial effectiveness of mustard were addressed for the first time in the 1880s [55].

“Canola” is the second most important edible oilseed crop globally, second only to
soybean [56]. The term Canola includes varieties of Brassica napus and Brassica rapa which
are shown to have seed oil with less than 2% erucic acid and low aliphatic glucosinolate (less
than 30 umol/g) developed through selective breeding [1,57]. It is the major oilseed crop
in Australia, Brazil, Canada, China, India, Europe, and the United States [58,59]. It contains
low pungency, low erucic acid (less than 2% in the USA and 5% in the EU by weight) [60],
and low aliphatic glucosinolate (less than 30 pmol/g) in the defatted meal [61,62]. Mustard
oil is another high-value oilseed product from this family [11], popular in many Asian
countries, which adds a typical hot and spicy flavor to food [16]. Traditional mustard oil or
rapeseed oil (colza oil, ravison oil, sarson oil, toria oil, or turnip rape oil) is produced from
the seeds of B. napus, B. juncea, Brassica rapa var. campestris, and Brassica tourneforti [63].

With the advent of new “omics” technologies focusing on the detection of genes
(genomics), mRNA transcripts (transcriptomics), proteins (proteomics), and metabolites
(metabolomics), new insights on the constituents of rapeseed and mustard, along with
bioactivity data, have been reported [64—-69]. The genome of B. juncea var. ‘tumida’ was
first assembled in 2016 [70]. We reported shotgun proteomic analysis for B. rapa seeds for
the first time which identified and catalogued 323 seed proteins [57,71]. Combining this
proteomic data with other genomic datasets developed at Southern Cross University, a new
reference genome was reported for Brassica rapa subsp. trilocularis R-0-18 and is deposited
in the NCBI GenBank data base (accession GCA_017639395.1) and is being processed
to appear in the EMBL-EBI Ensembl Plant Genome portal [72]. In this review, current
knowledge of Brassicaceae mustards, their phytochemicals, and the biological activities of
these compounds is discussed.

2. Phytochemical Constituents of Mustards

Mustard seeds are composed mostly of oil (28—-42%), followed by protein (25-40%),
carbohydrate (15-35%), fiber (10-15%), minerals (5-10%), and plant secondary metabolites
(up to 10%), including glucosinolates, phenolic compounds, and tannins [59,73,74]. Plants
accumulate secondary metabolites as a tolerance response to biotic and abiotic stress [75,76].
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Mustard secondary metabolites are exploited for therapeutic purposes for their wide range
of bioactivities [77-81].

2.1. Oil and Fatty Acids

Mustard seed oil is composed mainly of lipids in the form of triacylglycerides (Table 2),
including the three major fatty acid types: saturated fatty acids (SFA; around 7-12%),
monounsaturated fatty acids (MUFA; 15 to 65% of total fatty acid, depending on variety),
and polyunsaturated fatty acids (PUFA; around 8—40% of total fatty acid, depending on
variety) [18,22,82-87]. MUFAs consist mainly of erucic acid (C22:1, 40-50%) and oleic
acid (C18:1, 5-12%). PUFAs are primarily linoleic acid (C18:2, 10-15%) and linolenic acid
(C18:3, 8-15%), along with other minor fatty acids, namely eicosenoic or gondoic acid
(C20:1, 5-10%), nervonic acid (C24:1, 2-8%), palmitic acid (C16:0; 2-5%), docosahexaenoic
acid (C22:6, 0.1-1%), and eicosapentaenoic acid (C20:5, 0.1-1%). Linoleic acid is the major
short-chained n-6 fatty acid (omega-6 fatty acids); linolenic acid, eicosapentaenoic acid, and
docosahexaenoic acid are the main long-chain n-3 polyunsaturated fatty acids (omega-3
fatty acids); and oleic acid, erucic acid, nervonic acid are the commonly occurring n—9 fatty
acids (omega-9 fatty acid) [18,22,82-84,88]. Different species of mustard and Canola oils,
including B. napus, B. rapa, and B. juncea, typically have less SFA, moderate to high MUFA
profile, and high n-3 PUFA profile and a low n-6:n-3 PUFA ratio (2:1) [22,89,90]. This lipid
profile is considered one of the best amongst vegetable oils in terms of favorable health
benefits, which include lowering of blood total cholesterol and low-density cholesterol,
decreasing cardiovascular risk, increased insulin sensitivity and glucose tolerance, reduced
inflammation, and reduced cancer cell growth [89,91].
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Table 2. Total oil content, fatty acid composition, and total polyphenol content of different Brassicaceae mustards.

2} s "§ @
< S < = S
2 = = S @ 1 S 3 B = = Sw
Fatty Acid s s 5 g s = & N g £ 2 g £ £ £ 3
g s S & e & Q S < g 3 8 S ° =5
= @ = 5 5 3 3 | “ “ =
- S § - E :
%) 9]
Total oil content (% od 15-30 25-36 30-47 25-45 40-50 21-40 25-45 16-36 38-43 20.1-40 15-25 30 7-12 22-30 33-50
seed weight)
Saturated fatty acids
Palmitic acid (C16:0) 34 2-7 2-12 2-45 2-7 2-4 2-45 0-15 4-8 7.0 3-17 10-15 2-8.0 8-10 3.3-6
Stearic acid (C18:0) 0.3-0.5 0.1-3 2-35 1-2 05-25 1-2 1525 2-3 21-23 2.0 14 0.5-1 0.3-1.5 0.1-1 1.1-25
Behenic acid (C22:0) ND 0.5-1 ND 0-1 0-1 ND ND ND 0.3 0.7 ND ND ND ND ~2.0
Lignoceric acid (C24:0) ND ND ND 0-1 0-1 ND ND ND ND ND ND ND ND ND ~0.2
Arachidic acid (C20:0) 0.4-1 0.5-1 ND 05-15  01-25 05-15 ND ND 1-1.8 2.0 ND ND ND ND 0.2-0.8
Unsaturated fatty acids
Monounsaturated fatty acids
Palmitoleic acid (C16:1) ND 01-02  01-02  02-05 02-15 01-02  0.1-2.0 ND 0.07-0.1 ND ND ND ND ND 0.1-0.6
Oleic acid (C18:1) 6-9 15-39 7-19 8-33 8-63 9-23 11-62 0.1-2 12.7-14.8 7.0 9-36 10-15 1-75 3-7 52-66.9
aGCf’i‘g‘zlz‘gfl/)elcosenom 4-5 6-12 5-9 5-12 1-13 5-8 1-11 ND 11.1-12.8 9.0 ND 3-4 ND 1-4 ND
Erucic acid (C22:1) 41-49 23-51 35-45 22-55 14-55 27-46 9-51 3-7 23-35 17.0 0.1-1 15-20 8-17 11-18 0.3-1.6
Nervonic acid (C24:1) 6-8 1.2-3 ND 0-2.5 0-2 ND ND 0.1-1 ND 1.0 0.1-03 ND 05-15 1-0.6 ND
Polyunsaturated fatty acids
Linoleic acid (C18:2) 18-22 7-33 15-22 12-21 12-21 6-17 10-13 ND 24-243 17.0 ND 15-20 ND 10-14 16.1-28.8
Eicosadienoic acid 0.5-1 ND ND 0.3-1 0.5 34 ND ND  11.1-128 2.0 ND ND ND ND 0.1
(C20:2) T DO B A ! . ~U.
Linolenic acid (C18:3) 47 8-20 16-20 8-20 8-14 3-15 1-17 7-26 33.7-36.9 33.0 4-10 20-31 18-30 35-42 6.4-14.1
Roughanic acid (C16:3) ND ND ND ND 0.7-1 ND ND ND ND ND ND ND ND ND ND
Other fatty acids 1.7 0.1-2.2 ND 6-8 ND ND ND ND ND ND ND ND ND ND ND
Total MUFA ND 72.19 62.49 66.56 ND 60.8 ND 46.5 30-36 ND ND 38.4 39.8 ND ND
Total PUFA ND 2.05 32.65 29.59 ND 315 ND 39.6 50-60 ND ND 38.9 472 ND ND
Total SFA ND 4.48 457 3.82 ND 6.7 ND 13.5 133 ND ND 21.4 13 ND <7
TUFA /TSFA ND ND ND 10.4 ND 13.8 ND 6.5 ND ND ND 3.6 6.7 ND ND
Total polyphenol content ND 72.56 23.5 21.02 47.48 ND ND ND ND ND ND ND ND ND ND
References [92] [93] [93] [93,94] [95] [94] [86] [31,94] [96-98] [35] [94] [35] [38,39,94] [99] [63,100-102]

Values are % on dry weight, oil content is expressed of % dry weight, and total polyphenol content is expressed as mg/g gallic acid equivalent and varies with cultivars, genotype,
tissues, and plant age [12,86,93,103]; ND = not detected.
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Erucic acid is the characteristic monounsaturated long-chain fatty acid (C22:1) of the
Cruciferae family and the major acyl component of most cruciferous oilseeds [86,104].
B. rapa var. campestris seeds have the highest erucic acid levels (up to 59% of total fatty
acids) [95]. The trans-isomer of this acid is recognized as brassidic acid [105]. Erucic
acid was found to be toxic to both rats (>0.7 g/kg body weight per day) [86,90], and
humans, following prolonged intake (>7 mg/kg body weight per day), causing the grad-
ual accumulation of lipid droplets known as myocardial lipidosis [105-107]. Because of
this toxicity, Canola was developed from the designed breeding of several cultivars of
B. rapa var. campestris, B. juncea, B. napus, B. rapa, and S. alba, bred through traditional
plant-breeding techniques [108,109] and interspecific crossing between low erucic acid con-
taining varieties, inbreeding and selection of low erucic plants within the same variety [92].
Canola (B. napus) was approved by the US Food and Drug Administration (FDA) as GRAS
(generally recognized as safe) in 1985 for human consumption [91], however, mustard oil
with high erucic acid has industrial applications such as for the formulation of lubricants
and manufacturing detergents, plasticizers, polyesters, surfactants, rubber additives, elastic
gums and biofuels [86,110].

The potential therapeutic usage of other fatty acids found in mustards and Canola has
not been widely tested. For instance, nervonic acid, a low abundant fatty acid in mustard,
is found in the white matter of animal brains and is also an important precursor for the
biosynthesis of nerve cell myelin (Table 2); and docosahexaenoic acid, an omega-3 fatty
acid found in mustard, is a structural element of the cerebral cortex, retina, and skin, but
neither are well studied [88,111].

Other important fats and oils in Brassica seeds are diverse membrane lipids, various sig-
naling molecules, namely galacto-oxylipins [112,113]; sterols (100-500 mg sterols/100 g seeds)
like beta-sitosterol, stigmasterol, campesterol, and avenasteriol [18,114,115]; brassicasterol (24-
methyl cholest-5, 22-dien-33-ol), a lipid compound exclusive to Brassicaceae [114,116-119]; and
brassinosteroids, classified as a plant hormone, which have very similar chemical structure
to animal steroidal hormones and insect ecdysteroids [120,121]. In addition, there are
prostaglandins, thromboxanes, and leukotrienes, as well as fat-soluble vitamins including
A, D, E (tocopherols), and K (Table 3) [22].

Table 3. Vitamins that have been reported in Brassicaceae mustard leaves (per 100 g edible portion).

