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Abstract: Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has
been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties.
However, mammalian transporters and receptors display micromolar binding constants; these
are consistent with its typically micromolar tissue concentrations but far above its serum/plasma
concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport
and mechanisms of action, in that the main influx transporters characterized to date are equilibrative,
not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose
in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads
to the production of KYNA but also to that of many other co-metabolites (including some such as
3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey,
KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable,
and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it
might be added exogenously without disturbing upstream metabolism significantly. Many examples,
which we review, show that it has valuable bioactivity. Given the above, we review its potential
utility as a nutraceutical, finding it significantly worthy of further study and development.
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1. Introduction

Many natural products, including normal human metabolites, are of interest as can-
didate nutraceuticals since their deficiency, while not necessarily causing overt disease,
may lead to a less-than-optimal functioning of the organism of interest [1]. Accordingly,
improved functioning, and the potential for an extended and healthy lifespan, might then
be realized by the addition of the nutraceutical. Research interest in such nutraceuticals,
which when added to and delivered in food matrices are referred to as ‘functional foods’, is
consequently considerable (e.g., [2–28]).

As part of a continuing survey of nutraceuticals, where we previously focused on
ergothioneine (e.g., [18,29]), we determined that kynurenic acid (KYNA) might be of
nutraceutical value. Here, we bring together some of the evidence that leads us to suppose
that given its somewhat limited availability in normal diets, not least as the end product of
a mammalian metabolic pathway, KYNA might indeed have a nutraceutical effect when
provided exogenously.

2. Discovery, Structure and Some Biophysical Properties

Kynurenic acid (quinurenic acid, 4-oxo-1,4-dihydroquinoline-2-carboxylic acid, or 4-
hydroxyquinoline-2-carboxylic acid) (https://pubchem.ncbi.nlm.nih.gov/substance/4854,
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accessed on 19 August 2024) was first identified in the urine of dogs by Justus von Liebig
in 1853 [30]. It can adopt both keto and enol tautomers, as illustrated in Figure 1.
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In humans, tryptophan is one of nine essential proteinogenic amino acids that must 

be obtained from the diet (i.e., we do not biosynthesize it [44]), while it (and its metabolites 
such as KYNA) may also be produced by the gut microbiome [45–48] (and transported in 
a manner reflected in the gut–brain axis [49–60]) or by some other minor pathways [61]. 
More than 95% of tryptophan is said to be degraded via the “L-kynurenine pathway” (KP) 
[62–64], consistent with mathematical models [65], and KYNA is one terminal part of the 
tryptophan degradation pathway, occurring via N-formylkynurenine and L-kynurenine 
(KYN) [66]. Note, however, that not all arms of this pathway exist in all cells: they are 
often segregated [67–72], implying the need for single-cell analyses [73–79]. While L-
kynurenine is of interest as it is a precursor of NAD+ in eukaryotes (Figure 2) [80,81], our 
focus is on KYNA, made via the terminal stages of the pathway leading to KYNA from 
tryptophan (Figure 3), which goes via N-formyl kynurenine and L-kynurenine, and thus 
consists of three enzymes. Depending on the exact organism [82], these are tryptophan 
dioxygenase/indole dioxygenase (EC 1.13.11.11 and 1.13.11.52), kynurenine formamidase 
(E.C. 3.5.1.9) [83], and kynurenine oxoglutarate transaminase (E. C. 2.6.1.7). We note in 
passing that some members of the kynurenic acid pathway such as quinolinic acid [84,85] 
and 3-hydroxy-L-kynurenine [86] are considered neurotoxic (and KYNA can overcome 
this toxicity [87–96]) and so adding upstream elements, or elements that are more or less 
in equilibrium with them, is not necessarily a good idea. Additionally, KAT reactions in 
humans are normally considered to be of relatively minor significance due to the higher 
Km for its two substrates (in the millimolar range), when compared with the Km for L-
kynurenine of the other two competitive reactions (catalyzed by kynurenine 
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In aqueous solution at neutral pH, the keto form predominates [31–33], although
a variety of crystal polymorphs are known [34]. It exhibits modest aqueous solubility
(XlogP = 1.3) (pI~2.1 [35]), is very stable thermally [36,37], and can act as a photosensi-
tizer [33,38,39] and metal chelator [40–43].

3. Biosynthesis and Phylogenetic Distribution

In humans, tryptophan is one of nine essential proteinogenic amino acids that must be
obtained from the diet (i.e., we do not biosynthesize it [44]), while it (and its metabolites
such as KYNA) may also be produced by the gut microbiome [45–48] (and transported in
a manner reflected in the gut–brain axis [49–60]) or by some other minor pathways [61].
More than 95% of tryptophan is said to be degraded via the “L-kynurenine pathway”
(KP) [62–64], consistent with mathematical models [65], and KYNA is one terminal part of
the tryptophan degradation pathway, occurring via N-formylkynurenine and L-kynurenine
(KYN) [66]. Note, however, that not all arms of this pathway exist in all cells: they are often
segregated [67–72], implying the need for single-cell analyses [73–79]. While L-kynurenine
is of interest as it is a precursor of NAD+ in eukaryotes (Figure 2) [80,81], our focus is on
KYNA, made via the terminal stages of the pathway leading to KYNA from tryptophan
(Figure 3), which goes via N-formyl kynurenine and L-kynurenine, and thus consists of
three enzymes. Depending on the exact organism [82], these are tryptophan dioxyge-
nase/indole dioxygenase (EC 1.13.11.11 and 1.13.11.52), kynurenine formamidase (E.C.
3.5.1.9) [83], and kynurenine oxoglutarate transaminase (E. C. 2.6.1.7). We note in passing
that some members of the kynurenic acid pathway such as quinolinic acid [84,85] and
3-hydroxy-L-kynurenine [86] are considered neurotoxic (and KYNA can overcome this
toxicity [87–96]) and so adding upstream elements, or elements that are more or less in equi-
librium with them, is not necessarily a good idea. Additionally, KAT reactions in humans
are normally considered to be of relatively minor significance due to the higher Km for its
two substrates (in the millimolar range), when compared with the Km for L-kynurenine
of the other two competitive reactions (catalyzed by kynurenine monooxygenase (KMO)
and kynureninase A), that are in the micromolar range [97,98]. However (and see below),
since KYNA is both seen as neuroprotective (e.g., [93,99,100]) and is essentially the terminal
element and an irreversible step in this part of the kynurenine pathway, it is reasonable
that provided it and its metabolites are beneficial or at least harmless, it can be added
with impunity. Importantly, no diseases seem to be associated with the overexpression of
KAT [101], the enzyme that is responsible for the synthesis of KYNA. The ability to add
KYNA without affecting levels of molecules such as L-kynurenine directly is a core idea
behind its potential use as a nutraceutical.
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alyzed to the unsTable 4-(2-aminophenyl)-2,4-dioxobutanoate intermediate by a kynurenine trans-
aminase (KAT1-4) (E. C. 2.6.1.7), which is readily converted to KYNA by a spontaneous reaction. 
The spontaneous cyclization of the intermediate to KYNA is unique to KYNA biosynthesis, and it 
makes this reaction effectively irreversible meaning that exogenous KYNA will not be converted to 
L-kynurenine nor its toxic derivatives. 
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the KAT enzyme(s) responsible for the production of KYNA from L-kynurenine are both 
rather high, indicating a tendency for linear increases in KYNA concentrations as that of 
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Another ODE model for tryptophan degradation, notably in the liver, is given by 
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coefficient (0.95) of the KAT steps on the flux towards KYNA is really dominating here. 
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(IDO1, IDO2) (EC 1.13.11.11 and 1.13.11.52), depending on the organism/tissue. 2. NFK is then
converted to L-kynurenine (KYN) by the kynurenine formamidase (E.C. 3.5.1.9). 3. Finally, KYN
is catalyzed to the unstable 4-(2-aminophenyl)-2,4-dioxobutanoate intermediate by a kynurenine
transaminase (KAT1-4) (E. C. 2.6.1.7), which is readily converted to KYNA by a spontaneous reaction.
The spontaneous cyclization of the intermediate to KYNA is unique to KYNA biosynthesis, and it
makes this reaction effectively irreversible meaning that exogenous KYNA will not be converted to
L-kynurenine nor its toxic derivatives.

4. The Metabolic Pathway from Tryptophan to KYNA

Although a proper assessment of the flux to KYNA using metabolic control anal-
ysis (see [103–107]) seems not to have been performed, ODE-based mathematical mod-
elling of the overall pathway has been [108], the interactions with vitamin B6 (pyridox-
amine/pyridoxal) being of particular interest from a nutritional point of view as this is a
cofactor for the KAT reaction. Readers are referred to the article [108] for a summary of the
enzyme kinetic parameters of this pathway in mammals. Notably, both the Km and kcat
values of the KAT enzyme(s) responsible for the production of KYNA from L-kynurenine
are both rather high, indicating a tendency for linear increases in KYNA concentrations as
that of L-kynurenine is raised [109].

Another ODE model for tryptophan degradation, notably in the liver, is given by
Stavrum et al. [65], available at https://www.ebi.ac.uk/biomodels/MODEL1310160000
(accessed on 19 August 2024) and https://www.ebi.ac.uk/biomodels/BIOMD0000000602
(accessed on 19 August 2024), though the levels of KYNA are not reported in the paper.
Importantly, the Copasi [110–112] files in SBML [113] version of the model available at
https://www.ebi.ac.uk/biomodels/MODEL1310160000#Files (accessed on 19 August 2024)
also indicate (i) that the KAT(1-4) reactions are seen as irreversible, and (ii) the flux-control
coefficient (0.95) of the KAT steps on the flux towards KYNA is really dominating here.
Of course, the values used may be varied, and a summary of kinetic parameters from
different systems is given in Supplementary Information (Supplementary Table S1). Tissue
distributions are tabulated in Supplementary Table S2.