Vitamin

Mustard Species (Amount per 100 g) References

Vitamin A /carotenoid

Vitamin B Complex
Thiamine
Riboflavin

Niacin

Pyridoxine

Vitamin C/Ascorbic acid

Vitamin K

Alliaria petiolata (contains more vitamin A
than spinach, 13.3 mg), Sianpis alba, B. juncea  [16,19,35,44,122-125]
(27 mg), B. nigra, Sisymbrium erysimoides

[126]
B. napus (0.8 mg) [126]
B. napus (0.3 mg) [126]
B. napus (8.1 mg) [126]
B. napus (1.9 mg) [126]

Alliaria petiolata (contains more vitamin C
than orange—261 mg), B. nigra, Erysimum
repandum, S. officinale, B. juncea (72-89 mg)

[6,122-125,127], USDA National
Nutrient data base

Vitamin E/tocopherols (-, 3-, y-, and Sinapis alba, Canola (B. napus) seed oil: (ot [35,125]

d-tocopherol, y tocopherol is predominant)  tocopherols 12 mg, v tocopherols 21.3 mg) !
All rapeseeds including B. juncea (0.3 mg). [16,129], USDA National Nutrient
Canola seed (B. napus) oil (70-150 ug) data base, [130,131]

2.2. Glucosinolates

Generally, all mustards have a typical pungent flavor due to the presence of amino
acid-derived, sulfur-containing glucosinolates (beta-thioglucoside-N-hydroxysulfates) [132,133].
These are chemically glycosides, formed by decarboxylation on amino acids such as tyro-
sine, phenylalanine, and tryptophan [134]. All glucosinolates are synthesized from amino
acids and sugars and share a common parent structure, consisting of a thioglycoside with
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a sulfonated aldoxime group that is attached to sugar via a sulfur molecule (Table 4). A
side chain derived from amino acids is attached to the aldoxime moiety, which differs in
various glucosinolates (Table 4). Nearly 200 individual glucosinolates are known, varying
only in their characteristic side chain (Tables 4 and 5) [134,135], and are classified into
three groups—aliphatic, aromatic, and indolic glucosinolates [136]. The most abundant
glucosinolates are gluconapin, sinigrin, sinalbin, glucoraphanin, progoitrin, napoleiferin,
glucobrassicanapin, and glucobrassicin [8,27,137,138]. Glucosinolates and their relative
amounts vary between different Brassica species, cultivars, genotypes, and within plant
tissues, being affected by environment and plant age [139-141]. Their combined content
positively correlates with oil, erucic acid, and soil sulphur content [12,86,93].

Glucosinolates are important chemical defense components that are stored in the
vacuoles of Brassica leaf, root, and seed tissue, which when activated safeguard the plant
against biotic stress [142-144]. External stimuli including tissue disruption, and insect attack
compromise cell compartmentation, causing a breakdown in the natural cell partitioning
of the glucosinolate from the hydrolytic thioglucosidase enzyme-myrosinase (also known
as [3-thioglucoside glucohydrolase) [144]. The release of myrosinase acts to hydrolyze the
glucosinolate compounds into an organic aglycon (isothiocyanate, thiocyanate, or indole),
glucose, and sulfate ions, in the form of potassium bisulfate (Table 4) [145,146]. The organic
aglycon may then go through an intermolecular rearrangement reaction following enzyme
hydrolysis. This can produce isothiocyanate (R-N=C=S) or spontaneously rearrange to
give various products including nitrile (R-C=N) and sulfur, thiocyanate (R-S-C=N) or an
oxazolidine-thione [134,147,148].

Table 4. The general structure of glucosinolates, their intermediate and final degradation products,
and their classification depend upon the structure of their parent amino acid precursors. R is the
variable amino acid-derived side chain. Adapted from [46,135,149-154].

S —_— OH
/ OH Si—H HO
OH
Re— C /
OH H;O HO
\\ . P > R c + o -OH
B —— S<\ Myrosinase / Thioglucosidase \\ 5 o OH
/ o (f-thioglucosidase glucohydrolase) N _//S\< B-D-Glucose
o o R-C-5-H
Sulphonated or Thichodionte it sultonat or 1 =
3 iohydroximate-O-sulfonate
aldoxime 1|1 R-C-S-6-D-Glu 5 Iy o - NOSO4y
OH o Il S (Unstable intermediate)
L/ S or NOSOq K
o s Noso; .
HO' e e 3
HO Parent structure of Thioglucoside / Glucosinolate 50, (Sulfateion)
OH Thioglycoside
: Epithiospecifier H =8 Epithiospecifier pHE-T
o rg:mmr:&zlr\] protein L modifier / Nitrile pHA
specifier protein =5
CHy==CH==CH; —=C=N Re—S==C=EN R—C=EN H,C ==CH ==CH—CH; R—N==C==5§ +HSOy
o] NH
N/
— Thiocyanates Nitriles Oxazolidine || Isothiocyanates
Epithionitrile X + Sulfur thione S g

Glucosinolate

In the Parent Structure of GSL

Above, R = Structure of Breakdown Product(s)

Breakdown Product(s)

Aliphatic GSL (Alkenyls derived from methionine)

Glucocapparin CH3- Methyl ITC. CH3—N=C=S (Methyl ITC),
CH,=CH-CH,—N=C=S (Allyl ITC),
KHSOy (Potassium bisulphate),
CH,=CH-CH,-C=N (allyl cyanide),
Allyl ITC (2-Propenyl-ITC), allyl CH,=CH-CH;—S—C=N (allyl
Sinigrin cyanide, thiocyanate), CH,=CH-CH,—C=N
(Allyl-GSL or 2-propenyl-GSL or CH,=CH-CH,— 1-cyano-2,3-epithiopropane, allyl (allyl nitrile),
potassium myronate, modern name 2= 2 thiocyanate and allyl nitrile. After H
sinigroside, C1oH;sKNOgS;) further breakdown, allyl-ITC may s u.‘__\_| H
produce highly toxic nitriles. | C\‘ | 2 =N
H,C -~ c P

1-cyano-2,3-epithio propane
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Table 4. Cont.

In the Parent Structure of GSL

Glucosinolate Above, R = Breakdown Product(s) Structure of Breakdown Product(s)
Gluconapin CH,=CH(CH),- | R CH,=CH(CH;),—N=C=S (Butyl
(But-3-enyl GSL, C11H19NOgS;) (but-3-enyl or 3-butenyl) Butyl ITC or 3-butenyl-ITC. ITC or 3-butenyl-ITC)
Glucobrassicanapin CH,=CH(CH3)3- CH,=CH(CH,);—N=C=8
(pent-4-enyl GSL, C1oH31NOgS;) (pent-4-enyl) Pent-4-enyl ITC or 4-pentenyl ITC. (Pent-4-enyl ITC or 4-pentenyl ITC)
Glucoiberverin Iberverin [(3-(methyl thio) propyl
(3-methyl thio f)ropyl GSL CHa-S-(CHz)e.- ITC{ (CsHoNS»)] ar_ld iberverin CH3—S—C_H2—CH2—CH2—N=C=S
C11H1NOS3) g [or CH3-S-CH,-CH,-CH,-] nitrile [4-(methylthio) (Iberverin)

11211993 butane nitrile].
Glucoerucin, Erucin [4-(methyl thio) butyl ITC or
H CH3-S-(CHyys- [or . - CHj3-S-CH,-CH,-CH,-CHy—

(4-methyl thio butyl GSL, ) [isothio cyanato-4-(methyl TgTo 2Tl m T
C12H3N0S3) CHj3-5-CHp-CH,-CH,-CHy-] thio)-butane] N=C=S (Erucin)

Glucoberteroin

(5-Methyl-thio-pentyl-GSL, CH3-S-(CHy)s- 5-Methyl-thio-pentyl-ITC. gﬁﬁgﬁ;ﬂﬁzgfpgﬁ}ﬁ?&@
C13H25NOyS3)

Glucoiberin (3-(methylsulfinyl)
propyl GSL, C11H21 NO]053)

Glucocheirolin
(3-methyl-sulfonyl-propyl-GSL,
C11H21NOy1S;5)

Glucoraphanin
(4-methyl sulfinyl butyl GSL,
Ci12H23NO4053)

Glucoalyssin
(5-methyl-sulfinyl-pentyl-GSL,
Ci13H25NO1053)

Progoitrin
(2-hydroxy 3-butenyl-GSL,
C11H19NO105;)

Epiprogoitrin
(2(S)-hydroxy-3-butenyl GSL,
C11H19NO105;)

Glucoalyssin
(5-methyl-sulfinyl-pentyl-GSL,
C13H25NO1¢S3)

Glucolepidiin

(Ethyl GSL, CogH17NOgS,)
1-cyano-2-hydroxy-3-butene (or
2-hydoxybut-3-enyl cyanide,
CH,=CH-CHOH-C=N)- a Nitrile
(R-C=N)

CH;3-SO-(CHy)3—

CH;3-50,-(CHa)3-

CH3-SO-(CHy)4-

CH;-S0-(CHy)s-

CH,=CH-CH(OH)-CH,-

CH,=CH-CHOH-CH,-

CH;-S0-(CHy)s-

CHj3-CHy-

Iberin (3-Methyl sulfinyl propyl ITC)
or (1-isothiocyanato-3-
(methylsulfinyl)-propane) which is
the Structural analog of 4-(methyl
sulfinyl) butyl isothiocyanate
(sulforaphane).

Cheirolin [3-(methyl sulfonyl)
propyl ITC] or 1-ITC-3- (methyl
sulphonyl) propane.

Sulforaphane
[1-isothiocyanato-(4R)-(methyl
sulfinyl) butane] or
4-methyl-sulfinyl-butyl-ITC.

5-methyl-sulfinyl-pentyl ITC.

Goitrin
[(2R)-2-hydroxy-3-butenyl-ITC or
5-ethenyl-1,3-oxazolidine-2-thione
(CsHyNOS)], a cyclic
thio-carbamate, unstable ITC and
3-hydroxy-4,5-epithio pentane
nitrile.

Epiprogoitrin does not break down
to stable ITC, a further hydrolysis
produces epigoitrin
[(R)-5-vinyloxazolidine-2-thione]
and finally goitrin.

5-methyl-sulfinyl-pentyl ITC.

Ethyl isothiocyanate.

3-butenonitrile
(2-methyl-3-butenenitrile),
4-methylthiobutanonitrile
(4-methylsulfanylbutanenitrile
oxide).

CHj3-SO-(CH;,)3—N=C=S (Iberin)

CHj3-SO,-(CH,)3—N=C=S
(Cheirolin)

CHj3-SO-(CH;)s—N=C=S
(Sulforaphane)

CH3-SO-(CH,)5—N=C=S

(5-methyl-sulfinyl-pentyl ITC)

CH,=CH-CH(OH)-CH,—N=C=S
WC==CH,

o ™
s:‘( C e
N e |
| H

H
(S)-goitrin (goitrin)
CH,=CH-CH(OH)-CH,—N=C=S

C—CH;
O,H‘_“ /l
5:( C H
| H

H
(R)-goitrin (epigoitrin)
CHj3-50-(CH;)s—N=C=S
(5-methyl-sulfinyl-pentyl ITC)
CHj3-CH,—N=C=S (Ethyl
isothiocyanate).
CH,=CH-CH,-C=N
(3-butenonitrile)

CHj3-S-CH,-CH,-C=N=0
(methylthiobutanonitrile)

Indolyl GSLs (Indolyl derivatives from tryptophan)

Glucobrassicin
(3-indolyl methyl GSL,
C16Ha0N2095;)

Napoleiferin (gluconapoleiferin)
(2-hydroxy-4-pent enyl GSL,
CgHgNOS); it is a natural homolog
of goitrin.

CH>—

(3-indolyl methyl-)

R=CH,CH(OH)CH,CH=CH,-
(2-hydroxy-4-pent enyl-)

Myrosinase breaks down
glucobrassicin to
3-indoly-methyl-ITC (unstable) and
simultaneously releases thiocynate
anion (SCN-) to yield

indole-3-carbinol (3-hydroxymethyl-

indole). Indole-3-carbinole can
combine with ascorbic acid to form
Ascorbigen.

Oxazolidine-2-thione.

CH=OH

indole-3-carbinol

H
H;C=C-(IZ CH»
I
O~ NH

Oxazolidine-2-thione
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Table 4. Cont.

Glucosinolate

In the Parent Structure of GSL
Above, R =

Breakdown Product(s)

Structure of Breakdown Product(s)

Neoglucobrassicin
(1-Methoxy-3-indolyl methyl GSL,
C17H22N20105;)

Hydrolysis yields

unsTable 1-methoxy-3-indolyl
methyl ITC and thiocyanate ion
(SCN™).

Aromatic GSL (Arylalkyls derivatives from phenylalanine)

Sinalbin

(C30H42N20155;) (p-hydroxy benzyl
GSL, sinapine glucosinalbate) or
4/p-hydroxybenzyl GSL or
glucosinalbin), the choline ester of
sinapic acid

Gluconasturtiin

(2-phenyl ethyl-GSL, C15H21NOgS,)
Glucotropaeolin,
Benzylglucosinolate (C14H19NOgS,)

p—OH-C6H4—CH2—

R=C6H5-CH2-CH2-

R=C¢Hs5-CH,-

Allyl isothiocyanate, and on
hydrolysis by myrosinase, produces
unstable para hydroxy benzyl ITC.
Para hydroxy benzyl ITC can further
decomposes to para hydroxyl
benzyl alcohol and thiocyanate ion
(SCN™) and/or corresponding
hydroxyl derivatives like di-(para
hydroxyl benzyl disulphide). It also
produces p-hydroxy benzyl amine
known as the “white principles’.