Note too that a structural metabolic network model is also available as part of Re-
con2 [114] (https://www.ebi.ac.uk/biomodels/MODEL1311110001, accessed on 19 August
2024) and see [115]). Recon2 is a consensus network reconstruction based on the strategy
used in [116] to produce one in baker’s yeast. Because just three enzymes catalyze the flux
from the main dietary source of KYNA (viz L-tryptophan), we consider it worthwhile to
review their properties in broad outline.

4.1. Tryptophan Dioxygenase/Indole Dioxygenase (EC 1.13.11.11 and 1.13.11.52)

Tryptophan dioxygenases (TDO) and indole dioxygenases (IDO) are heme-containing
enzymes involved in the initial (and what is considered to be the most rate-limiting) step
of the KP, catalyzing the oxidative cleavage of the indole ring of L-Trp to produce NFK
(Figure 3) [117]. While IDO are widely distributed in the metazoan, in many bacterial
species and fungi, and more recently have been identified in choanoflagellates and some
ciliate species [118–123], TDO are also present in metazoan, bacteria and choanoflagellates,
but have not been identified in fungi [124]. On the other hand, multiple IDO isoforms have
been identified in fungal species [119,120]. Among them, IDOα isoforms usually show
the lower Km values while IDOβ isoforms show higher Km but higher reaction velocities,
resulting in higher catalytic efficiencies and suggesting that IDOβ could functionally
substitute IDOα in fungal L-Trp metabolism for NAD+ production [120]. A third fungal
IDO isoform, IDOγ, generally shows very low enzymatic activity for L-Trp (with catalytic
efficiencies ranging around 1/100 of those determined for IDOα and IDOβ); however,
IDOγ is very well conserved in fungi, suggesting that it might play an important role in
those organisms, beyond NAD+ production [120].

Similarly, and apart from TDO, two distinct IDO genes have been identified in
vertebrates. In humans, IDO1 and IDO2 are encoded by genes located in tandem on
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chromosome 8, which suggests gene duplication during evolution [125,126]. Although
IDO and TDO catalyze the same reaction, there are fundamental differences between
their structures, substrate specificity, tissue distribution and, consequently, function (see
Supplementary Information).

In humans, IDO1 (hIDO1—UniProt P14902) has 403 amino acids, is monomeric, and
with the exception of the liver, is widely distributed and constitutively expressed in multiple
different tissues in healthy conditions, including lungs, small intestine, lymphatic system
organs, female reproductive organs and the placenta [127,128]. Additionally, hIDO1 is
constitutively expressed in several tumor cells, what is considered to make it a potential
candidate for targeted anti-cancer therapy [129,130].

Under normal physiological conditions, IDO1 plays a fundamental role in immune
regulation, acting as a checkpoint for the modulation of immune response mediated by
antigen-presenting cells and exerting an immunosuppressive function, mediating maternal-
fetal tolerance and protecting the fetus from maternal immune rejection [131]. In most
cell types, however, hIDO1 is not only expressed constitutively under normal physio-
logical conditions, but the enzyme is strongly induced in response to inflammation and
infection stimuli, with IFN-γ being the main inducer [132,133], making IFN-γ-mediated
hIDO1 induction and local L-Trp depletion an important factor able to inhibit pathogen
growth [134].

In terms of enzyme activity, hIDO1 has the highest affinity for L-Trp (Km~20 µM) when
compared with hIDO2 and hTDO, and it is also able to catalyze the oxygenation of D-Trp
(Kcat~2.97 s−1), although the Km value for L-Trp is >100-fold higher than for D-Trp, suggest-
ing a much weaker binding for D-Trp. Additionally, hIDO1 has a broad substrate specificity,
catalyzing the oxygenation of a variety of indoleamines such as 5-hydroxytryptophan,
1-methyltryptophan, 5-methyltryptophan and 5-fluorotryptophan [135] and even serotonin
in other organisms [136]. The activation of IDO1 activity requires a one-electron reduction
of the heme—from the ferric (FeIII) state to the ferrous (FeII) state—facilitating the binding
of O2 and L-Trp to the ternary complex [135]. The superoxide anion radical (O2

•−) is the
reducing cofactor and co-substrate for the purified IDO1 enzyme [137].

The human homolog of hIDO1, hIDO2 (UniProt Q6ZQW0), is also a monomeric
protein with 407 amino acids that displays enzymatic activity towards L-Trp, although
with a much higher Km, around 6.8 mM, when compared with hIDO1 and hTDO [138,139].
This value is more than 100-fold higher than typical physiological L-Trp levels [140,141],
making it questionable if IDO2 plays a direct role in L-Trp metabolism. Yuasa and Ball
showed that hIDO2 expression in Saccharomyces cerevisiae strains auxotrophic for nicotinic
acid was not able to rescue the auxotrophic phenotype in the yeast, while expression of
hIDO1 was, suggesting that the lower activity of hIDO2 might not be enough for NAD+
synthesis in yeast [121].

hIDO2 is not well characterized and little is known about its tissue distribution—at
least at the protein level—and function. That is mainly due to (i) the complexity of hIDO2
transcription and, (ii) the lack of an accurately validated antibody. The hIDO2 gene
generates five alternative transcripts, of which only one encodes the full-length protein [126].
Additionally, the gene contains two functional polymorphisms in the coding sequence:
the first one, a nonsynonymous substitution (R248W) reduces hIDO2 catalytic activity by
~90% and the second one, a premature stop codon (Y359X), completely abolishes it. These
polymorphisms have high prevalence in some populations—up to 50% [126].

Full length hIDO2 mRNA was detected in placenta and brain by RT-PCR, while
primers specific for the hIDO2 exon 10 (common to all hIDO2 transcript forms) detected
hIDO2 mRNAs in the liver, intestine, thymus, lung, spleen and kidney [126]. At the protein
level, a few studies have identified hIDO2 in lungs, dendritic cells and in the interface
between the placenta and the fetus [142–144].

By contrast to hIDO2, mouse IDO2 (mIDO2) is better studied. The constitutive ex-
pression of mIDO2 was detected in many organs at the protein and mRNA level (see
Supplementary Table S1) and additionally, mIDO2 mRNA was upregulated in dendritic
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cells and mesenchymal stem cells treated with IFN-γ [132]. A recent study showed that
IDO2 mediates autoreactive B-cell responses in mice, contributing to an exaggerated in-
flammatory response and the severity of joint inflammation in a model of autoimmune
arthritis [145].

Unlike IDO1 and IDO2, hTDO (UniProt P48775) is a tetrameric enzyme [146] that
is primarily confined in the liver and brain, where it seems to remain unresponsive to
immunological stimuli; therefore, functioning as the main regulator of systemic tryptophan
levels under physiological conditions [147]. As the main ‘housekeeping’ (see [148]) enzyme
responsible for metabolizing the dietary tryptophan, hTDO is upregulated when the blood
concentration of tryptophan rises above ‘physiological’ levels [149]. hTDO is well studied
as a potential drug target, as its mRNA expression appears to be upregulated in many
tumor types [150]. As it is mainly expressed in the liver and brain, human hepatocarci-
noma usually present increased hTDO expression and many studies have suggested the
involvement of hTDO in CNS diseases such as Alzheimer’s, Parkinson’s and Huntington’s
disease [151–153].

Another difference of hTDO when compared to hIDO is that hTDO has a high substrate
specificity, L-Trp being the only relevant physiological substrate, although there is evidence
for oxidation of D-Trp, but with a very low activity, (low kcat at the high concentration of
D-Trp tested) [154]. Additionally, the binding affinity of L-Trp to the ferric and ferrous
forms of hTDO is very similar, suggesting that hTDO does not specifically favor substrate
binding to the ferrous enzyme, as observed for hIDO [154].

4.2. Kynurenine Formamidase (E.C. 3.5.1.9) [83]

Human kynurenine formamidase (KF) (UniProt Q63HM1) or arylformamidase (Afmid)
has 303 amino acids and catalyzes the second step of the KP from L-trp to KYNA by
converting NFK to KYN (Figure 3). Its Alphafold-calculated structure is available, although
very little is known about the human KF (hKF).

Pabarcus and Casida predicted [83] and later identified [155] the catalytic triad of the
mouse KF (mKF). They showed that point and combined mutations in the Ser162, Asp247,
and His279 (S164, D147 and H279 in the human protein—our unpublished alignment using
the tools provided in [156]) completely abolished the conversion of NFK to KYN [155].

In mice, mKF is primarily expressed in the liver and to a less extent in the kidney [157].
Afmid knockout mice showed elevated plasma concentrations of NFK, KYN and KYNA
(as well as kidney failure), consistent with low levels of mKF expression [158]. In S.
cerevisiae, a KF knockout strain showed an accumulation of NFK and a slow growth
phenotype in absence of exogenous nicotinate [159]. A range of compounds, including
organophosphate and methylcarbamate insecticides are potent inhibitors of KF [160,161],
and in vivo treatment of mouse with organophosphorus acid triester diazinon resulted in
the accumulation of NFK and reduced KYN biosynthesis in the liver and a 5-fold increased
plasma KYN and 5- to 15-fold increased concentrations of KYNA and xanthurenic acid
in urine [162]. This suggested a strategy for the development of safer insecticides of this
type [163].

4.3. Kynurenine Oxoglutarate Transaminase (E. C. 2.6.1.7)/Kynurenine Aminotransferase (KATs)

Overall, the simple pathway structure alone, plus other observable properties such
as the modelling above and correlations between KAT levels and KYNA concentrations,
leads one to suppose that this reaction, as catalyzed by various KATs (kynurenine amino-
transferase), is especially important to the synthesis of KYNA. The reaction (BRENDA,
https://www.brenda-enzymes.org/enzyme.php?ecno=2.6.1.7, accessed on 19 August 2024)
has been shown to be effectively irreversible [164,165] in the direction of KYNA synthesis,
and is treated as such in the ODE models [65]. The transamination of kynurenine by
KATs yields an unstable keto acid product, 4-(2-aminophenyl)-2,4-dioxobutanoate, which
is spontaneously and rapidly cyclized to KYNA [82,166] (Figure 3). This, importantly, is
what makes this step functionally irreversible. KAT orthologous are found in all king-

https://www.brenda-enzymes.org/enzyme.php?ecno=2.6.1.7
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doms [166], and a cross-species comparison of KAT structures shows a high conservation
of the monomer architecture, consisting of an N-terminus arm, a small and a large do-
main [66,167,168].