Phenethyl ITC (2-penyl-ethyl ITC).

Benzyl ITC, benzyl cyanide and
benzyl thiocyanate.

CH,=CH-CH,—N=C=8 (Allyl ITC),
p-OH-C¢Hy-CH;—N=C=S (para
hydroxy benzyl ITC),

p-OH- 6H4' Hz—OH

(para hydroxyl benzyl alcohol),
HO—CHy-CH,—NH,; [p-hydroxy
benzyl amine
(4-Hydroxybenzylamine)]

CgHs-CH,-CH,-N=C=S (Phenethyl
ITC)

CeH5-CH,-N=C=S (Benzyl ITC)

GSL = Glucosinolate, ITC = Isothiocyanate. Aliphatic glucosinolates are also further classified into three classes
(i) three carbon chain length aliphatic glucosinolates (i.e., sinigrin, glucoiberin, and Glucoiberverin), (ii) four carbon
chain length aliphatic glucosinolates (i.e., glucoerucin, dehydroerucin, glucoraphanin, glucoraphenin, gluconapin,
and progoitrin), and (iii) five carbon chain length aliphatic glucosinolates (i.e., glucoberteroin, glucoalyssin,
glucobrassicanapin and gluconapoleiferin) [135].

Table 5. Biological activities of major glucosinolates and their metabolites found in mustards.

Biological Activity of GSLs and Their

Glucosinolates (GSL) Mustards Metabolites (Referred from Table 4) References
Glucosinolates (secondary metabolites)
Anti-cancer, anti-inflammatory,
antibacterial, anti-fungal, antioxidant, and
wound healing activity.
. . Allyl-isothiocyanate is responsible for
ﬁ’;‘}szgimg ra Sinapis alba. B internal and external irritation and local
Sinigrin, allyl glucosinolate ° grm)', inapis atba, b. rapa vasodilation. It has been shown to prevent [22,31,118,137,146,147,151,
(C10H16KNOS,) var. campestris, B. carinata, B. juncea, urinary bladder cancer and 155-164]
Calepina irregularis, Alliaria petiolata, . . . - .
B. rapa, B. napus anti-proliferative activity against human
prostate cancer cells.
1-cyano-2,3-epithiopropane has in vitro
anti-cancer activity against human
hepatocellular carcinoma.
Gluconapin,

3-Butenylglucosinolate, Butyl
isothiocyanate (C1;H19NOyS;)

Glucocheirolin (C11HyoNO11S3)

Glucoraphanin,
4-methylsulphinyl-butyl
glucosinolate (C12H3NO1(S3)

Progoitrin, (R)-2-hydroxybut-3-
enylglucosinolate (C11H19NO1(S;)
Epiprogoitrin (C11H19NO10S;)

Glucobrassicanapin, 4-pentenyl
glucosinolate (C12H1NOggS5)

Napoleiferin (CaH9NOS)

B. rapa var. cum;ﬂestris, B. juncea, B.
napus, Sinapis alba

Calepina irregularis, Erysimum
corinthium

B. rapa var. campestris, B. nigra

Brassica napus, B. rapa var.
campestris, B. juncea

Brassica napus, B. olarecia

B. rapa var. campestris, B. napus,
B. rapa

Brassica rapa, B. oleracea, B. napus, B.

rapa var. campestris, B. nigra,
B. juncea, B. carinata.

Tumour inhibiting activity.

[22,147,160,165-169]

Anti-proliferative activity on cancerous

cells. Cheirolin improves cellular

antioxidant defense and stress response

mechanisms.

[31,34,146,155,170]

Used in the treatment of neurodegenerative
disorders as an antioxidant, gastric ulcers
caused by Helicobacter pylori; against

cancer like fibroblasts and malignant
melanoma and employed to improve

[22,24,30,38,155,171-175]

autism. Sulforaphane is a strong cancer
chemopreventive agent both in vitro and
in vivo and a potent monofunctional phase

II enzyme inducer.

Thyroperoxidase enzyme inhibition and

interference with the uptake and use of
iodine by the thyroid gland. Anti-cancer

effects.

Nematicidal activity and insecticidal

property as an effective fumigant.

Anti-cancer activity

Goiterogenic substance.

[22,147,151,160,165,166,
176]

[152,177,178]

[22,147,165]

[167,179-182]
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Table 5. Cont.

Glucosinolates (GSL)

Mustards

Biological Activity of GSLs and Their
Metabolites (Referred from Table 4)

References

Nitriles R-C=N

Erucin, 1-isothiocyanato-4-
(methylthio)-butayl isothiocyanate
(CeH11NSy)

Erucin nitrile
(1-cyano-4-(methylthio)butane)
may

Sulforaphane nitrile,
5-(methylsulfinyl) pentanenitrile
(CeH11NOS)

Eruca sativa Mill. (rocket).

Brassica oleracea var. italica
(broccoli)-seeds, sprouts and root

Brassica oleracea var. italica
(broccoli) sprouts, Brassica oleracea
var. botrytis (cauliflower)

Erucin is a sulfone analog of sulforaphane.
It is an enzymatic hydrolysis product of
glucoerucin, responsible for the
characteristic aroma of broccoli. Chemically,
it is the reduced form of sulforaphane. It
has antioxidant, neuroprotective,
anti-fungal, and anti-inflammatory
activities. It has strong cancer
chemopreventive activity. It induces
apoptosis in cancer cells, exerts
antiproliferative effects, and causes cell
cycle arrest in cancer cells.

Erucin nitrile could be formed in the
anaerobic environment of the cecum or by
hydrolysis of glucoerucin by reduction of
sulforaphane nitrile. Erucin nitrile has
potential activity as a phytoalexin, i.e.,
antimicrobial and antioxidant activities.
Myrosinase cofactor epithiospecifier
protein breaks down glucoraphanin to
sulforaphane nitrile. Both sulforaphane and
sulforaphane nitrile have chemoprotective,
antioxidant, and anti-cancer effects, but
sulforaphane nitrile is substantially less
potent than sulforaphane.

[183-186]

[183,186]

[187,188]

Epithionitrile
CHp-CH-CHy-C=N
~/

Epithionitriles, major hydrolysis
products

Brassica rapa, B. oleracea, B. napus, B.

rapa var. campestris, B. nigra, B.
juncea, B. carinata.

3-butenonitrile has anti-cancer and
antimicrobial activities.
4-methylthiobutanonitrile has a
characteristic aroma.
1-cyano-2,3-epithiopropane, and
1-cyano-3,4-epithiobutane,
1-cyano-4,5-epithiopentane have
cancer-preventative activities.

[189-192]

Glucoalyssin (C13H5NO10S3)

Gluconapoleiferin (C12Hz1NO1057)

Glucolepidiin (CgH;7NOgS,)

B. rapa var. campestris, B. napus,
Degenia velebitica

B. napus, B. rapa, B. rapa var.
campestris, B. juncea, B. nigra

Calepina irregularis

The flavor component of cooked Brassicas.
It is an antioxidant.

Tasteless, but hydrolytic, susceptibility to
peptic digestion. A precursor to
glucobrassicanapin biosynthesis. Thyroid
gland function inhibitory effect.
Antibacterial activity.

[163,193]

[163,194]

[31,146]

Thiocyanates
R-5-C=N

Glucobrassicin, the unsubstituted
indole glucosinolate.
(C16H20N2095;)
Neoglucobrassicin
(C17H22N204057)

Glucoiberin (C11Hp1NO1(S3)

Glucoiberverin (C11H1NOgyS3)
Glucoerucin (CIZ H23N09 53)

Sinalbin, P-Hydroxybenzyl
Glucosinolate (C14H19NO10S;)

B. juncea, B. napus

B. napus, S. officinale.

B. napus, B. incana, B. oleracea,
Calepina irregularis, Erysimum
corinthium, Iberis amara, Moringa
oleifera

Calepina irregularis

Calepina irregularis

Sinapine is present in all the
mustards in different amounts.
Chiefly found in white mustard
Sinapis alba (2.5% of seed weight)
and also reported in B. rapa var.
campestris, B. napus B. juncea and
B. nigra

Antioxidant, anti-inflammatory, and
anti-cancer activities. It stimulates the
bodily natural detoxifying enzymes.

Antioxidant and anti-cancer activity.

Anti-cancer effects

Repellent and acts against insect herbivory
Inhibition of cancerous cell proliferation.

Antioxidant, anti-microbial, and anti-fungal
activity. Sinapine and sinamic acid have
antimicrobial, antioxidant, and anti-cancer
properties.

[151,160,163,166,167,195—
197]
[151,163,195]

[22,31,34,146,147,151,165]

31,146].
31,146,155].

[22,28,58,147,157,165,198—
200]
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Table 5. Cont.

Glucosinolates (GSL)

Mustards

Biological Activity of GSLs and Their
Metabolites (Referred from Table 4)

References

Isothiocyanates
R-N=C=S§

Glucotropaeolin or benzyl
glucosinolate, precursor of benzyl
isothiocyanate

(C14H19NOS,)

[CeHs-CH,-GSL]

Gluconasturtiin or
Phenethylglucosinolate, the
precursor of phenethyl
isothiocyanate (C15H1NOyS;)
Sulforaphane,
1l-isothiocyanato-4-(methyl-
sulfinyl) butane (C¢H11NOS,).
Sulforaphane is derived from
glucoraphanin.

Indole-3-carbinol, derived from
glucobrassicin. (CoHoNO)

Alliaria petiolate, B. juncea; B. nigra,
Calepina irregularis, Lepidium
sativum (garden criss), Sinapis alba.

B. napus, Nasturtium officinale
(watercress)

B. oleracea var. italica (broccoli)
sprouts, kale, B. oleracea var.
botrytis (cauliflower) or B. oleracea
var. gongylodes (kohlrabi)

B. oleracea var. italica (broccoli), B.
oleracea var. acephala (kale), Brassica

Benzyl isothiocyanate or Glucotropaeolin
has potential cancer-preventive activities,
anti-tumorigenic (lung and esophagus in
humans) activity, and works as an
antimetastatic agent. It is also used as a
food preservative because of its
antimicrobial activity.

Inhibits the development of
tobacco-specific carcinogen-induced lung
tumors.

Anticarcinogenic activity by induction of
cell cycle arrest and apoptosis in various
human cancer cells; antioxidant,
antiproliferative, anti-inflammatory,

antimicrobial, anti-fungal, and antiviral
activities.

Anti-cancer, antioxidant, and
antiatherogenic activities.

[31,146,155,160,166,169,
201-203]

[22,147,151,165,201,204]

[79,186,205-207]

oleracea var. capitata (cabbage)

2.3. Phenolics and Flavonoids

Hydroxyl group-containing aromatic compounds known as phenolic or polyphenolic
compounds represent the most abundant plant secondary metabolites in rapeseed, almost
50% of secondary metabolites, namely phenolic choline esters, predominantly sinapate
choline esters [208]. They occur mainly in the form of phenolic acids, flavonoids, and soluble
and insoluble condensed tannins [209]. These compounds can be present as free or bound
in the form of esters and glycosides. The most abundant free phenolic acid found in oilseed
mustards is p-hydroxybenzoic acid [115], whereas sinapic acid, also known as sinapinic
acid, a naturally occurring hydroxycinnamic acid, is the most abundant bound phenolic
acid (90-95% of the total phenolic acids identified in rapeseed) [210], and is present mainly
in the esterified form [59,210]. The choline ester of this short-chain fatty acid is sinapine,
an alkaloidal amine (Figure 1), and is an integral component for the biosynthesis of lignin
and flavonoids in plants [74]. Oilseeds (excluding Canola) contain 12-15 g sinapine per
kilogram of seeds [28]. The other minor phenolics are apigenin (4',5,7-trihydroxyflavone),
syringic acid, 1,2-disinapoylglucose [165,211,212], p-hydroxybenzoic, p-coumaric, trans-
ferulic acid, gentisic, gallic, protocatechuic, syringic and vanillic acids (Figure 1) [213,214].
These antioxidant polyphenolics act as a preservative, preventing the reserved oil in the
seed from degrading over time [215]. As a consequence of this, they also act as preservatives
to counter the rancidity of the extracted oil, preventing it from discoloring and becoming
cloudy [216]. Studies indicate that seed roasting reduces the amount of phenolic compounds
in mustard seeds and increases the oxidative stability [217-219].