Depending on the microbe, the function of KYNA is unclear, as inhibiting its signifi-
cant production by inhibiting the relevant (Aro8/9) KAT enzymes in yeast, for example,
has no significant effects [169]; arguably this enzyme activity may help detoxify excess
tryptophan [169] (and excess amino acids can certainly be toxic to microbes [170]). By
contrast, Genestet et al. observed that Pseudomonas aeruginosa clinical isolates present
a high transcription level of the kynaA gene (the first gene involved in the kynurenine
pathway, converting L-Trp to L-kynurenine) and produce high amounts of kynurenine
when in contact with human neutrophils, leading to increased bacterial survival. By testing
kynurenine-overproducing (∆kynU—gene involved in the conversion of L-kynurenine
into L-anthranilate) and kynurenine-deficient (∆kynA) P. aeruginosa, they determined that
L-kynurenine inhibits ROS production by neutrophils, but when testing the specific mecha-
nisms, they failed in showing that L-kynurenine had a direct effect on NADPH oxidase
(the main ROS producer in neutrophils) or was a potent scavenger of superoxide anions in
a superoxide-producing nonenzymatic PMS–NADH system. In contrast, KYNA appeared
as the best scavenger of O2

− among the molecules tested [171]. In this case, an increase
in L-kynurenine production by P. aeruginosa, especially when the pathway branch leading
to anthranilate production is suppressed, might lead to an increase in the production of
KYNA [172], which appears to be the best scavenger, although more studies are necessary
to define its role over L-kynurenine in P. aeruginosa survival. Furthermore, KATs can play
an essential role in bacterial survival and amino acid synthesis/nitrogen assimilation due to
their higher affinity and efficiency for other natural substrates over L-kynurenine [168,173].

There are four human KATs, summarized by Rossi [66] and structures are available,
e.g., for KAT1 [174,175], KAT II [176–179], KAT III (as a homology model [180]) and KAT
IV [181]. There are certain differences in substrate specificity, but all are homodimeric
pyridoxal phosphate-dependent enzymes [165]. Because of their importance to endogenous
KYNA synthesis, we consider each in turn.

4.4. KAT1

The main isoform of KAT1 (Uniprot Q16773) has 422 amino acids, a broad substrate
specificity as an aminotransferase and also catalyzes β-lyase reactions using several cysteine
S-conjugates as substrates. It exhibits a preference for glutamine as amino donor (see
Supplementary Table S2) and was demonstrated to have aminotransferase activity towards
5-S-L-cysteinyldopamine, the cysteine S-conjugate of dopamine; this is significant as 5-S-L-
cysteinyldopamine is neurotoxic and markedly increased in the substantia nigra of patients
who died of Parkinson’s disease [182,183]. As judged by the protein atlas [184], KAT I is
widely distributed in human tissue, including brain [185].

In vitro KAT-1 can use many α-keto acids as amino group acceptors and although it has
detectable activity on oxaloacetate and pyruvate, the specific activity on these two α-keto
acids is very slow, making unlikely that they are physiological substrates for human KAT
I [186]. Additionally, hKAT1 conversion of L-kynurenine to KYNA (using α-ketobutyrate
as α-ketoacid) is strongly inhibited by tryptophan, phenylalanine, glutamine and cysteine
(2 mM of each amino acid inhibits over 50% of aminotransferase activity) and by indo-3-
pyruvate (0.2 mM inhibits 50%) [186]. In vivo preference of L-glutamine over L-kynurenine
in brain is discussed by Cooper et al. based on L-glutamine and L-kynurenine availabil-
ity/concentrations and their Km and kcat for KAT I, suggesting that the capacity of KAT I
to utilize L-glutamine is many orders of magnitude higher than the capacity of the enzyme
to utilize L-kynurenine [187]. This makes it very unlikely that KAT-1 has a major role
in KYNA production in the brain. Indeed, many studies have shown that KAT II is the
main enzyme responsible for KYNA production in the brain; however, KAT II knockout
in mice led to a reduction of 71% in the KYNA levels in the brain [188]. We note that
Kapoor et al. [189] showed that the enzymatic activity of KAT I in the brain of patients with
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schizophrenia was altered, and suggested that the enzyme might play an important role in
KYNA synthesis in the brain; however, those two facts do not follow, and the observation
does not seem to have been followed up.

4.5. KAT II

KATII (Uniprot Q8N5Z0), 425 residues, has a very broad substrate specificity, albeit
with a preference for glutamate L-kynurenine, a Km for kynureine of 4.7 mM and a kcat of
585 ·min−1 (ca 10 ·s−1) while a catalytic efficiency of 196.2 mM−1·min−1 for aminoadipate
is reported [177]. Its mechanism of action is known in detail [165], its molecular dynamics
simulations are given by [190], and its pharmaceutical inhibitors are summarized, e.g.,
by [178,191–195]. KAT II is considered the major source of KYNA in mammals, and is
widely distributed, not least in the liver. The interest in developing pharmacological in-
hibitors comes from the somewhat variable data (Table 4, below) indicating that KYNA
levels can sometimes be raised in various kinds of bipolar disorder [196]. From the per-
spective of this review, however, we think it more likely that any beneficial effects of such
inhibition may be mediated via other parts of the tryptophan degradation pathway that
are likely to change simultaneously (see Figure 3, and, e.g., [197,198]), and indeed we
are not aware of any marketed drug for such disorders based on selective inhibition of
KAT II enzymes.

Unlike KAT I, the conversion of L-kynurenine to KYNA by KAT II is not significantly
inhibited by other amino acids [177]. Taken together, preference for aminoadipate and
L-kynurenine and the lack of inhibition by other amino acids might explain the importance
of KAT II in preventing neurotoxicity. KAT II is responsible for as much as 75% of KYNA
synthesis in most brain areas [61,199] and its downregulation has been related to numerous
brain diseases involving KYNA depletion [200]. KATII might also be involved in the
regulation of brain levels of aminoadipate [201], a toxic metabolite for astrocytes in vitro
and in vivo and part of lysine metabolism in the liver [201–203].

Regarding sequence and structure, KAT II has a predicted 22 N-terminus mitochon-
drial signal sequence, targeting the enzyme to the inner membrane of mitochondria [204].
KAT II enzymes do not belong to any of the previously existing fold type I aminotransferase
groups from the α-family of PLP-dependent enzymes, but to a new subgroup called Iε.
This occurs because hKAT II have a highly flexible N-terminal fraction, residues 15–33, that
is able to move far from and closer to the active site upon substrate binding, thus accom-
modating different substrate sizes, which can explain its broad substrate specificity [177].
The swapping of the catalytic N-terminal region is unique in this subgroup of aminotrans-
ferases [109]. The conformation adopted by the N-terminal region in human KAT II is
similar to the one observed in the N-terminus of members of PLP-dependent lyases [66],
and in fact, hKAT II shows β-lyase activity towards various cysteine S-conjugates and
β-chloro-D,L-alanine [205].

Both hKAT I and hKAT II are by far the most well studied human KATs. Both enzymes
have been largely targeted in structure-based drug design aiming (we think unadvisedly)
at the lowering of KYNA levels. Among the most potent KAT I inhibitors are the phenylhy-
drazone hexanoic acid derivatives and, for KAT II, the pyrazole compounds. The inhibitors
showed effectiveness in reducing KYNA production followed by an improvement in al-
leviating cognitive dysfunction in animal models, but studies in humans are yet to be
performed [206,207], and mechanisms are far from clear cut.

4.6. KAT III

KAT III (Uniprot Q6YP21), most closely related in sequence to KAT I (unpublished
alignment search using the tools provided in [156]), has 454 amino acids and, like KAT
I, a preference for glutamine as amino donor. Like KAT I, it is more or less ubiquitously
distributed in humans and shares a similar intron-exon organization, except for the presence
of exon 2, which encodes a 33-amino acid sequence that corresponds to the leader sequence
for mitochondrial targeting. Exon 2 can be alternatively spliced in hKAT III, and thus the
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enzyme can be found in the cytoplasm or mitochondria [204,208]. The human KAT III has
not been biochemically characterized, but the mouse KAT III (mKAT III), which shares
86.8% similarity and 83.7% identity with the hKAT III, has been fully characterized. Here,
we discuss the biochemical/kinetic parameters of the mKAT III. Similarly to hKAT I, mKAT
III has a preference for glutamine as amino donor. The catalytic efficiency for L-kynurenine
is 92 min−1 mM−1 and the transamination of L-kynurenine to form KYNA is significantly
inhibited by methionine, histidine and glutamine (~75%), leucine and cysteine (~50%) and
phenylalanine (~25% inhibition) [209].

4.7. KAT IV

Better known as the mitochondrial glutamate-oxaloacetate aminotransferase 2 (GOT2),
KAT IV (Uniprot P00505) has 430 amino acids and catalyzes the reaction of 2-oxoglutarate
and L-aspartate to L-glutamate and oxaloacetate, playing an essential role in the malate-
aspartate shuttle in mitochondria and in the synthesis of glutamate [210]. It is very widely
distributed in human tissues, and an experimental [181] and Alphafold-calculated structure
is available. KAT IV has been shown to play significant role on KYNA synthesis in human
and murine brains [211]. Biochemical characterization of mouse mitochondrial KAT IV
(mKAT IV) showed high transamination activity towards glutamate and aspartate as amino
donors and lower but detectable activity towards phenylalanine, tyrosine, cysteine, tryp-
tophan, 3-HK, methionine, kynurenine, and asparagine [109]. As amino group acceptors,
mKAT IV showed similar Km values for phenylpyruvate and oxaloacetate, but higher
catalytic efficiency towards phenyl-pyruvate (58 mM−1·min−1) [212]. Accordingly, the
transamination of L-kynurenine to KYNA was significantly inhibited by glutamate and
aspartate, and in lower amounts by cysteine, glutamine, phenylalanine, tryptophan and
tyrosine [109]. Notably, KAT IV was the one that showed substantially increased activity
following endurance exercise (as did KYNA) [213–215].

The overall conclusion here is that most tissues exhibit some basal KAT activity,
consistent with the view that KYNA is a useful metabolite for mammals.

5. Transport of Kynurenic Acid and Related Metabolites
Mammalian kynurenic Acid Transporters SLC22A6 and SLC22A8

As is now well established, molecules such as KYNA require protein transporters to
cross cell membranes [216–228]. Human transporters are classified into two superfamilies.
The SLCs, for SoLute Carriers [229,230], are either equilibrative (effecting ‘facilitated diffu-
sion’) or use ion electrochemical gradient to transport their substrates against ostensible con-
centration gradients (‘concentrative’). In addition, there are various ATP-binding cassette
(ABC) transporter families, commonly encoding efflux transporters [231]. However, excep-
tions exist, and some are actually influx transporters [232–234]. The SLCs described to date
as being involved in the transport of kynurenic acid are the related SLC22A6 and SLC22A8,
which come from the ‘organic anion transport’ or OAT family [235,236] and were previously
known as OAT1 and OAT3. They are polyspecific transporters with a very wide substrate
range among anions [237], but are Na+-independent and not thought to be concentrative
(unless balanced by an opposite starting concentration gradient of another substrate). More-
over, using the tissue data from [148,238], while their maximum expression profile levels are
quite respectable among SLC22 family members (Figure 4), these gene products have an ex-
ceptionally high Gini coefficient (see [148,239]). This means that they are mainly expressed
in a very small number of tissues (in this case the kidney, urinary bladder, and (for SLC22A8)
brain (see e.g., https://www.proteinatlas.org/ENSG00000149452-SLC22A8/tissue, ac-
cessed on 19 August 2024), and not, for instance, the liver. This said, while it is stated that
the blood–brain barrier itself is poorly permeable to KYNA [89], the original paper [240]
on which the statement is based indicates that its rate of uptake is only ~10-fold lower
than that of L-kynurenine (which, unlike KYNA, is a substrate of the LAT1/SLC7A5 trans-
porter [241,242]). Correspondingly, we would argue that KYNA can in fact enter the brain if
supplied exogenously, albeit the transporters (of which there may be many [243]) are as yet

https://www.proteinatlas.org/ENSG00000149452-SLC22A8/tissue
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unknown. Seemingly, KYNA (and its 7-chloro derivative) can also be effluxed by MRCP4
(ABCC4) as well as by SLC22A6/8 [242,244], as each of these transporters is inhibited by
probenecid, whose presence led to an 885-fold increase in the concentration of 7-Cl-KYNA
in the prefrontal cortex of rats [242] (see also [240,245–250]). This may also help to ac-
count for the low apparent net uptake sometimes seen, as ABCC4 is a very efficient efflux
pump [251], and efflux pumps in general necessarily tend to have more influence on steady-
state levels of a drug than do influx transporters [252]. Indeed, they are a major cause of
resistance to antibiotics (e.g., [232,253–255]) and to antitumor drugs (e.g., [256–260]). There-
fore, the tissue distribution of KYNA is likely to depend strongly on the concentrations
of potential ABCC4 inhibitors (some listed in Table 1) as well as the disposition of efflux
transporters like ABCC4 and others of the ABCC family. Interestingly, among the most
potent inhibitors of ABCC4 (Ki~1 µM [251]) is the flavonoid quercetin, another important
nutraceutical [261,262]. ABCG2 (BCRP) is also a potential effluxer of KYNA [263,264]. Note
too that kynurenic acid may also be bound to albumin [265,266], something that would
be missed in standard extractive metabolomics studies. Overall, the system is extremely
complex, benefitting strongly from the kind of ODE-based modelling that is known in this
field as ‘physiologically based pharmacokinetic modelling’ [267,268], while the increasing
availability of cell lines engineered to overexpress individual SLCs [269] should make
answering this question of KYNA transporters much more accessible [270].
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Table 1. Some known substrates/inhibitors of ABCC4 (MRP4) that may assist in raising intracellular
and tissue levels of KYNA.

Molecule Comments Selected References

Ceefourin-1 Highly selective inhibitor of ABCC4 [271–273]

Leukotrienes B4/C4 Km 0.1–5.6 µM [274–276]

MK-571 (Verlukast) Inhibitor. Also a quinoline with a carboxylate group. Commonly more
potent than probenecid. Also inhibits MRP1. [266,277–279]

Probenecid Inhibits multiple transporters.
Ki for SLC22A6/8~15 µM [280–282]
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Table 1. Cont.

Molecule Comments Selected References

Quercetin Ki 1 µM (and other related polyphenols) [283]

Reviews [251,284–286]

Sulindac Ki 2 µM [287]

Urate Pertinent in gout and kidney disease [263]

This probably means that, given also the much higher concentrations of KYNA in
tissues versus plasma (see below), there are other kynurenic acid transporters waiting to
be discovered. In this context, interestingly, a kynurenine monooxygenase inhibitor was
transported via the riboflavin transporter SLC52A2 [85], and the structures of KYNA and ri-
boflavin are given in Figure 5. There are also some weak indications [288] that kynurenates
might be substrates of SLC1 [289,290] family members. Other obvious candidates are mem-
bers of the SLC16 monocarboxylate transporter family [291–293]. KYNA transporters in
other organisms are surprisingly poorly characterized. An especially striking finding [294]
was that KYNA was accumulated 20-fold in cord blood relative to the maternal plasma,
and its concentration was also 20-fold greater (in mice) in the fetal brain vs. maternal
tissue [295] (see also [296] for external KYNA addition), strongly implying a role for both
concentrative transporters and for KYNA itself in fetal development.
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We note also that L-kynureine is more widely bioavailable, being a substrate of the
‘large amino acid transporter’ in C. elegans [297], a homologue of the human
SLC7A5 [241,298–302] that transports many large, neutral amino acids, including tryp-
tophan and L-kynurenine). This of course complicates analyses of the transport of KYNA
if tryptophan or L-kynurenine and/or kynurenine amino-transferase(s) are also present
or added (Figure 6). D-kynurenine can also be used and is metabolized via D-amino acid
oxidase [303] or transamination [304].
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whether they are concentrative or equilibrative [223,228], and we only know the existence of some of
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6. Bioavailability

Given the relative paucity and activity of (known) transporters, it is possible that
KYNA is not the most bioavailable of nutraceuticals, but that oral KYNA is definitely
absorbed in the mammalian gut [36,305–308], and can cross a model of the blood–brain
barrier with a respectable permeability of some 3.5·10−6 cm·s−1 [309], precisely that of the
modal value for marketed drugs across Caco-2 cells [310]. The levels of natural absorption
can also be improved further by linking it to a transporter substrate [311,312] or using
special formulations [309,313–318] (we ignore analogues that do not yield KYNA itself,
since our focus is the nutraceutical activity of the genuine natural product). Thus, there
is no reason why exogenously supplied KYNA might not be bioavailable, and the many
effects reviewed here surely indicate both that it is and that can confer host benefits.

7. Concentrations of KYNA in ‘Normal’ Serum and Plasma, and Other Body
Fluids/Tissues

Concentrations in the plasma of the nutraceutical ergothioneine are typically 1–4 µM
(~229–916 ng/mL) (e.g., [319,320]), and are ~10-fold higher in whole blood as ergothioneine
is concentrated in erythrocytes [18]. In contrast, KYNA concentrations in plasma and
serum are some 1–2 orders of magnitude lower (Table 2). Moreover, the KYNA plasma
concentration is normally far lower than the ~5 µM Km values measured [321,322] for
SLC22A6/8 (and indeed for many of its putative receptors—see [323] and below). The
median levels are fairly consistently ~30–50 nM in plasma or serum across a very wide
range of studies (Table 2). This relative constancy also implies a significant degree of
regulation [324]. With a MW of 189 at pH 7, 50 nM equates to some 9.45 ng KYNA·mL−1

(one paper gives values of KYNA in children that are orders of magnitude different [325],
and another [326] gives very unusually low values; these are not included in Table 2).
A recent meta-analysis showing a tendency of serum/plasma KYNA to increase with
age is given by [327], with similar data in [328,329], though tissue changes are rather
variable [330].

https://www.youtube.com/watch?v=s23vNwLE-Jw
https://www.youtube.com/watch?v=s23vNwLE-Jw
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Table 2. Some values for measured concentrations of KYNA in human body fluids, and rodent and
human tissues.