Flavonoids are composed of a fifteen-carbon-containing skeleton where two aromatic
rings are interlinked by a three-carbon chain (C6-C3-C6) [209,220]. They are found in the
seeds of many mustard species and include proanthocyanidins and anthocyanidins; flavan-
3-ols, namely catechin and epicatechin; flavonols including kaempferol and quercetin;
and flavonoid glycosides [6,10,38,39,43,44,160,166,212,214]. Phenolic acids and tannins
give the astringency and dark color to commercially processed seed extracts [59,74,210];
specifically, Kaempferol 3-O-(2""-O-Sinapoyl-B-sophoroside) has been identified as the
major compound responsible for the unpleasant bitter taste of mustard protein isolates [221].
Oriental mustard oil (B. juncea) is notably darker in color due to the presence of higher
phenolics than yellow mustard (S. alba) [222].
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Ry

Rs CH=CH-COOH

R, Ri
Cinnamic acid derivatives
R, =R, =R; =R, = H, cinnamic acid
R, = OH, o-coumaric acid
R, = OH, m-coumaric acid
R; = OH, p-coumaric acid
R, = R; = OH, caffeic acid
R, = OCH4; R, = OH, ferulic acid
R, =R, = OCHj; R; = OH, sinapic acid

R, COOH

Ry R,
Benzoic acid derivatives
R, = R; = R, = H, benzoic acid
R, = OH, m-hydroxy benzoic acid
R, = OH, p-hydroxy benzoic acid
R, = R; = OH, protocatechuic acid
R, = Ry = R, = OH, gallic acid
R, = OCH,; Ry = OH, vanillic acid
R, = R, = OCH;; R; = OH, syringic acid

R, = R, = OH, gentisic acid

R, = R; = OCH,, veratric acid

R, = OH, = R, = HS0;, s- sulphosalicylic acid
R; = GH;0,; R, =R5 = R, = H, aspirin

Figure 1. Basic structures of phenolic acids found in Brassicaceae oilseeds. Adapted from [59,209,223-225].

2.4. Proteins

Mustard seeds contain high amounts of proteins and the de-oiled seed contains up
to 40% proteins [74,160,161,226]. Among them, the major seed storage proteins are cru-
ciferin, napin, and the oil-body protein oleosin [74]. Cruciferins are 125 legumin-type
globulin proteins with a molecular weight of about 300420 kDa [227,228]. These proteins
comprise up to 35-50% of the total seed protein. Napins belong to the 2S albumin seed
storage protein family, make up 20—40% of total seed protein, and have a molecular weight
in the range of 12-16 kDa [74,229]. Oleosins, which are the main protein found in the
lipid bodies of the seeds, make up 6-8% of the total seed protein and have a molecular
weight of approximately 18-25 kDa [74,229,230]. The other relatively abundant proteins
found in mustard seeds are myrosinase, the glucosinolate-degrading plant defense enzyme
found in all mustards which has a molecular weight of 120-150 kDa [158,159,231] and
thionins, now also known as defensins, low-molecular-weight (about 5 kDa) cationic pep-
tides abundant in sulfur-containing cysteine residues with plant defense action [232,233].
Additionally, heat-sensitive trypsin inhibitor proteins of 18-19 kDa ranging from 2-2.5% of
crude protein [62,234,235] and lipid transfer proteins of 7-9 kDa which accounts for 2-3%
of the total protein, are also found in the seed [236-238].

2.5. Minor Chemical Compounds

The amount of carbohydrates is comparatively lower in the seeds of rape and Canola
than that of other oilseeds and seed grains [239]. In general, the seeds contain around 10%
soluble sugars, 4-5% cellulose, 4-5% pectin, 3% hemicellulose, and less than 1% starch of dry
seed weight [59]. The levels of oligosaccharides were found to be approximately 20 g/kg
dry matter and raffinose was approximately 34 g/kg dry matter in seed meal [240].

High levels of the major minerals including iron (0.01-0.02%), calcium (0.3-0.45%),
phosphorus (0.6-0.84%), potassium (0.5-0.65%), zinc, magnesium (0.1-0.15%), and man-
ganese (0.003-0.008%) are found in the seed. Metals such as copper (0.001-0.007%), lead,
cadmium, and selenium (0.00002%) have also been measured in the seeds [123,241-247].



Int. J. Mol. Sci. 2024, 25, 9039

13 of 46

Mustard seeds contain crude fibre including pentosans and lignin, which accounts for
7-15% of the total seed weight [28,198].

3. Use of Mustard to Treat Ailments

Mustards are described in many official herbal compendia including The British Phar-
macopoeia, The Pharmacopoeia of China, and other publications of herbal, Ayurvedic, and
homeopathic relevance as a natural ointment to heal various forms of pain [14,43,137,248,249].
They have been used for years for the treatment of disease and pathological conditions
(Table 6).

Table 6. Traditional/folkloric use of mustard extracts.

Traditional Use

Mustards

References

Anti-microbial activity

Alliaria petiolata, Sisymbrium officinale, S. erysimoides,
B. hirta, and B. nigra

[6,39,123,158,216,250-252]

Antidiabetic activity

B. juncea, and B. nigra

[253,254]

Treatment for vitamin C deficiency

A. petiolata, B. rapa, B. napus, and Erysimum
repandum are antiscorbutic

[6,21,123,255]

Diuretic activity

A. petiolata, B. juncea, B. napus, B. nigra, B. rapa,
S. officinale, and S. orientale

[6,21,38,40,41,123,255-259]

Expectorant activity

A. petiolata, S. orientale, S. officinale, and
S. erysimoides

[6,38,40,41,258-261]

Stimulant activity

A. petiolata, S. alba, B. juncea, and B. nigra

[6,256,257,262]

Analgesic activity

B. rapa var. campestris, B. juncea, B. napus, S.
erysimoides, S. officinale, B. carinata, Neslia paniculata,
and Calepina irregularis

[21,44,123,160,242,256,263,264]

Activity in cold and flu

Sinapis alba, S. officinale, S. erysimoides, B. napus, and
B. nigra

[39,251,258,260,261]

Anti-catarrhal activity

Sinapis alba, S. officinale, S. erysimoides, B. napus, and
B. nigra

[39,251,258,260,261,265]

Bronchitis S. officinale, S. orientale, and S. erysimoides [259-261]
Anti-asthmatic activity S. officinale [38—41,258]

Emetic activity ES;HZZ:SH“ZMI B. nigra, B. juncea, S. officinale, and [123,256,266]
Anti-cancer activity B. juncea, B. napus, B. rapa, 5. officinale, and [39,123,158,256,267]

B compestris

Sinapis alba, B. nigra, B. juncea, and S. officinale are

Effect on bowl used as laxatives. B. nigra is used as a carminative [123,256,257,262,266]
Rubefacient B. rapa, B. juncea, and S. officinale [24,30,39,256,268]
Galactagogue B. juncea [256]

Anti-gout potential B. napus, and B. rapa [21,123,255]

Use in gall stone B. napus, and B. rapa [162,255,265]

Use against alopecia B. nigra [257]
Anti-dandruff activity B. nigra [257]

Use in neuralgia B. nigra [257]
Anti-spasmodic activity B. nigra, and S. officinale [257]
Aphrodisiac activity B. rapa, and B. nigra [24,268]

Use in hepatic and kidney colic B. rapa [162,255]
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Table 6. Cont.

Traditional Use Mustards References
Anti-inflammatory activity B. rapa, S. erysimoides, and S. officinale [44,255,269]
Anthelmintic activity S. orientale, and B. rapa var. campestris [259,270]
Remedial use in fever S. orientale, and Erysimum repandum [127,259]

Use in dysentery S. orientale [259]
Anti-addiction activity S. officinale [271]

Use in the disorders voice and throat S. officinale [40]
Appetising and digestive activities S. officinale, B. nigra, and B. juncea [40,41,256-258]
Snake bite antidote B. rapa var. campestris, and S. officinale [40,41,258,270]
Skin disorders Neslia paniculata [35,263]

The traditional uses of mustards and their components in vitro and in vivo have been
well documented in the literature [272-274]. The rationale and possible mechanism of
action behind the uses are discussed in the following sections.

3.1. Antimicrobial and Antiviral Activities

Glucosinolates demonstrate a wide range of antibacterial and anti-fungal properties
with direct or synergistic effects in combination with other compounds. Different glucosi-
nolate metabolites, namely nitriles, thiocyanates, and isothiocyanates, can strongly inhibit
most Gram-positive and Gram-negative bacteria [275], as well as fungus and yeast [149,252].
In addition, other hydrolysis products of glucosinolates such as allyl nitrile, allyl isothio-
cyanate and ionic thiocyanates (SCN-), phenolic compounds, and tannins have also demon-
strated potential anti-microbial activity [276,277]. The best studied of the mustard seed
anti-microbial metabolites is allyl isothiocyanate along with its related isothiocyanates [278].
These hydrophobic compounds have a multi-targeted mechanism of action, affecting bac-
terial metabolic pathways, membrane integrity, and cell wall structure [216]. They have
the ability to disrupt the bacterial cell membrane, causing the leakage of both metabolites
and ions and a reduction in both intracellular ATP and pH [216,252,279,280] resulting
in cell death. This mechanism of action is quite similar to the class of polymyxin and
related peptide antibiotics, both of which have strong affinities for membrane lipids and
lipopolysaccharide [281,282].

Natural isothiocyanates and their analogs have also been shown to be effective against
a wide range of fungi including Aspergillus niger, Penicillium cyclopium, Rhizopus ryzae,
and common Saprophytic fungi [283]. Allyl isothiocyanate was found to be toxic [284] to
Penicillium expansum, a fungus which causes postharvest disease to economically important
fruits like apples and vegetables in storage [285]. Benzyl isothio-cyanate was found effective
against ectomycorrhizal fungi [203,286].

Sinapic acids and 4-hydroxy-3-nitrophenylacetic acid were found to have antibacterial
activity against several different pathogenic bacteria. Structure-activity relationship studies
revealed that different methoxyl, hydroxyl, nitro, and propenoic groups present in the
compounds are necessary for effectiveness [287].

Several seed proteins have been shown to have both anti-microbial and anti-fungal ac-
tivities. The seed storage protein napin was reported to have significant antimicrobial activity
against pathogenic bacteria, namely Bacillus subtilis, B. cereus, B. megaterium, and Pseudomonas
aeruginosia, and against the highly toxigenic fungus Fusarium langsethiae [281,288-295]. The
anti-microbial activity of the seed storage protein napin was attributed to the presence of
abundant positively charged amino acids, giving the protein a net charge of +1 or greater.
A high proline content and a high proportion of alpha-helices in their secondary structure
were also found to be important. It is thought that these properties enable the protein to
compete for binding with calmodulin and inhibit calcium signaling. The anti-tryptic activity
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of napins could also hinder microorganism growth [73,292,296]. There is also evidence that
the basic residues of napin create electrostatic contacts with the acidic phospholipid mem-
brane bilayer of the pathogen and thus permeabilize the microbial plasmalemma [297,298],
as well as inhibit their growth [299].

Another seed storage protein, vicilin, which was reported in B. rapa for the first time
among the Brassicaceae mustards [281], has also been shown to possess antimicrobial
activity [300]. Thionins have been reported to have potential antimicrobial activity against
Clavibacter michiganensis, Micrococcus luteus, Rhizobium meliloti and Xanthomonas campestris,
and toxic fungus Fusarium solani [236,299,301]. Noteworthy, in silico studies have found
that both the napin and cruciferin seed storage proteins have high binding affinity to
selective metabolic enzymes [62,281] and microbial membranes [302] in pathogenic bacteria.
These findings suggest that these proteins are able to form protein-enzyme complexes
that may cause alteration of regular bacterial metabolism, plasma membrane permeability,
and chemical or reactive oxygen species balance as the conformation of the enzyme or
membrane changes, leading to cell death [289,303-305].

Interestingly, applying these compounds together has shown additive antibacterial
and anti-fungal effects. In the case of napins, these proteins were found to exert syner-
gistic effects when applied in combination with thionines by interacting with membrane
phospholipid permeabilization in the case of bacteria and increasing K* efflux from fungal
hyphae and changing membrane ion permeability [306]. Relevantly, glucosinolate hydroly-
sis products from the leaf, stem, and inflorescence of broccoli (Brassica oleracea var. italica
L.), particularly iberin- and indole-derived glucosinolate hydrolysis products, which are
also present in the Brassicaceae mustard seeds, were shown to have anti-fungal activity
against Botrytis cinerea, a necrotrophic fungus that infects many plant species [307].