Serum

Concentration Range Comments References

42 nM median Approximately doubled in severe, acute COVID-19 [331]

42 nM (35–54 nM IQR) Increase with age noted [332]

47 nM median Marginally lower in ADHD [333]

38 nM mean Unchanged by inflammatory bowel diseases [334]

10-60 nM [335]

60 nM median Lower in ALS (ca 40 nM) [336]

23 nM No different in pre-eclampsia [337]

38 nM Higher in erythrocytes of Parkinson’s disease, implying synthesis or
concentration [338]

28 nM average Insignificantly lower in depression [339]

Mean 25 nM, 16 nM in gestational
diabetes (GD) L-kynureine was higher in the GD individuals [340]

100 nM Maternal serum; 3–4-fold higher in cord blood [341]

Plasma

Concentration range Comments References

40 nM 15% decrease in migraine [342]

~30 nM [343]

~40 nM No effect in depression [344]

30–40 nM Small increase with ibuprofen [345]

~40 nM Increased 63% after endurance exercise (150 km road race) [215]

44 nM median No change in migraines [346]

10–80 nM Median 38 nM; no difference in bipolar individuals [347]

39–54 nM median Slightly greater with age and male gender [348]

~50 nM Increased 3-fold when SLC22A6/8 inhibited by addition of probenecid [349]

18–350 nM Pregnant women, 18–20 weeks, NB concentrated 20-fold in cord blood [294]

4–60 nM A summary of multiple measurements [350]

23 nM mean [351]

~20 nM Chinese population [352]

70 nM in controls, 104 nM in those
with social anxiety disorder

Increased with age in controls, but no relation with age in social anxiety
disorder [353]

Mean 21 nM, 23 nM in women with
pre-eclampsia (PE)

Strongly influenced by BMI, that may have been a confounder; raised level
suggested as a response to the PE rather than a cause [354]

CSF

Concentration range Comments References

~20 nM in control Increased 3-fold in Alzheimer’s [355]

1–4 nM Medan 38 nM; no difference in bipolar individuals [336]

5 nM Stable post mortem [356]

2–5 nM Strong positive correlation with age [357]

1–50 nM Can be raised strongly by certain alleles of KAT II [358]
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7.1. Breast Milk

O’Rourke et al. measured various tryptophan metabolites including KYNA in human
breast milk, finding values of ca. 12 ng/mL (52 nM) at term, rising ~3.5-fold for term babies,
but less so (and not significantly) in pre-term babies. Milart et al. [359] noted that natural
human breast milk contained KYNA at much higher levels (from ca. 21 nM to ~300 nM at
6 months of breastfeeding, a ca. 14-fold increase) as lactation kicked in, levels that were
well above those in a variety of commercial infant formulas. Rat pups exposed postnatally
to KYNA also demonstrated less obesity for the same increase in bone mineral density [359]
(see also [360,361]).

7.2. Bile

Concentrations of KYNA in bile are well in excess of those in plasma/serum, with
values of >800 nM [308,362] being reported in humans.

7.3. Intestine

Of course, depending on dietary sources of tryptophan and kynurenic acid, plus the
variable ability of microbes in the gut to metabolize these molecules to KYNA, mean that
KYNA levels could in some cases be quite high, and this has been reported (e.g., [334]).

7.4. Gut Microbiota and KYNA

The gut microbiota composition plays an important role in regulating KP metabolites,
which subsequently influence host immune response. The interplay between these three is
tightly controlled and complex; and the gut microbiota can influence health and disease
through fine-tuning KP metabolites [50,52,363].

In the gastrointestinal (GI) tract, the function of AhR signalling as a critical regulator
of gut immune function has been extensively reported [364–369]. Therefore, KYNA—as
well as other members of the KP—may be an important mediator in this complex crosstalk,
once it acts as a direct ligand of the above-mentioned receptor, activating it locally and
systemically [51,370]. In fact, the absence of AhR causes an increase in endogenous KYNA
levels in mice [93] and, in a recent study, gut microbiota-derived KYNA and other metabo-
lites from tryptophan metabolism were shown to be the main AhR activators in the GI
tract [371].

Another important role of ligand-activated AhR is the induction of IDO1 activity
through activation of pro-inflammatory cytokines [372]. In this case, it is important to
consider the influence of altered IDO activity on KP metabolite production [373].

In addition to AhR, transmembrane G protein-coupled receptors (GPCRs) also play
an important role in GI tract homeostasis and intestinal immunity [374–376]. Among the
GPCRs, GPR35 is predominantly expressed in the GI tract and, since KYNA is a known
GPR35 ligand, several studies have suggested that KYNA acts as the link between gut-
microbiota homeostasis and host immunological regulation. For example, Wang and
collaborators demonstrated that GPR35 activation by KYNA is a necessary component to
maintain gut homeostasis, regulating the progression and outcome of colitis in an ulcerative
colitis-induced rat model [377]. Another study demonstrated that KYNA-mediated AhR
and GPR35 regulation maintain intestinal integrity and homeostasis in a chemotherapeutics-
induced intestinal damage model. Sensitivity differences of AhR and GRP35 to KYNA
leads to a primary accumulation of KYNA through AhR-IDO1 positive feedback regu-
lation. Accumulation of KYNA then is sensed by GPR35, which ameliorates intestinal
injury and restores gut homeostasis [378]. Additionally, Miyamoto and collaborators have
demonstrated [379] that the increased KYNA levels in the small intestine mediated by the
microbiota modulates the recruitment and aggregation of GPR35-positive macrophages,
ultimately triggering the onset of experimental autoimmune encephalomyelitis.
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Tissues—Rodents

Concentration Range Comments Reference

Review [347]

32 nM increases to → 135 mM
after dosing

Gerbil brain [360]

1–16 mM Rat ileum [361]

~40 nM in plasma Trebled after dosing at 5 mg/kg [210]

Tissues—human

Concentration range Comments Reference

Review [305]

0.2–0.7 pmol/mg
Brain; 3× increase in Down
syndrome

[362]

2–3 pmol/mg Brain [353]

Up to 1.58 pmol/mg Brain [363] and review [347]

1.6 mM Colon [359]

10.2 ng/mL Fetal membrane [364]

7.6 g/mL Umbilical Cord [364]

1 ng/mL Placenta [364]

If we loosely assume a unit density (1 g·mL−1) for tissue, 1 pmol.mg−1 equates to 1 µM,
considerably higher than serum/plasma levels, strongly implying that there is concentrative
uptake driven via one or more (presumably H+- or Na+-coupled) transporters, whose
identities—as with that of many SLCs [269]—remain unknown. Although it was assumed
that it was the local rates of production that varied, this conclusion is also consistent with
the analyses of maternal, fetal and cord blood in [380].

7.5. Urine

As reviewed by Turska et al. [308], urine concentrations of KYNA tend to be in the
micromolar range, from ca. 4 µM [381] to more than 20 µM [382]. It is hard to know
how much of this is due to simple synthesis from L-kynurenine in the kidney (for which
there is no particular reason) and how much is due to concentrative efflux (noting again
that SLC22A6/8 are considered to be exchangers [383,384] and not concentrative. Note
that while SLC22A6 (OAT1) https://www.proteinatlas.org/ENSG00000197901-SLC22A6
/tissue, accessed on 19 August 2024 and SLC22A8 (OAT3) https://www.proteinatlas.org/
ENSG00000197901-SLC22A8/tissue, accessed on 19 August 2024 are highly expressed in
the kidney, ABCC4 is not expressed in the kidney https://www.proteinatlas.org/ENSG000
00125257-ABCC4/tissue, accessed on 19 August 2024.

7.6. Feces

These are somewhat infrequently measured, but in one rat study [385] levels were
around 100 ng/g (~0.5 µM if 1 g ≡ 1 mL), rising to 40 times that in the presence of a
kynurenine monooxygenase inhibitor.

8. Nutritional Sources

As a metabolite of an essential amino acid, KYNA is widely distributed, and plants can
take it up from the soil [386]. The literature for natural products is focused on Ephedra spp.
(e.g., [387,388]), which have a significant use in traditional Chinese medicine (MaHuang),
but the contribution to this of KYNA is unknown and many Ephedra alkaloids can be
toxic. Besides culinary herbs [55], where the richest sources are basil and thyme [307],
or medicinal herbs that still might provide at most a few tens of µg [386,389], of those

https://www.proteinatlas.org/ENSG00000197901-SLC22A6/tissue
https://www.proteinatlas.org/ENSG00000197901-SLC22A6/tissue
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vegetables consumed in reasonable quantities, broccoli and potatoes seem to have the
highest values (Table 3). As with many amino acids [390], the levels varied massively
between different cultivars [391], warranting more detailed studies.

Table 3. Some sources of kynurenic acid in certain foodstuffs.

Vegetable Comments Selected References

Broccoli 0.41 mg/kg [307]

Chestnut honey 129–601 mg/kg [392]

Chestnut honey ~400 mg/kg [393]

Chestnut honey Up to 2000 mg/kg [308]

Flower honeys (various) 0.1–2 mg/kg [392]

Herbs of various kinds Dandelion leaves 0.5 mg/kgww
St John’s wort 32 µg/dose [386]

Horseshoe crab extract 1200 mg/kg (0.12%) [360]

Potato tubers 0.1–3.2 mg/kg [307]

0.3–3 mg/kg across 16 cultivars [391]

3× greater in purple potatoes [37]

Review [308]

KYNA contents were also measured in tea and coffee, but did not exceed 8.7 and
0.63 µg/100 mL, respectively.

Honey is a notable source of KYNA. In particular, the product from sweet chestnut
trees reportedly weighs in at ca. 100 mg KYNA/kg [36,307] or even more [392] (Table 3
and Figure 7). The source of these high levels is, in particular, the male flowers of the tree,
most other parts of the edible chestnut having far lower levels [392]. Note, however, that
most honeys are closer to 1 mg/kg or lower, so a 25 mg supplement (say) of KYNA would
require a mighty dose of any but the most potent honey. An overall conclusion from Table 3
is that if KYNA is going to be given as a nutraceutical, even at low doses, its levels are
likely to exceed those seen when its sole exogenous source is foodstuffs [308] (propolis,
of an unstated origin, was also said to be a good source [36], although KYNA was not
reported in a number of untargeted metabolomics studies [394–397], so this seems worth
investigating further).