Mustard seed extracts are also recommended to fight against candidiasis, a fungal
infection caused by an overgrowth of any species of the genus Candida yeast [308,309].
Mustard seed extracts are also given for the treatment of other topical fungal infections [310].
The antimicrobial and antimycotic activities of mustard seed support their uses in human
diseases involving bacteria and fungi as well as the use in herbal and food preparations as
preservatives [281,301,308,311,312].

Rapeseed protein hydrolysates were also tested in E. coli expressing the HIV protease.
Measuring the inhibitory activity, it was found that the proteins act as the inhibitor of human
immunodeficiency virus (HIV) protease which opens the possibility to develop antiviral
drugs as well as combat HIV [313]. Brassinosteroids, a group of steroidal substances, found
in most of the mustard seeds, were found to have substantial anti-viral activity against
human pathogenic viruses including herpes simplex virus type 1, RNA viruses, and even
the measles virus [314].

3.2. Antidiabetic Action

Diabetes mellitus is a major endocrine disease in which the pancreas produces insuffi-
cient insulin or the produced insulin cannot bind with the appropriate receptor. The lack of
insulin signaling leads to high blood sugar levels which can cause secondary complications
and in some cases be fatal. Anti-diabetic drugs, medications used to treat diabetes mellitus
by decreasing glucose levels in the blood, and hypoglycemic agents, the agents used to
help reduce the amount of sugar present in the blood, are used to treat this growing global
health problem [16,315].

Seeds of B. juncea and B. nigra have been reported to have anti-diabetic properties,
including the ability to lower blood glucose and improve high glucose tolerance in diabetic
animals [253,316,317]. Mustard seeds have also been found to suppress gluconeogenic and
glucolytic enzymes, including a-glucosidase [254,317,318]. This enzyme catabolizes the
breakdown of complex carbohydrates to glucose and thus its inhibition would ultimately
decrease blood glucose levels [319]. The flavonoids found in rapeseed including flavones,
isoflavones, flavanones, flavonols, and anthocyanidins have the ability to reverse the signs
of type II diabetes. For example, abscisic acid, a plant growth regulator, in the flavonoid
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biosynthesis pathway, can act in a similar manner to the widely used thiazolidinediones
class of anti-diabetic drugs by targeting the thiazolidinedione receptor and enhancing
insulin secretion [320].

B. juncea seed powder extract has also been shown to have significant hypoglycemic
action [254,317], increasing the concentration of hepatic glycogen by increasing glycogenesis
via glycogen synthetase activity. It also increases glycogen by decreasing glycogenolysis and
gluconeogenesis via the depressing activity of glycogen phosphorylase and gluconeogenic
enzymes [253].

The increased blood glucose levels in diabetes mellitus generate various free radicals
and reactive oxygen species including superoxide anions, which generate hydroxyl radicals
via the Haber-Weiss reaction. This results in the peroxidation of membrane lipids and ulti-
mately leads to oxidative damage to cell membranes [256]. Antioxidant molecules present
in mustard can help to neutralize the harmful free radicals by different mechanisms includ-
ing electron donation, metal ion chelation, or by gene expression regulation [215,317,318],
safeguarding membrane lipids from lipid peroxidation [321,322].

It is also well known that food rich in MUFA, such as has been shown for mustard seed
(Section 2.1), can increase the peripheral insulin sensitivity of the insulin receptor and thus
lower blood glucose levels [323,324]. Fibers present in foods, particularly soluble fibers, can
also affect the glucose and insulin levels in the blood [325]. Mustard mucilage (soluble fiber)
at different dietary levels was found to have antidiabetic effects on elevated blood sugar
levels (post-prandial glucose level) and insulinemia in laboratory rats [253,254,326,327].
Measuring hypoglycemic activity is the most common and accepted method to evaluate
the antidiabetic activity of natural products. The complete profiling of the hypoglycemic
activity of mustard components as well as human trials are scarce for antidiabetic activity
and warrants further investigation. Antihyperglycemic agents reduce the excess accumu-
lated sugar in the blood [328]. B. juncea oil and seeds showed potential antihyperglycemic
effects, i.e., a significant reduction in blood glucose levels in experimental diabetic rats
by increasing insulin activity [328,329]. Leaves of B. juncea and B. compestris exert similar
antidiabetic effects and anti-hyperglycemic effects in diabetic mice [273,330].

Rapeseed protein hydrolysates derived peptide RAP-8 was tested on an in vivo mouse
model to assess its effect on glucose tolerance and insulin resistance. The peptide was
found to significantly improve insulin resistance, glucose intolerance, and lipid metabolism
as well as markedly reduce hepatic inflammation, fibrosis, liver injury, and metabolic
deterioration in mouse models of non-alcoholic steatohepatitis and hepatic fibrosis [331].

3.3. Hypolipidemic Effects

Hypolipidemic compounds are substances which lower the lipid and lipoprotein
levels in the blood while hypocholesterolemic compounds decrease cholesterol absorption
and increase bile acid excretion, thus reducing serum cholesterol by stimulating the further
conversion of cholestenol to bile acids [332-334].

The low SFA and high MUFA profile of mustard oil (Table 2) has the potential to lower
cholesterol. Studies conducted on healthy human subjects revealed that high MUFA diets
reduce both blood cholesterol and triacylglycerol levels (total cholesterol by 10% and LDL
cholesterol by 14%) [323]. The ingestion of rapeseed oil was found to reduce cholesterol
absorption from food and increase the excretion of cholesterol, bile acids, and metabolites
of steroid hormones from the digestive tract, thus reducing the serum cholesterol level
in the blood [332]. Rapeseed oil was also found to reduce low-density lipoprotein (LDL)
cholesterol, blood lipids, and plasma apo-lipoproteins in a study which compared the
effects of consumption with olive oil in healthy male participants [335]. B. nigra seeds,
added to the diet of diabetic rats, reduced serum cholesterol and triacylglycerol levels
and raised the level of good cholesterol (high-density lipoprotein, HDL) [316]. Seeds of
B. juncea were tested on 1-2 dimethyl hydrazine-induced colon carcinogenesis and found
to decrease the plasma cholesterol and phospholipid levels while increasing the fecal bile
acids and neutral sterols [336,337]. Erucic acid present in all mustards was tested and found
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to exhibit hypocholesterolemic and hypolipidemic effects on the plasma and tissues of
hypercholesterolemic rats [333].

Another mechanism that serves to lower cholesterol is the degradation of consumed
fiber by the intestinal flora which produces propionic acid, that is then absorbed into
the blood stream, and serves to inhibit hepatic cholesterol synthesis [338,339]. In addi-
tion, most of the phytosterols found in mustards, namely brassicasterol, campesterol,
sitosterol, avenasteriol, and stigmasterol have been shown to have plasma cholesterol-
lowering activity [90,114]. A peptide from rapeseed protein hydrolysates demonstrated
the ability to improve lipid metabolism in experimental mouse models [331]. Improved
lipid metabolism significantly leads to the burning of stored fats, weight loss, cardiac,
pulmonary, and metabolic performance; delays aging; and ultimately optimizes bodily
physiological functions [340,341].

3.4. Cytotoxic and Anti-Cancer Activity

Mustard and its components are alleged to have cytotoxic and anti-cancer properties
mainly due to their demonstrated anti-oxidative properties [342]. Different isothiocyanate,
erucic acid, phenols, and phytins possess the ability to scavenge free radicals which may
have anti-cancer effects [14,343]. Erucic acid was found to possess anti-tumor effects on ani-
mal models as well as human cancer cell lines [344]. Sinigrin, progoitrin, and glucocheirolin
showed a marked in vitro cytotoxicity against human erythroleukaemic K562 cells [152].
Mustard oilseeds also demonstrate higher antioxidant potential in terms of DPPH (2,2-
diphenyl-1-picrylhydrazyl) scavenging potential, ferric-reducing ability, total phenolic
content, and chelating power [345,346]. It was found that the consecutive hydrolysis of
rapeseed proteins using the digestive enzymes pepsin and pancreatin exhibited the most
active DPPH radical scavenging hydrolysate [347].

Antioxidant molecules act as free radical scavengers; they neutralize free radicals
produced from the body cells by delivering some of their own electrons to the free radi-
cals produced from the normal essential bodily cell metabolic processes or from external
sources. Mustard oilseeds are a great source of antioxidants which scavenge free rad-
icals including phenolic compounds, ligands, flavonoids, and phenolic acids (Table 5,
Figure 1) [218]. Antioxidant molecules target cellular free radicals, neutralizing the excess
reactive oxygen species, and may ultimately help to reduce the potential risks of developing
cancer [348-350].

More direct evidence for the anti-cancer effects of mustard compounds has been shown
in studies using cancer cell lines and animal models. Sinigrin and its metabolites isolated
from the leaves of B. carinata were reported to have potential tumor growth inhibition
activity in studies on both in vivo animal models and in vitro cell-line models [12]. Extracts
from B. juncea seeds were shown to decrease the cancerous cells in the colon and intestine
in 1-2 dimethyl hydrazine-induced colon carcinogenesis in rat models [336,337]. Recent
research has demonstrated that the mucilage/meal fraction obtained from Sinapis alba
following oil extraction contains a complex mixture of polysaccharides which were shown
to exert a protective role in the development of sporadic and obesity-associated colon
cancer in preclinical azoxymethane-induced obese rat models compared to untreated obese
rats [351].

Mustard seed extract was also reported to act by suppressing the expression of lympho-
cyte activating factor, tumor necrosis factor alpha (TNF), and interleukin (IL)-6 mRNA, and
inhibiting Langerhans cell migration in the epidermis of Albion mice cancer models [352].
More specifically, a regulatory protein NPR1, found in B. juncea seeds, has been shown to
inhibit the activity of nuclear factor-kappa B (NF-kB), a member of the family of dimeric
transcription factors which regulate immune responses, the proliferation rates of cancerous
cells and apoptosis in human cell lines [353].

Several glucosinolates and their metabolites have also been shown to have anti-cancer
activity against a wide range of cancerous cells and exert their effect by several mechanisms
(Table 5). High-glucosinolate-containing B. rapa subsp. trilocularis (yellow sarson) and B.
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rapa subsp. chinensis (pak choi) along with their low-glucosinolate-containing counterparts
were tested against human colorectal cancer (CRC) cells. The high-glucosinolate-containing
lines showed anti-cancer activities in terms of anti-proliferative pro-apoptotic activities, the
inhibition of the nuclear factor NF-«B pro-inflammatory signaling, and ERK pathways that
suppress the proliferation of cancer cells [354,355]. Many components of mustard seed were
also investigated and found to have antiproliferative activity, acting to prevent or retard
the spread of cells, especially malignant cells, into surrounding tissues [356-358] through
proapoptotic effect. These components were also shown to promote or cause the apoptosis
of cancer cells [358,359] and induce cell cycle arrest of the rapidly proliferating cancer
cells [357,358]. Allyl isothiocyanate has the ability to prevent urinary tract cancer and was
also shown to have antiproliferative activity against human prostate cancer cells [164].
Allyl isothiocyanate is also reported to exert antiproliferative activity resulting in cell
cycle arrest to bladder cancer cells and apoptosis [357] as well as in vitro human colon
cancer cells [360]. Phenethyl isothiocyanate (gluconasturtiin), alone [204] or combined
with sulforaphane, and their N-acetylcysteine conjugates can inhibit the growth of various
tumors and cancerous human and animal cell lines [204,361,362]. Benzyl isothiocyanate
(glucotropaeolin) has the ability to prevent the growth of various types of cancer cells by
inducing apoptosis leading to cell death at low concentrations and causing cellular necrosis
at high concentrations [363-368]. Similar effects were also observed for brassinosteroid
treatment on human cancer cell lines [369,370], which additionally affected cancer cell
cycle progression [371]. Iberin, a glucosinolate decomposition product, has also been
shown to have apoptotic potential against tumor cells, reducing the proliferation of human
glioblastoma and neuroblastoma cells [175,372]. Sulforaphane, found in mustard oil [373]
in combination with resveratrol, which is also a component of mustard seed [374,375], or
its analog also acts as anti-tumor agent [174,376]. Enzymatic hydrolysis of glucobrassicin
by myrosinase yields indole-3-carbinole (or 3-indolylmethylisothiocyanate) which further
combines with ascorbic acid to form ascorbigen with stronger in vitro antioxidant activity
and significantly higher in vivo activity than ascorbic acid alone, and Trolox, the two
known strong antioxidant molecules commonly used as standard antioxidants [377,378].
Ascorbigen was found to prevent tert-buthyl hydroperoxide-induced cytotoxicity in human
keratinocytes cultured cells to a greater extent than ascorbic acid [378].

The mustard seed proteins and protein-derived peptides were reported to exhibit
in vitro and in vivo anti-cancer activities. The seed defense protein thionin [236] also
has anti-cancer properties [379]. The application of thionin to cancer cells prevents the
uptake of sugar, nutrients, and proteins and causes nucleotides to leak out from the
cell, ultimately destroying the cancer cells [380]. Rapeseed peptides were also found
to have significant in vivo free radical-scavenging ability and cytotoxic activity against
human cancerous HepG2 cell lines [381], as well as liver injury, inflammation, fibrosis, and
metabolic deterioration by suppressing the fibrosis-associated gene expression in mouse
models [331]. Furthermore, rapeseed protein-derived anti-oxidative peptides demonstrated
potent cytoprotection anti-proliferative activity against chemical-induced human cell lines
and cancer cell lines through the inhibition of cell apoptosis [382-386].

Although it has been proposed that some isothiocyanates inhibit protein synthesis
and affect carbohydrate metabolism, the activity of these compounds seems to be mainly
due to the chemical reactivity of the isothiocyanate group, which binds easily to protein.
Moreover, some hydrolysis products could be considered as antimitotic substances, given
their strong anti-proliferative activity [155].

A lowered risk of lung, stomach, breast, prostate, pancreas, colon, and rectal cancers
has been linked to the consumption of vegetables of the Cruciferae family and it is thought
this may be due to the presence of active anti-cancer metabolites including glucosinolates
and their breakdown products [31]. In Asia, people consume high amounts of cruciferous
vegetables, up to 24% of the total vegetable intake [387], including mustard leaves and
seeds [117,171,344], and they are shown to have a lower occurrence of cancer, increased life
expectancy, and generally greater wellbeing than people from countries that eat less of these
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vegetables [10,117,171]. The regular consumption of B. nigra seeds improves the body’s
biological defense mechanism against cancer development, and epidemiologic studies have
shown that consumption reduces the rate of colon, bladder, and lung cancer [362].

3.5. Broncho- and Vaso-Dilating Properties

Mustard oil can be applied to the chest and back as a poultice to reduce chest con-
gestion [388], serving to loosen phlegm, and aiding in its expulsion. Children with colds,
coughs, and chest congestion are rubbed with mustard oil to alleviate their discomfort [389].
A syrup made from boiled willow bark, mullein, and rue combined with mustard oil
has been described as an excellent syrup for treating cough and also eases aches and
fever [390]. S. officinale dry plant extract has long been traditionally used to alleviate
laryngitis, bronchial catarrh, and throat congestion [40].

Dry plant extracts of S. officinale applied to guinea pig tracheal smooth muscle were
found to deactivate the histaminic, muscarinic, and cysteinyl leukotriene LTC4 receptors
responsible for the contraction and triggering of inflammatory and allergic responses, and
relax the smooth muscle [39]. Sinigrin (allylisothiocyanate) and sinapine in mustard may
counteract the bronchial contraction [43]. These ingredients help to reduce congestion in the
respiratory tract by dilating local blood capillaries, and increasing the circulation of blood
to the area [391]. A mustard footbath has also been shown to move congestion out of the
chest by increasing circulation to the lower part of the body, soothing deep muscle aches,
and treating headaches. Mustard inhalation improves circulation to the head via the nasal
passages and is used to treat chest and sinus colds [392]. However, when isothiocyanate is
inhaled with oil or aspirated from mustard, it can cause airway irritation in the nasal tract
in some individuals [232,393].

3.6. Action on Cardiovascular System

According to the World Health Organization, cardiovascular disease (CVD) is the
number one cause of death globally resulting in the deaths of 17.5 million people worldwide
annually [394]. Hypertension, caused by the constriction of blood vessels and high blood
pressure, is one of the leading causes of CVD. Food and drugs which inhibit the angioten-
sion 1 converting enzyme (ACE) are used to treat hypertension [395]. Leaves and seeds of
the mustard B. juncea have been shown to have significant ACE inhibitory activity [148], and
antihypertensive peptides from B. napus and B. rapa var. campestris have also been shown to
inhibit ACE in vitro and in vivo [396-400]. The mechanism of inhibition was revealed from
in vivo experiments whereby rapeseed protein, specifically rapakinin, Arg-Ile-Tyr, derived
from the mustard 25 albumin type protein napin, caused the spontaneous dilation of the
mesenteric artery in hypertensive rats via the prostaglandin-mediated prostanoid recep-
tors. This was followed by cholecystokinin A receptor-dependent vasorelaxation [401,402].
When the blood vessels are relaxed, it causes a reduction in blood pressure, termed an-
tihypertensive activity [402]. In addition, the oral administration of bioactive peptides,
including a novel peptide Gly-His-Ser derived from rapeseed protein digest, was found
to inhibit ACE and renin activities in hypertensive rats [347,398,403—407]. Peptides from
Broccoli (Brassica oleracea L. var. italica Planch) stem and leaf protein hydrolysates were
found to inhibit ACE activity [408].

Peptide concentrates derived from B. napus seed proteins were found to be able
to prevent the development of hypertension and prevent CVD [395]. Canola protein
isolate from B. napus showed the most prolonged antihypertensive effect in vivo, and low
molecular weight peptides were found to decrease blood pressure at a faster rate [396].

Several cardiac diseases like atherosclerotic vascular disease are directly linked to
oxidative stress and high blood fat levels. Superoxide anions generate pro-aggregatory
isoprostanes, which contribute to an increased risk of heart attack. Mustard flavonoids
can scavenge superoxide anions and lower oxidative stress. In addition, they reduce the
formation of isoprostanes, facilitate anti-aggregatory PGI2 formation, and thereby exhibit
anti-thrombotic action [409]. Numerous studies have suggested that flavonoids have cardio-
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protective and vasodilating effects, as well as acting as protective agents against coronary
disease and metabolic disorders [410,411]. As edible oils, mustard oils, specifically Canola
oil, contain significant quantities of unsaturated fatty acids, which can reduce cardiovascu-
lar disease. The addition of alpha-linolenic acid and other omega-3 polyunsaturated fatty
acids which are abundant in rapeseed oil to the diet was proven to lower the risk of stroke
and other CVDs [412-414]. Likewise, the oil has a notably small amount of palmitic acid
compared to most other vegetable oils. Mustard and Canola oils have considerably lower
profiles of palmitic acid than other plant-based edible oils (Table 2). Palmitic acid is consid-
ered as a “potential cardiovascular risk factor”, and the low profile also makes mustard
and Canola oils healthier than other vegetable oils [91]. Another component of mustard oil,
erucic acid was found to lower chemically induced necrosis in mice hearts [344].

S. officinale leaves are used to treat chest pain, cardiac weakness, and other cardiac
problems and as a cardiotonic in folklore medicine [415-417]. The leaves were found to
contain cardioactive steroidal glycosides-corchorosid A and helveticosid [39,43]. Their
action is similar to the well-known cardiac glycoside digitalis which exerts its action on the
heart by increasing myocardial contractability [162,415,416], relieving weak heart muscle-
related complications. This may provide a scientific basis for the use of this plant in folklore
medicine as a cardioactive drug.

3.7. Counter Irritation Action

Historically, mustard seed paste, powdered seeds, and oils have been used topically to
create a counter-irritant effect by stimulating the removal of stored blood from capillaries. A
counter-irritant causes cutaneous vasodilatation by stimulating the sensory nerve endings
and inducing a neurogenic inflammatory response by the excitement of the capillaries of
the skin or border membrane. This elicits the dilation of the blood vessels and increases the
flow of blood [418], serving to block the intense pain at the site of application. The use of
heat to the area of pain before applying the counter irritants effectively maximizes their
pain-relieving action [419]. Glucosinolates produce a warming sensation and reddening
related to the dilation of capillaries on the skin and thereby provide relief from pain [420].
Because of these properties, B. nigra seeds are used in the crude drug industry in a poultice
inside a protective dressing [421] to apply over an inflamed, painful area of skin to improve
circulation and relieve pain [422,423]. Mustard plasters are a blend of oily or waxy mixtures
together with mustard seed powder alone or with other herbs and are usually placed on
the chest or abdomen wherever tenderness exists. In traditional medicine, the blends were
dispersed onto a cloth and wrapped tightly for storage and unrolled and applied when
required [424].

To treat peritonitis, an inflammation of the serous membrane lining the abdominal
cavity, a large mustard plaster was traditionally applied to the abdomen [425,426]. Likewise,
to treat cholera morbus, an acute gastroenteritis with symptoms of spasmodic diarrhea,
pain, and vomiting, mustard plasters were placed on the abdomen [427]. The application
of mustard poultices and paste produces the quickest relief for inflammatory and related
arthritic conditions by drawing out pustular constituents and toxins through the skin and
dispersing the congesting blood from inside the body. The rubefacient action causes mild
irritation to the skin, stimulating circulation to that area and relieving muscular and skeletal
pain [428]. For endocarditis, an inflammation of the internal lining of the heart, mustard
poultices to the chest were prescribed to hasten the absorption of the deposit of interstitial
fluids [427].

3.8. Antiinflammatory and Analgesic Action

Mustards have a long history of being used in pain management [429] as poultice,
cataplasms, or warm oil massage because of their counter irritant properties. Mustard seeds
are used by traditional practitioners as cataplasm which is a medical dressing containing
soft heated seeds that is spread on a sterile gauze or cloth and applied to the skin to treat
inflamed areas to improve circulation [430]. A warm mustard poultice or oil massage can
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also be applied to reduce pain and inflammation providing relief from arthritis, and back,
joint, muscle, and leg pain by stimulating blood flow. The heat activates the volatile allyl
isothiocyanate metabolite which acts by binding directly to the transient receptor potential
(TRP) ion channel receptor proteins located on the surface of animal cells responsible for
detecting the sensation of high temperature, pain, inflammation and additional stimuli
and sends signals to the brain [431,432]. The mechanism of action of isocyanates is similar
to the mechanism of capsaicin, the active component of chili peppers. Both target the
same populations of neurons, acting on TRPV1 and TRPA1 ion channels in nociceptive
neurons where they trigger a signaling cascade which leads to peripheral dilation and
permeabilization of blood vessels [433] and reversibly abolishes the induction of pain and
inflammation in nerve cells [431].

Other compounds in the mustard extracts have also been shown to have anti-inflammatory
effects [14]. Aerial parts of B. rapa subspecies chinensis (L.) Hanelt were applied to mice
following induced pain using either an acetic acid-induced writhing test or tail immersion
assay and the plant material was found to have significant analgesic effects [434]. Moreover,
dry mustard seed powder contains a significant amount of salicylate (mono-hydroxy-
benzoates, around 26 mg per 100 g powder) [435], a metabolite of aspirin widely used for
pain, fever, and inflammation [435,436]. The high content of selenium and magnesium in
mustard oil could also account for anti-inflammatory activity. The oil stimulates sweat
glands assisting to decrease temperature when the body is inflamed [242]. The aerial
parts of Erysimum corinthium were reported to possess triterpenes-amyrin which exerts
antinociceptive and anti-inflammatory properties by the activation of cannabinoid receptors
and inhibition of the production of pain mediators like cytokines and expression of NF-kB,
CREB, and cyclooxygenase 2 in mice [437,438] as well as lupeol which has strong anti-
inflammatory, antiarthritic properties [437,439]. Flavonoids can inhibit cyclooxygenase and
lipoxygenase enzymes and thus reduce the formation of pro-inflammatory pain mediators
(prostaglandins, leukotrienes, reactive oxygen species, and nitric oxide) and strongly inhibit
prostacyclin production [409]. Sinapis alba seed extract was found to reduce inflammatory
infiltrations of T-cells, dendritic cells, macrophages, nuclear factor (NF)-kB, interferon, and
interleukin in experimental mice cells; reduce some inflammatory mediators at the level of
mRNA and protein [440]. As mentioned previously B. nigra seeds were also found to raise
the high-density lipoprotein cholesterol (HDLC) level [316] which has anti-inflammatory
properties [441]. A regulatory protein NPR1 in B. juncea can inhibit NF-«B, a family of
dimeric transcription factor protein complexes which regulate inflammation and are linked
to cancer, inflammatory, and autoimmune diseases [353]. Another mustard metabolite,
sulforaphane was also found to inhibit the NFkB complexes [440]. Sulforaphane is also
reported to induce anti-inflammatory effect and increase the local antinociceptive actions
of morphine [442]. Indole-3-carbinol, a mustard component, can act as a ligand for the
aryl hydrocarbon receptor which has the ability to influence both immune-regulatory T
cell and T-helper 17 cell differentiation, inhibit delayed-type hypersensitivity by inducing
a shift from pro-inflammatory T-helper 17 cells to regulatory anti-inflammatory T cells
and thus play an important role against inflammation [197]. Cruciferins, one of the major
seed storage proteins [73], from rapeseed (B. napus) and radish (Raphanus sativus) showed
significant in silico overall occurrence frequency for DPP-III inhibitory peptides which
suggested that they may have high potential to possess an antinociceptive activity [443].