As with ergothioneine, where clear (even striking) benefits are seen from eating mush-
rooms that contain it, e.g., in preventing mild cognitive impairment [398], even though they
may contain nutraceuticals beyond the one of focus, chestnut honey is clearly the equiva-
lent for KYNA. Thus, while the precise contribution of KYNA itself is unknown (chestnut
honey also contains many phenolic and other antioxidants [399]), the excellent review by
Turska and colleagues [308] does provide a list of examples where this honey is thought to
have provided health benefits. These include positive effects on glucose metabolism and
neurodegeneration in obese mice [400], vs. high-fat diets in obese mice [401], acid-/alcohol-
induced gastric ulceration in mice [402], on carbon tetrachloride-induced liver damage in
rats [403], and in inhibiting breast cancer cell line proliferation in vitro [404]. It has been
found protective against influenza in mouse macrophages and mice in vivo [405]. Along
with curcumin, it also produced a substantial increase in the longevity of heat-stressed
bees [406].
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9. Pharmacokinetics

There have been few studies of the pharmacokinetics of exogenous KYNA [308], with
Turska’s study in mice [407] being the stand out. Here, radiolabelled KYNA was provided
intragastrally (calculated as ~5 nmol at 20 µM), and its appearance in blood, liver and
spleen noted, indicating uptake into these organs. Kidney levels were not reported. Most
of the KYNA was excreted in urine in under 24 h, while liver retained a significant level
of radioactivity at that time. Note that liver in humans does not express the two known
transporters (see above), nor significant amounts of the ABCC4 effluxer, implying the need
for other, as yet unknown, transporters.

10. Further Metabolism and Excretion

In humans, KYNA is largely seen as a terminal step of tryptophan degradation [308],
and as noted above is excreted in urine via the kidneys. As such, metabolic transformations
are not considered a major feature of KYNA ingestions, though Takahashi et al. reported
some conversion to quinaldic acid [305], the dehydroxylated variant of KYNA [408]. Var-
ious bacteria can of course metabolize it, e.g., certain pseudomonads can assimilate and
metabolize it to glutamate, alanine and various organic acids [409], but they can also excrete
it [172].

11. Oxidative Stress

Oxidative stress is extremely widespread in a whole host of chronic, inflammatory
diseases [410,411], so much so that there were over 125 papers having the terms “oxidative
stress” and “review” in their titles alone at Web of Knowledge just for 2023. Since we have
reviewed elements of it three times recently [410,412,413], we do not repeat this further
here, save to mention that the chief cause is the production of ‘reactive oxygen species’
(ROS) such as peroxide, superoxide, and—as catalysed by free iron [324,410,414,415]—the
especially nasty hydroxyl radical OH•. Any small antioxidant molecules that can react with
such ROS (also known as ROS scavengers) are thus likely to ameliorate oxidative stress,
and KYNA certainly has this property [416–420] (and see below). Below we discuss other
mechanisms that may account for the ability of low concentrations of KYNA to help deal
with oxidative stress.
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12. Diseases in Which KYNA Levels Are Significantly Altered

Table 4 summarizes some of the diseases or syndromes in which normal levels of
KYNA are raised (occasionally) or (more frequently [421]) lowered. In the former cases,
there is some evidence that this is actually the host’s homoeostatic attempt to combat the
causes of the disease. Note, of course, that in many cases it is probable that it is an increase
in tryptophan and its degradation pathway metabolites more generally that are changed,
so increases in levels upstream may themselves correlate with KYNA levels yet themselves
be responsible for physiological or biochemical effects [422]. The importance of the kidney
as the main means of excretion (via urine) is highlighted by the very high levels of plasma
KYNA reached in various kidney diseases.

Table 4. Some of the diseases or syndromes in which normal levels of KYNA are altered. Based in
part on the data in [86], and see also the reviews [102,423].

Disease or Syndrome Source, and Raised or Lowered Selected References

Acute liver failure Raised in rat brain as a consequence, via increase in kynurenine in the
periphery [424]

Alzheimer’s dementia Plasma one third lower
Plasma marginal effect [343,355]

Serum lower [425]

CSF lower [328,426]

CSF higher, but seemingly protective vs. disease progression [427]

Review [428]

Aortic stiffness Correlation of KYNA levels in patients with atrial fibrillation [429]

Attention deficit
hyperactivity disorder
(ADHD)

Significantly lowered (meta-analysis of 650 individuals) [430]

Bipolar depression ~40% decreased vs. controls [431]

Review; very variable, mostly lower [432,433]

Cancers Very heterogeneous. Inhibition of proliferation observed at very high
doses. [434–436]

Cluster headaches and
migraines Serum ~one third lower [437,438]

COVID-19 Raised in serum, especially in more severe acute cases Reviewed by [439,440],
and see next section

Familial Mediterranean
fever KYNA decreased [441]

Frailty Lowered in frailty
or little change [329,442]

Huntington’s disease
Cerebral cortex—four-fold reduction.
One molecule (laquinimod) targeting the aryl hydrocarbon receptor
in clinical trials

[443–445]

Inflammatory bowel disease Seen as a protective mechanism via raised levels of KATs [334,446]

Irritable bowel syndrome Lowered in serum [447]

Lowered in urine [448]

Kidney disease Normal serum level of 28 nM increased to 336 nM in renal
insufficiency [449]

Significantly raised in non-survivors of septic shock with acute
kidney injury [450]
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Table 4. Cont.

Disease or Syndrome Source, and Raised or Lowered Selected References

Chronic kidney disease, plasma levels can exceed 500 nM, along with
high levels of other tryptophan metabolites [263,451]

End-stage kidney disease, plasma levels can exceed 1 µM [263]

Significantly raised in renal failure [452]

Major depressive disorder

30% reduced over healthy controls; seen as the only metabolic
biomarker that is both diagnostic and predictive.
~40% decreased over controls
Antidepressant activity in mice (at high concentrations)
Considered to be related to poor Western diet

[431,453–455]

Lowered in cortex, raised in serum of rats undergoing chronic
restraint stress [456]

Migraine 15% lower
KYNA/KYN halved [342,457]

Significantly lower, acting via multiple receptors [458]

Multiple sclerosis Plasma 45 → 77 nM [459]

Erythrocytes 38 → 63 nM [459]

Raised in relapsing-remitting MS, lowered in primary and secondary
progressive. Quinolinic acid seems to be the real culprit here. [460,461]

Lowered in CSF vs. other neurological diseases [462]

Myalgic
encephalopathy/chronic
fatigue syndrome (ME/CFS)

Significantly lowered in some tissues, raised in others [463–465]

Osteoporosis Potential for treatment [466]

Parkinson’s disease
(Review [467]) Frontal cortex—~one third of controls [468]

Plasma [338]

Serum

Substantia nigra—less than half that of controls [468]

CSF lower [328]

Polycystic kidney disease Significantly raised [469]

Polycystic ovary syndrome Roughly doubled [470]

Pre-eclampsia Very nonlinear, but significantly raised (especially in those with high
BMI) in one Norwegian birth cohort study [354]

No effect in a variety of other studies reviewed in: [337,471]

Pulmonary arterial
hypertension

Raised, as were a great many other L-kynurenine pathway
metabolites [472]

Schizophrenia and bipolar
disorder

Raised significantly (though usually so are other molecules such as
L-kynurenine (which may be the real effector and/or changed by
inhibitors of KATII)
Lowered in some studies
Meta-analysis implies no real or obvious difference

[196,198,199,433,473–479]

Sjögren’s syndrome KYNA somewhat raised [480]

Systemic lupus
erythematosus (Lupus) Many kynurenine pathway metabolites raised [481]
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Table 4. Cont.

Disease or Syndrome Source, and Raised or Lowered Selected References

Type 1 diabetes Steptozotocin-induced diabetes in rats led to a modest increase in
KYNA [482]

Type 2 diabetes Raised from 36 to 46 nM [483]

Said to be raised during progression [484]

Ulcerative colitis
Raised, seen as likely coming from changes in microbial gut
metabolism.
Protection considered to be via GPR35

[377,485]

13. KYNA and COVID-19

The arrival of the COVID-19 epidemic caused by the SARS-CoV-2 virus has had pro-
found effects on the world, as well as on scientific approaches to the understanding of both
acute diseases and their post-acute or chronic sequelae (‘Long COVID’) [486,487]. A number
of studies have highlighted changes in tryptophan metabolism and in KYNA production
in particular as a response to the virus. Thus, Thomas et al. [488] found trp metabolism
the most significant pathway changed statistically, while Roberts et al. [331,489] found
L-kynurenine and KYNA among the metabolites most raised in terms of predicting both the
severity of the disease and poor outcome (implying activation upstream of L-kynurenine as
well as of KAT enzymes or transporters). Cihan et al. [490] and Kucukkarapinar et al. [491]
reported similar data, while Sindelar and colleagues found KYNA to be the most predictive
of disease severity [492]. Cai et al. suggested additional gender differences [493] (though we
could not confirm that [331,489]), while L-kynurenine was noted by Almulla and colleagues
but not KYNA [494]. Holmes and colleagues [495] inferred elements of the L-kynurenine
pathway but reported only ratios. L-kynurenine was also noted by other authors, such
as [496–502] (in these latter cases, KYNA was seemingly not measured, pointing up the
utility of untargeted discovery methods for unravelling the biology more fully, both for
metabolomics [503] and more generally [504]).

What is a priori unknown, however, for this or other diseases, is the extent to which
the upstream metabolites such as L-kynurenine and quinolinic acid, considered to be less
beneficial, counteract any possible benefits of KYNA, whether its production represents
attempts by the body to use it as a protective agent, or whether it is simply a ‘by-product’
of L-kynurenine due to the presence of KAT activity; this needs testing with KYNA or KATs
as an independent variable.

14. Protection against Various Diseases

Antioxidants such as ergothioneine are seen as excellent cytoprotectants against mul-
tiple stresses [505–508]. In a similar vein, KYNA has also been demonstrated to be a
neuroprotectant and cytoprotectant against a variety of acute challenges. As before with
ergothioneine [18], we divide these studies into central and peripheral studies, before
looking at reported receptors for KYNA.

14.1. Neuroprotection

Many studies, some reviewed recently by [308,461], have indicated the ability of
KYNA to serve as a neuroprotective agent, and some of the relevant papers are set out in
Table 5.
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Table 5. Ability of KYNA to serve as a neuroprotective agent.

System Comments Selected References

Anticonvulsants Possible model of mediation via KYNA [509–511]

Depression Considered neuroprotective in depression [512]

Epileptic spasms Lower KYNA in epileptic spams that in other non-inflammatory
neurological diseases [513]

Excitotoxic challenges KYNA protective [514,515]

Experimental autoimmune
encephalomyelitis Protective against a Th17 response [379]

Ischemia-reperfusion Gerbil brain. Massive doses led to very high intracerebral
concentrations of KYNA and neuroprotection [516]

Highly protective in a model of hypoxic ischemia in neonatal rats [517,518]

Kynurenine sulphate produces KYNA that is neuroprotective in
gerbils and rats [519,520]

Memory enhancement Effective at lower doses in mice
Opposite effect in C. elegans [521,522]

Migraine Seems to be protective via inhibition of glutaminergic neurons [523–526]

Multiple sclerosis Considered protective [527,528]

Plasma 45 → 77 nM [459]

Erythrocytes 38 → 63 nM [459]

Pain Protective against neuropathic pain, and enhances effectiveness of
morphine [529]

Antinociceptive in inflammatory pain [530]

Reviews [531–533]

Spinal cord injury (SCI) Protective (with glucosamine) against SCI in rats [534]

Stroke
Mostly protective if given ahead of experimental stroke.
Naturally protective against death after adjusting for inflammation
Higher levels associated with better recovery

[432,535,536]

Traumatic brain injury KYNA is overexpressed, attenuates this in rats [537,538]

14.2. Peripheral Protection

In Table 6, we summarize some of the examples in which KYNA has proved to be
neuroprotective against stresses in non-CNS tissues. Ischemia-reperfusion injury occurs
when tissues subjected to hypoxia are reoxygenated, leading to the rapid formation of
ROSs; although this is well known in acute circumstances, it is becoming increasingly
recognized that this can also occur chronically (e.g., [413]), especially in diseases such as
long COVID where fibrinaloid microclots [539–541] can induce hypoxia [539] and related
sequelae such as reperfusion injury [413] and postural orthostatic tachycardia syndrome
(POTS) [542]. As an antioxidant, and probably via other signalling pathways, a particular
feature of KYNA is its ability to lower the extent of ischemia-reperfusion injury [517].

Another accompaniment of such diseases is fibrosis and/or amyloid deposition [543,544].
In some cases, fibrin can adopt an amyloid form, e.g., [540,545–548], though only rarely is
fluorescence staining for amyloid performed [549]. Similarly, the ability of KYNA to lower
fibrosis [308,550–552] may be relevant in this context.
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Table 6. Some peripheral disorders in which KYNA has been reported to be protective in mammalian
systems.

Organ/Tissue/Disease Comments Selected
References

Alimentary canal Protects vs. stress ulcers in rats [553,554]

Cardiovascular disorders Review [555]

Diabetes, type 2 Protective of glomerular filtration rate and against end-stage kidney disease
in type 2 diabetes [556]

Fibrosis Protective vs. fibrotic injury after surgery [550,552]

Heart Protection against ischemia-reperfusion injury [557,558]

Kidney Protective of glomerular filtration rate and against end-stage kidney disease
in type 2 diabetes [556]

Improved kidney function in spontaneously hypertensive and normotensive
rats [559]

Liver Levels raised in and protective against hexafluoropropylene oxide dimer
acid (HFPO-DA) challenge in mice [560]

Protection vs. nonalcoholic fatty liver disease at very high concentrations [561]

Lung Protective in an acute lung injury model [562]

Multi-organ Protection against heatstroke by multiple mechanisms, including an
anti-apoptotic effect [563]

Pancreatitis (acute) Rat study. Significantly protective at 300 mg/kg [564]

Retinal ganglia Protective against ischemia-reperfusion injury in mice [565]

Sepsis Protection vs. neutrophil activation and mitochondrial dysfunction in rats [566]

Active at high doses against LPS-induced inflammation/death in mice [567]

Stroke Associated with a lower level of risk (but probably also confounded with
kynurenine); also protective [568–570]

Vascular inflammation Protective [571]

Wound healing and scarring Protective, by largely unknown mechanisms. [550,552,572–574]

14.3. Reported Receptors

A number of receptors for KYNA have been detected via ligand binding, albeit often
using concentrations far in excess of those measured in vivo. These have recently been
reviewed by Turska and colleagues [308], on which Table 7 is partly based. While the data
are clear that KYNA can be active at the N-methyl D-aspartate (NMDA) receptor (antag-
onist), the aryl hydrocarbon receptor (AhR) (agonist), and the GPR35 receptor (agonist),
the biological relevance of this awaits an improved understanding of local concentrations
of KYNA and other ligands. Meanwhile, the importance of Table 7 for present purposes
is more in showing the broad absence of untoward effects at these receptors even when
applied concentrations are high.

Table 7. Receptors to which KYNA has been suggested or found to bind.

Putative Receptor Comments Selected References

Adrenoceptor alpha 2B
(ADRA2B)—Putative ligand

Note that guanfacine is an FDA-approved agonist, used
successfully vs. attention deficit hyperactivity disorder (and
interestingly also vs. hypertension [575])

[576,577]

Review [578]

Identified in a high-throughput CRISPR screen [579]
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Table 7. Cont.

Putative Receptor Comments Selected References

Aryl hydrocarbon receptor
(AhR)—Agonist Induces various pathways, including IL-6 production, at 100 nM [580,581]

Protects against intestinal C. albicans infection via AhR [582]

Possible role in COVID-19 [439,583]

Protective against acute lung injury [562]

Removing AhR raises KYNA levels, and these are neuroprotective
against excitotoxic insults [93]

KYNA affect neural plasticity via AhR in zebrafish [584]

Involved in fibrosis and
skin disease

[585]
[586]

G-protein-coupled receptor 35
(GPR35)—Agonist

Regulates energy metabolism and ablates weight gain on high-fat
diet in mice [92,213,360,587]

Protection against ischemic injury (at 5 mg/kg, ≡26 µM
if homogeneous) [588]

Reviews [589–591]

Glutamate receptor
(GAR)—antagonist Many papers relating to migraines, e.g., [523–526]

Hydroxycarboxylic acid receptor 3
(HCAR3)—putative ligand Identified in a high-throughput CRISPR screen [579]

N-methyl D-aspartate (NMDA)
receptor (especially the
strychnine-sensitive
glycine-binding site) (involved in
pain [592])—antagonist

EC50 7 µM
though binding curves and very complex effects [69,593,594]

Potential role in nutritional signalling [595]

10 nM can affect differentiation of cortical cells [596]

Electrophysiological effects observable at high concentrations [597]

Reviews [598–600]

alpha-7 nicotinic acetylcholine
receptor (α7nAChR)—purported
antagonist

Electrophysiological effects not observed even at high
concentrations [597]

Active at 7 µM in hippocampal neurons [601]

No physiological effects observed with KYNA [602]

Lowers inflammatory cytokine production and Abeta phagocytosis [603]

15. Role of KYNA in Protecting against Ischemia-Reperfusion Injury

Quite a number of the papers mentioned in the above tables highlight a protective role
for KYNA in ischemia-reperfusion (I-R) injury, possibly during the hypoxia phase [604].
This I-R injury is a well-known accompaniment [605] in acute circumstances such as
stroke [606,607], myocardial infarctions [608–610], and organ transplantation [611–614],
as well as in experimental models (e.g., [517,615]). It has recently been recognized as
occurring in more chronic circumstances [413] such as long COVID, and as such it is worth
highlighting. It occurs when, during a period of hypoxia, commonly caused by ischemia,
mitochondria become over-reduced, such that when O2 is readmitted (‘perfusion’), it
is reduced not with four electrons as normal (to water) by cytochrome oxidase but to
peroxide and superoxide by complexes III and I, respectively (Figure 8). These ‘reactive
oxygen species’ can react catalytically with unliganded iron molecules (in the Fenton and
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Haber–Weiss reactions) to produce the especially damaging hydroxyl radical OH• [414],
leading to cell death, and the further release of unliganded iron [324], accounting for a
number of the symptoms that accompany chronic, inflammatory diseases [410,413]. We
consider that analysis of the effects of KYNA on ROS levels and their dynamics is an
important and understudied area.
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Figure 8. Production of reactive oxygen species as part of ischemia-reperfusion injury. Redrawn from
the CC-BY 4.0 paper [413].

16. Other Factors Known to Affect KYNA Levels

As well as adding KYNA directly, other treatments have been found to increase its
level. Many of these are seen as beneficial to the host, though the extent to which KYNA
contributes is essentially unknown. We exclude those in which known KYNA precursors
are simply added explicitly. Table 8 indicates some.

Table 8. Some circumstances in which exogenous elements affect the levels of KYNA.

Substance Comments Selected References

Amphetamines Significant decrease after dosing with amphetamine [616]

Anthocyanins (in blackberry
extract)

Microbiome said to be responsible for increasing KYNA levels
(though in the LC-MS data neither the apparent retention time nor
the reported mass of the positive molecular ion (m/z = 208; true is
190) underlying this is that of KYNA)

[617]

Antidiabetic agents Glibenclamide and metformin both decrease KYNA levels, likely by
different mechanisms [618]

Exercise
Exercise can stimulate the production of katG enzymes and thereby
raise KYNA (and lower central L-kynureine), making KYNA an
‘exerkine’. Data are somewhat mixed

[619–621]

KAT4 was especially strongly stimulated in endurance exercise,
leading in some cases to more than a 60% increase in plasma
KYNA levels

[215]

Exercise increases KYNA and its activation of the AhR receptor [622]
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Table 8. Cont.