3.9. Antiarthritic Action

The use of mustard to treat arthritis is approved by Commission E in Herbal Medicines,
a German-based European scientific advisory body which approves substances and prod-
ucts used in traditional, folk, and herbal medicine [43]. Osteoarthritis is associated with
joint pain and characterized in part by defective articular cartilage [440,444]. The lack of
curative drugs to treat osteoarthritis means that the management of the disease, by the
use of bioactive phytochemicals, offers a novel and attractive approach to preventing the
onset and/or progression of the disease [440]. Sulforaphane in mustard seeds was found
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to impact articular cartilage in experimental osteoarthritis models, reducing the cytokine-
induced expression of proteinase enzymes that degrade cartilage from chondrocyte cells; in
addition, it inhibited the cytokine-induced degradation of cartilage explants; and ultimately,
it diminished cartilage destruction caused by osteoarthritis [373,440].

3.10. Diuretic Action

Mustards have been traditionally used as diuretics [21]. In general, diuretics help turn
excess body water into urine, interfering with normal kidney function by reducing the
amount of sodium and water absorbed back into the bloodstream [445]. Glucosinolates
of mustard seeds cause irritation to the mucus tissues of the renal system producing a
diuretic response. Mustard seeds contain crude mucilage which accounts for 5% to 20%
of the seed depending on the species [446]. Usually, this mucilage contains 80% to 94%
carbohydrates [13]. These carbohydrates also play a role in diuresis. For instance, B. juncea
mucilage was found to raise serum glucose levels, preventing the rise of creatinine levels
in urine and ultimately increasing the volume of urine in animal studies [317]. Mustard,
rapeseed, and Canola seeds also contain mannitol (0.7 mg/g dry weight) [447] which
acts as an osmotic diuretic. When mustard is ingested in large amounts, the mannitol is
absorbed slowly from the gastrointestinal tract into the blood stream, increasing the volume
of fluid [436]. The presence of mannitol causes the retention of water to balance the osmotic
pressure of the urine. The saponins and vanillin present in the seed also have diuretic
properties [448].

3.11. Anthelmintic Activity

Different mustard seeds and oilcakes were found to diminish the population of plant
parasitic nematodes in the soil when cultivated and are used in agriculture as rotation
crops to eliminate these pests [449]. Mustards have also been found to have anthelmintic
activity in humans and animals, helping to expel internal parasitic worms. Seeds and
purified secondary metabolites—sinigrin, sinalbin, gluconapin, epi-progoitrin, glucoiberin,
and glucoerucin, were tested on a simulated human gastrointestinal tract infected with an
earthworm (Pheretima posthuma) model as well as other nematodal models and found to
have dose-dependent anthelmintic potential [177,450,451]. The seeds were found to para-
lyze (vermifuge action) and eventually kill the earthworms (vermicidal activity). However,
compared to a standard anthelmintic drug, mebendazole, the mustard seeds required a
prolonged time to kill the worms at the dose of 20 and 40 mg/mL [452]. Additionally,
volatile compounds released from mustards prepared as infusions have been shown to be
effective for the expulsion of tapeworm but ineffective against hookworm, roundworm
and whipworm [450].

Mustard secondary metabolites may exert their anthelmintic activity by several mech-
anisms. They can produce end-products such as phenolics, ammonia, fatty acids, and
hydrogen sulfide which are directly toxic to the nematodes [453,454]. In previous studies,
it was also revealed that tannins [367] and the polyphenolic compound ellagic acid [368]
are present in mustard seeds in adequate amounts to produce anthelmintic activity in a
large dose. Additionally, mustard seed and oilcake preparations increase the activity of
bacteria and fungi which are antagonistic to parasitic nematodes [455,456].

Mustard seed is one of the ingredients of the commercial product Kochi free (Amber
technologies) used to control avian coccidiosis, a disease of birds and mammals that chiefly
affects the intestines, caused by coccidia, a single-celled parasite [457].

3.12. Emetic Action

Emetics are used to expel toxins from food or other poisonings by inducing vomiting
by either acting on the vomiting nerve center of the brain or locally by irritating the nerves
of the gastric mucus membrane. In the case of mustard, several isothiocyanate products
(methyl isothiocyanate, allyl isothiocyanate, and phenyl isothiocyanate) act as irritants
on the nerves of the stomach and mucus membrane [249] which consequently results in
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immediate nausea, vomiting, and colic [450]. When mustard seeds are eaten raw, trypsin
inhibitor proteins can also irritate the human digestive system [292,458] which may also
lead to vomiting.

3.13. Laxative Action

Sufficient ingestion of mustards stimulates gastric mucosa, increases pancreatic se-
cretions, and causes irritation to the gastrointestinal tract which decreases the amount of
time food remains in the intestine and consequently reduces water absorption. This results
in a higher-than-normal release of water in the feces causing laxation [265]. Additionally,
daily intake of mustard seeds as a condiment increases the blood circulation to the bowels,
increasing the rate of transit of food through the gastrointestinal tract and decreasing the
absorption of liquid from the food residue [392]. B. juncea seeds have been reported to alter
hepatic functions increasing the secretion of digestive enzymes into the gastrointestinal
tract and increasing digestion. Moreover, mustard seeds have an abundance of mucilage
(2-5% of dry seed weight) [13,459], composed of an extremely hydrophobic pectin-rich
polymer, which serves to increase viscosity and volume of the stool and acts as a laxative
against constipation [266]. Sinapis alba seeds contain hydrogen sulfide which irritates the
skin and mucous membranes [460]. The seeds also have a minor amount of trypsin inhibitor
proteins [292], which prevents the gastric enzyme trypsin from digesting proteins in the
small intestine [458]. When seeds are eaten raw, trypsin inhibitor proteins present can
irritate the human digestive system which can also cause laxation [292,458].

3.14. Development of Body Muscle and Aphrodisiac Action

Traditionally, mustards were used to develop body mass and as an aphrodisiac [268].
Brassinosteroids and isocyanates stimulate local capillaries and improve the blood flow at
the site of application. For this reason, eating mustard seed and application of mustard oil
are considered as an aphrodisiac and used to treat erectile dysfunction in some traditional
practices [30,279,461]. Extract of B. rapa administered orally was found to increase sperm
motility and volume in an animal reproductive system model [268]. Mustards also produce
aphrodisiac action by altering serum testosterone levels, and smooth muscle relaxation in
the male genitalia arbitrated by a spinal reflex. They can also induce androgenic effects
such as the development of muscle, increase blood pressure, and raise water/salt retention
in tissues and blood in animals [147]. Mustard brassinosteroids are structural analogs of
cholesterol-derived animal steroids, which promote growth regulation activity in plants
and can have an anabolic effect in humans by increasing protein synthesis and lowering
the breakdown of muscle proteins without coupling to the androgen receptor [462].

3.15. Treatment of Baldness

The application of mustard oil onto the skin surface increases blood flow and causes
vasodilation. Therefore, it has been used as a remedy to treat baldness by applying topically
on the skull [445], and on skin to revitalize body hair growth [463]. Traditionally, it is
recommended by herbal practitioners to rub the o0il onto the scalp twice a day to increase
hair growth and prevent further hair loss. The action of mustard in alopecia (hair loss)
is quite similar to that of minoxidil, an over-the-counter approved drug by the Food and
Drug Administration (FDA) to treat hair loss. Both act by stimulating cell proliferation
in the hair follicles on the scalp by providing increased blood flow and the stimulation of
prostaglandin synthesis [464]. Dandruff related to fungal infection on the scalp is another
cause of hair loss and baldness. The anti-fungal activity of mustard oil helps to prevent
fungal infections [465].

3.16. Effects on Blood Flow and Bodily Secretions

Mustard has a secretory effect on several organs and glands such as salivary, mucus,
milk, sweat, and bile glands, as well as increasing blood flow to the site of application [256].
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It has traditionally been used as a poultice of bread, milk, and mustard applied on the
breasts to promote lactation when a lactating mother’s milk is low [256].

Mustard seeds have also been found to increase the secretion of saliva in the mouth and
bile acids in the intestine and thus act as a digestive stimulant. Because of these properties
and as mentioned above, it has traditionally been used as an appetizer [276,277,466]. The
ingestion of garlic mustard leaves causes or increases sweating by opening the sweat
ducts [122].

Among the secondary metabolites of mustard, only the allyl isothiocyanate has been
reported to have a negative effect on secretion. This metabolite was found to directly inhibit
the (H* + K*)-ATPase and thus reduce the acid secretion in the membrane of the parietal
cells in the stomach [467].

In Asia, it is a common practice to massage a newborn with mustard oil and the oil
massage has been found to improve blood flow, blood vessel diameter, and ultimately
induce sleep, and increase the growth of the newborn [388,468].

3.17. Reduction in Fat and Body Weight

Traditionally, mustard is used to burn body fat and reduce body weight [469]. Rape-
seed proteins and their enzymatic hydrolysis products were found to inhibit fat accumu-
lation in the murine mesenchymal stem cells line in vitro, similar to or slightly less than
that of the widely used anti-obesity drug Orlistat which was used as a control [470]. In
another study, an anti-hypertensive peptide derived from rapeseed napin protein Arg-Ile-
Tyr, called Rapakinin, was found to have anorexigenic activity, suppressing the appetite
and lowering the intake of food and gastric emptying time in a rodent model [399]. It
was suggested that the Arg-Ile-Tyr protein acted by stimulating the secretion of the pep-
tide hormone cholecystokinin [471]. To elucidate the underlying molecular mechanism of
anti-obesity activity, Brassica juncea extracts were applied to in vivo high-fat diet-induced
obese mice [472-474] as well as in vitro pre-adipocyte cells [472]. Results suggested that
the oral administration of the extracts lowered the body weight, improved liver damage,
and inhibited lipid accumulation in high-fat diet-fed obese mice [472,473] compared to the
standard anti-obesity extract of Garcinia cambogia extracts with anti-obesity effects [475].
In particular, the extract reduced the mesenteric, epididymal, and total adipose tissue
weights as well as the bio-markers of obesity in blood namely serum triglyceride level,
total cholesterol profile, and high-risk-factor low-density lipoprotein (LDL) cholesterol and
increased the healthy high-density lipoprotein (HDL) cholesterol [474]. The in vitro assay
on preadipocyte cells indicated that the extract reduced the expression of the development
and accumulation of storage fat tissues as well as lipid synthesis proteins. Similar studies
on high-fat diet-fed obese mice models indicated that feeding rapeseed diacylglycerol oil
improved the serum obesity-related indices and lipid metabolism in the fat storage organs
including adipose tissue, liver, and intestine [476]. In addition, the extract escalated the
expression of heat generation and fatty acid oxidation proteins [473,474].

3.18. Antidepressant Effects

Traditionally, the application of mustard seed oil to the skin surface is believed to have
a soothing and relaxing effect. Constituents of rapeseed, including eicosapentaenoic acid,
and other omega-3 fatty acids regulate the hypothalamus—-pituitary—adrenal axis activity in
the brain and lower cytokines involved in inflammation [477] reducing stress. An extract of
B. rapa subspecies chinensis (L.) was tested for antidepressant activity and was found to have
significant antidepressant activity compared to a control [434]. Several antidepressants
have the ability to enhance glucocorticoid receptor function [478] which controls a number
of physiological functions like intermediary metabolism, skeletal growth, the performance
of the immune system and cardiovascular system, reproductive system, and cognitive
functions [479]. The rapeseed peptide, rapakinin, was also reported to have vasorelaxing
activity [402].
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3.19. Use in Adrenoleukodystrophy and Adrenomyeloneuropathy

Two components of mustard oil, erucuic acid and oleic acid, are constituents of
Lorenzo’s oil [344,480], which is used to treat associated inherited genetic disorders of the
nervous system, namely adrenoleukodystrophy found in children; and adrenomyeloneu-
ropathy, which arises in adults, both linked to the accumulation of saturated very-long-
chain fatty acids in the brain white matter, adrenal glands, fibroblasts, and plasma [344,480].
The application of Lorenzo’s oil inhibits the synthesis of very-long-chain fatty acids as well
as limits the accumulation of saturated long-chain fatty acids in the brain [480,481] and
in the blood [482]. Docosahexaenoic acid (DHA) in rapeseed oil is a major component
of the nervous system including in the brain and eye tissues and supplementation of
DHA and antioxidants are thought to be two of the reasons that improve nervous system
disorders [483].

4. Adverse Effects and Other Antinutritional Effects of Mustard

In addition to the beneficial effects of mustards for human health, there is also evidence
that they can cause some adverse effects, ranging from minor allergenic reactions to life-
threatening anaphylactic shock to cardiac arrest. However, these reactions vary greatly
depending on the dose and from individual to individual.

4.1. Cardiac Effects

S. officinale seeds contain the steroid glucosides corchorosid A and helveticosid, which
are utilized to treat cardiac dysfunction by increasing myocardial contractability [39].
However, the consumption of large amounts of leaves and seeds of S. officinale (greater than
5 g per day) can affect the cardiovascular system by hyperactivating the heart leading to
palpitations and even causing death depending upon the dose and the medical history of
the patient [43,460].

4.2. Allergic Effects

Mustard seeds are recognized by the human immune system, triggering an IgE-
mediated allergic reaction [73,484,485]. In an allergic reaction, the immune system pro-
duces antibodies to fight seemingly harmless substances, this causes a range of responses
from minor irritation, and gastrointestinal upset, to the more serious anaphylaxis [73].
Mustard /rapeseed intolerance or IgE-mediated allergy is the most common among the al-
lergies associated with foods, accounting for about 7% of allergic patients globally [486,487].
Mustard seeds contain considerably high amounts of indigestible 25 albumin-type napin
proteins which are not digested by pepsin in the human digestive tract and remain in-
tact [488]. The undigested protein can induce an immediate immune response in the
gastrointestinal tract [489] by increasing the levels of specific IgE antibodies and initiating
the response of inflammatory mediators producing antigen—antibody reactions [487], and
in severe cases can result in anaphylactic shock leading to death.

Among European countries, France is the largest producer and consumer of mustard
products, and after eggs, peanuts, and cow’s milk, mustard is the fourth most significant
allergen [90]. Conversely, mustard has been reported to reduce the allergenic response
caused by contact dermatitis by lowering the quantity of infiltrating Langerhans cells in
tissue and suppressing the expression of lymphocyte activating factor, tumor necrosis factor
alpha, and interleukin (IL)-6 mRNA [14,352].

4.3. Goitrogenic Effects

Mustard seeds and rapeseeds contain glucosinolates bound to glucose (Section 2.2,
Table 2) which break down into the goiter-causing agent goitrin by the enzymatic action of
myrosinase (Figure 2). The consumption of Brassicaceae plant products may result in the
lowering of thyroid function and enlargement of the thyroid gland due to the presence of
these goitrogenic glucosinolates and their metabolites epigoitrin, progoitrin, napoleiferin,
and thiocyanate [464].
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Progoitrin (2-hydroxybutenyl-glucosinolate) Goitrin (5-ethenyl-1,3-oxazolidine-2-thione)
Figure 2. Enzymatic hydrolysis of progoitrin by the action of myrosinase yields the potent goitrogenic
metabolite goitrin. The same reaction happens in the intestine by the action of bacterial thioglucosidases.

In humans and animals, the dietary micronutrient iodine facilitates the production of
thyroid hormone, the hormone necessary for normal metabolic function and growth. Some
glucosinolate metabolites namely goitrin and gluconapoleiferin inhibit the thyroperoxidase
enzyme which leads to the decreased production of the thyroid hormone, resulting in the
enlargement of the thyroid tissue which is the disease goiter [490]. Another glucosinolate
hydrolysis metabolite, thiocyanate, decreases iodine uptake by the thyroid. As a conse-
quence, the synthesis of the thyroid hormone is reduced [491]. To minimize this, the thyroid
gland has to increase its function and become enlarged [492]. Selective breeding of Bras-
sicaceae mustards has lowered the amounts of glucosinolates, for example, conventional
rapeseed meals can have 3-8% glucosinolate whereas Canola contains less than 0.2% [493]
which is a level below that causing physiological effects associated with thyroid problems.

4.4. Hematological Effects

B. oleracea has been reported to have hematological effects—antiplatelet and hypoc-
holesterolemic activities in experimental rabbits [494]. High ingestion of Brassica vegetables
including rape, kale, and raphnobrassica may cause the accumulation of high concentra-
tions of nitriles in cattle blood which might reduce the ability of carrying oxygen capacity
and thus there is a shortage of sufficient healthy red blood cells or hemoglobin in blood
to carry oxygen to the tissue. This condition is termed as ‘kale anemia’, ‘red water’, or
specifically ‘hemolytic anemia” in cattle [477]. Small to moderate ingestion can cause scours,
salivation, abdominal pain, abortions, staggers, and convulsions while a large amount of
ingestion can often result in sudden death in gazing cattle [495,496]. B. rapa var. campestris
can accumulate toxic quantities of s-methyl-L-cysteine and s-methyl-L-cysteine sulfoxide
(SMCO) in the aerial organs including flowers, leaves, and stems. After ingestion, rumen
microorganisms transform this to toxic dimethyl disulfide which causes hemolytic anemia
in livestock. Consumed in large amounts, SMCO (more than 1% of dry matter of animal
feed) can be toxic to certain livestock [497,498]. However, there is a dearth of reports on the
hematological effects of brassica vegetables on human health probably because they do not
eat those in bulk amounts and eat mostly after cooked.

4.5. Neurological Effects

Thiamine (vitamin B1) is a coenzyme necessary for the metabolism of carbohydrates,
fats, and proteins [499]. The intricate chemical composition of Brassica vegetables causes
thiamine depletion in ruminants. In addition, Brassica vegetables are rich in sulfur. The
alteration of thiamine level and concurrent exposure to sulfur cause the necrosis of gray
matter of the cerebral cortex in the brain and swelling in the ruminants known as polioen-
cephalomalacia [499]. In this neurological disease, cattle may experience sudden onset of
blindness, muscle tremors and convulsions, head-pressing, star gazing), rapid eye move-
ments, incoordination, recumbency, and later, death. If the clinical signs could addressed at
the early stage, the toxicity could be successfully treated with vitamin B1 [496,499].
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5. Possible Application in Pharmaceutical Manufacturing

Rapeseed oil and its metabolites have the potential to be used as active ingredients
and excipients for pharmaceutical products. As an example, rapeseed oil was found to
enhance in vitro platelet aggregation and thromboxane production [85]. Thromboxane is
one of the main cyclooxygenase products of human platelets and a potent vasoconstrictor
which enhances the activity of platelets [500]. Patients who have bleeding disorders or
suffer from thrombosis are treated with substances that boost in vitro platelet aggregation
and thromboxane production and for this, rapeseed 0il could have possible medicinal
applications. The absorption and binding pattern, sensitivity, and efficacy of the mustard
oil could be tested on the skin surface and also with human serum [501] for the identifi-
cation of sensitivity patterns and could be used topically to stop bleeding at the site of
hemorrhaging [409,502].

In Asian traditional herbal medicine, rapeseed oil is blended with active painkilling
ingredients to produce a balm to treat acute traumatic pain [503]. The mustard seed
essential oil could be a safe and favorable vehicle also for the formulation of anti-microbial
compounds in soft gelatine microcapsules because it has strong bactericidal properties
and mustard oil is found to provide strong chemical stability under a range of relative
humidity and temperature when encapsulated in complex coacervation microcapsules.
The presence of mustard could also help to harden the microcapsules depending on the
selection of the coacervate microsphere [157]. The use of protein and other components as
active ingredients and excipients is still marginally developed [4]. Drugs which are required
to stay longer in the stomach for maximum effect can be formulated with the addition
of mustard seed fibers which would allow for prolonged gastric exposure (as mentioned
in the previous section). Research found that the major rapeseed protein cruciferin is an
ideal material as a carrier molecule for the delivery of poorly soluble, hydrophobic, and
less bioavailable bioactive compounds like curcumin. Therefore, cruciferin could be used
as a drug vehicle in nanoencapsulation because of its amino acid composition resistance
to gastric degradation; biocompatibility and good emulsifying and gelling properties;
formation of homogeneous, fairly dense spherical and stable structures in colloid systems;
and non-toxic nature to other drug carriers and vehicles as well as enhancing the cellular
transport of active ingredients [504-508]. It was effectively used in curcumin delivery
systems as a polyelectrolyte complex nanocarrier in encapsulated curcumin preparations
and it was found to increase the bioavailability of curcumin [507].

6. Summary and Outlook

The potential health benefits of mustards are enormous. Although the chemical charac-
terization of metabolites present in mustards has been performed, more studies are needed
on the individual components and their bioactivity. Where analyses have been carried out,
experimental evidence is mostly based on in vivo rat and mice models; however, rodent
models are limited in their ability to mimic the extremely complex processes of human
physiology. For example, differences in the action of sulforaphane and neoglucobrassicin
on the induction of the quinone reductase enzyme and the inhibition of nitrite produc-
tion were detected when these metabolites were tested in human and rodent cell lines.
Neoglucobrassicin was found to inhibit the effect of sulforaphane on the quinone reductase
enzyme in human hepatoma cells but not in rodent hepatoma cell lines [509].

Another example showing the importance of using correct models is related to erucic
acid toxicity. In the United States and many European countries, consumption and import of
mustard oil are restricted due to the high erucic acid profile. While no adverse effects have
been reported for human exposure to erucic acid, acceptance levels have been determined
based solely on animal models [54], with no direct analysis of acceptance levels for human
exposure. To date, there are no known human clinical trials conducted to evaluate the
therapeutic activity of the individual chemical components of mustard.

A mixture of multiple plant secondary metabolites can have synergistic effects but
also can even antagonize the activity of each other [321]. For instance, the effect of iberin
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on modifying phase I and phase II detoxification enzymes in experimental rats was shown
to have an increased effect when combined with a mixture of glucosinolate derivatives
than when given alone [152]. Complexation of some known drug molecules with the
natural mustard secondary metabolite can also enhance or synergize the activity of the
secondary metabolite or the activity of both of the molecules. For example, the complexation
of allyl isothiocyanate with the known painkiller drug celecoxib, which alone has no
evident anti-cancer activity, was found to exert greater inhibition of urinary bladder cancer
growth and muscle invasion in a rat bladder cancer cell line than that of either allyl
isothiocyanate or celecoxib alone [156]. To explore the effects of the chemical modification
of individual natural mustard secondary metabolites, effects of concurrent administration or
complexation with other molecules or chemical groups, more studies, including structure—
activity relationship (SAR) and quantitative structure-activity relationship (qQSAR) analysis
and in silico approaches need to be carried out. Lots of work is still needed before the
phytoconstituents of mustard seeds can make their way from traditional folklore uses into
the modern mainstream medical domain.

7. Conclusions

The diverse components of mustards have been employed against a wide range of
altered health conditions since their domestication in ancient times up until the contem-
porary days. However, the current scientific knowledge regarding the phytochemical
composition and biological activities associated with Brassicaceae oilseeds and mustards,
insights into their mechanism of action, and potential therapeutic applications is limited.
The medicinal properties of these mustard species can be attributed to the diverse array of
bioactive compounds they produce, including sulfur-containing glucosinolates, omega-3
fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins, S-methyl cysteine sulfoxide,
and trace elements. This study underlines and links traditional knowledge with contem-
porary scientific approaches to bridge the gap between ancient medicinal practices and
modern healthcare solutions. The diversity in chemical nature and variety of bioactivities
make them intriguing starting templates for the development of novel therapeutics. The
information on the bioavailability and pharmacokinetics could be investigated using the
latest technologies like UPLC-MS/MS, GC-MS/MS, and NMR-based metabolomics, and
advanced animal and cell models could be used to determine the safe dose for human
health benefits and ensure rational dosage regimen.
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