Substance Comments Selected References

Fasting 8 day fasting increased KYNA levels.
Effect observable even at 2 days [623,624]

Hypothyroidism Experimentally induced hypothyroidism leads to brain KYNA levels
being raised [625]

Insulin signalling Tested in C. elegans, caused increases in KYNA [522]

Interferon-γ Massive increase in KYNA in neurons and astrocytes [626,627]

Ketone bodies β-hydroxybutyrate stimulates KYNA synthesis and provides
neuroprotection [514,515,628,629]

LPS treatment Lowers brain KYNA [630]

Obesity
Higher serum levels of several KP metabolites, including KYNA; in
some cases, may simply reflect higher fluxes from raised
dietary intake

[631]

Estrogens (as oral
contraceptive agents) Decreased from a median of 58 → 33 nM in plasma [632]

Progesterone partial reverses interferon-γ-induced decrease in KYNA [633]

Hericium erinaceus
polysaccharides

Hepatoprotective vs. non-alcoholic fatty liver disease, and increase
KYNA levels [634]

Stress

Stress increases KYNA levels in rats, who show lower cognitive skills;
unclear whether KYNA response is causally involved or an attempt
to counteract. KYNA was not added independently
Hepatic KYNA lowers anxiety-induced stress

[635,636]

17. Other Effects of KYNA

Conversely, a number of papers have studied the effects of KYNA addition on different
biochemical pathways; although not exhaustive, the point is to show that they are manifold,
and they are summarized in Table 9.

Table 9. Some other known biochemical and physiological effects of KYNA.

Pathway Comments Selected References

Amyloid (Aβ) fibrillation and
toxicity in C. elegans Inhibited by KYNA, as it was by some simple analogues [637]

Anti-inflammatory Includes effects on histone methylation [638]

Reverses effects of LPS in macrophage cultures [639]

Lowers inflammatory phagocytic response in mouse macrophages [640,641]

Lowers LPS-induced inflammation [642]

Lowers experimentally induced inflammation in the
trigeminal ganglion [643]

Hydrogels containing KYNA lowers experimentally
induced inflammation [644]

Anxiolytic (reduces anxiety) Notable effects in zebrafish at 105 µM (20 mg/L) [645]

Apoptosis Induced by KYNA [646]

270 genes differentially expressed after exposure to 0.25 mM KYNA [647]

Astrocyte activation Inhibitory and protects against HIV-induced cognitive loss [648]

DNA excision repair KYNA increases pathway transcription [649]
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Table 9. Cont.

Pathway Comments Selected References

Endothelial damage (induced
by homocysteine) Protective [650]

Enhances endothelial adhesion and spreading [651]

Fibroblast growth factor release
from HUVEC cells

Inhibited at “low” concentrations (1 µM) of KYNA, while
proliferation rate increased. [652]

Glutamate release Lowered by KYNA [653]

Hypertension Heart rate lowered by KYNA in spontaneously hypertensive rats [654]

Indoleamine 2,3-dioxygenase
induction Signalling role [562,655]

Insulin resistance Protective in high-fat-diet-induction model [656]

Interleukins Lowered IL17/IL23 at high concentrations [657]

Mitochondrial induction Acts as a cardioprotective [557]

Neprilysin Neprilysin degrades amyloids, and KYNA induces its synthesis and
is neuroprotective [658]

TNF-α production Decreased at very high concentrations [659–661]

Unfolded protein response KYNA inhibits, and is protective in a C. elegans Alzheimer’s model [662]

Vasculature Induces vascular relaxation in endothelial cells [663]

18. Safety

Turska and colleagues provide an excellent review [308] of the possibility of enriching
foodstuffs with KYNA. By and large, however, human safety studies involving dosing with
substantial amounts of pure exogenous KYNA per se have largely not been performed [307],
though KYNA (as chestnut honey) was given to human volunteers with no ill effects [306]
while a 6 g tryptophan challenge increased KYNA levels more than 130-fold, again without
seeming ill-effects, albeit some effects on cerebral blood flow in healthy controls but not
in those with schizophrenia-related disorders [664] (rather implying the irrelevance of
KYNA here).

Some studies in rodents have added KYNA at massive doses (well over 100 mg/kg,
getting into the millimolar range in serum/plasma), seemingly without ill effects (indeed
sometimes with protective effects). Table 10 lists some.

Table 10. Some studies in which organisms or mammalian cells have been exposed to exceptionally
high concentrations of KYNA.

Organism Dose and Comment Selected References

Gerbils 400–1600 mg/kg; protected against ischemia-reperfusion injury [516]

Mice 250 mg/L in drinking water, ≡25 mg/kg/d, has no toxic effects [640,641]

25–250 mg/L drinking water 3–21 d; well tolerated. [665]

Rat 500 mg/kg i.p.—protected against thioacetamide-induced liver injury [666]

300 mg/kg i.p. in young rats prolonged wakefulness [323,667]

150 mg/kg lowers morphine-conditioned reward behavior [668]

25 mg/kg/d in drinking water ≡ ~250 mg/L, assists healthy growth
in rat babies [359]

300 mg/kg i.p. protect against mussel toxin [554]

200 mg/kg kynuramine [669]
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Table 10. Cont.

Organism Dose and Comment Selected References

300 mg/kg vs. acute pancreatitis [564]

300 mg/kg in young rats was neuroprotective [517,520]

As much as 5% of diets, with large KYNA excretion, small decrease in
weight gain, but seemingly without major ill effects. [670,671]

Mammalian cell lines

Murine RAW 264.7
macrophages 100 µM KYNA is protective against LPS challenges [639]

Murine BV-2 microglial cells No effect on viability of 100 µM KYNA [603]

Rat splenocytes No effects on viability of proliferation at 500 µM [641]

Humans Topical application; no safety issues observed. Most secreted in urine [551]

We note that Hiratsuka and colleagues [672] gave young female participants up
to 5000 mg tryptophan per day (~100 mg/kg based on the stated BMI levels) with no
adverse effects; the amount of KYNA that was formed is unknown, though approxi-
mately 100 µmol/d (~19 mg) could be found in the urine [672], the value plateauing
after ~7 d [673]. Similarly, Al-Karagholi and colleagues [674] dosed volunteers with 5 mg
L-kynurenine/kg (say 350 mg total) without apparent ill-effect, while Jauch et al. [675]
administered L-kynurenine to rhesus monkeys at doses up to 200 mg/kg, with serum
KYNA levels reaching ~25 µM within 10 min, declining to 2.8 µM after 4 h, again without
apparent ill effects. Rentschler et al. dosed rats with L-kynurenine at 100 mg/kg, as well
as a kynurenine aminotransferase inhibitor at 30 mg/kg; given that on average every
marketed drug interacts with at least six known targets [676] (see later section on docking),
it is hard to interpret mechanisms during such experiments in which pharmaceutical drugs
are added at these kinds of concentration. Note specifically that a hit rate of 1% or more is
common in small molecule screens using drug concentrations of just 1–10 µm in individual
phenotypic assays (e.g., [258]). L-4-chlorokynurenine is under study as a transportable
substrate [677] that can be converted into 7-kynurenic acid, an NMDA receptor antagonist;
as part of such studies, doses of L-4-chlorokynurenine of over 1 g per day were well toler-
ated [678,679]. The main point here is that while any ‘targets’ may remain unknown, there
do not seem to be safety issues with these quite substantial doses.

19. Possible Risks

Thus, while the safety profile of KYNA does not yet seem to have been looked at in
real detail, we recognize that everyone is different [680], and that there is a tendency for
promising studies to become less so over time [681–683], not least since possibly ‘occasional’
adverse events are more likely to occur as the populations assessed become larger. We do
also note some studies in which KYNA induced possibly undesirable effects. While far less
common than those in which it has been shown to be a cytoprotectant, it is appropriate
to list some of them (Table 11, see also Table 4). The reasons for such effects are also not
really well understood, i.e., whether these are causative or they are essentially downstream
responses. As mentioned, the biggest problem with most such studies is that they add
tryptophan or L-kynurenine, which can themselves (or their other metabolites) lead to
many other undocumented and important changes in host biochemistry. Schizophrenia
seems the most common, and as noted, the evidence is at best equivocal as to whether
changes in the level of KYNA are a cause or an effect or simply an accompaniment.
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Table 11. Some examples in which KYNA was considered to have some potentially negative effects.

General Biological Area Comments Selected References

Cardiovascular disease Marginally associated with (a 10% increase) in all-cause, but likely
confounded with L-kynurenine that is more significant [568]

Schizophrenia
KYNA levels often raised, though unclear if this is a cause or an
attempted detoxification of raised L-kynurenine. Some studies
showed them lowered; overall unclear. See also the text.

[196,473,474,476,478,684]

20. Regulations for Food Supplements and Nutraceuticals

The use of nutraceuticals varies largely from country to country and, like their use,
the legislation around such substances vary widely, lack harmonization and are continu-
ously evolving. Comprehensively, some countries as Canada follow stringent regulations,
whereas, in some others, as the United States, well-structured and adequate regulations
for nutraceuticals are largely absent [685,686]. Regulations for nutraceuticals in different
countries of the world are reviewed in [687–689].

In the Unites States, nutraceuticals are included in a category called “dietary supple-
ments”, which is regulated under the Dietary Supplement Health and Education Act of
1994 (DSHEA) through the Food and Drug Administration (FDA). The DSHEA states that
a dietary supplement must be intended for ingestion and cannot be designated for other
use. However, unlike the stricter FDA’s regulations for drugs, the regulations for dietary
supplements are more flexible. The manufacturers and distributors are responsible for
nutraceutical safety evaluations and correct labelling, while the FDA limits its role to take
action against a product that does not follow the requirements of the DSHEA purely after it
reaches the market.

All the dietary supplements that were not marketed before the DSHEA are considered
and termed “new dietary ingredient”, and while there is no official list of those that were
marketed before the Act, the manufacturer is responsible for determining if a substance is
a “new dietary ingredient”. In the case of a “new dietary ingredient”, the manufacturer
has to notify the FDA about the ingredient at least 75 days before the product goes into
the market; providing information (i.e., any citation to published articles) regarding the
expected safety of the new ingredient.

On the other hand, the European Union (EU) has more strict regulations for nu-
traceuticals completed by the European Food Safety Authority (EFSA), which made a
comprehensive assessment of substances that are allowed as a source of such molecules in
the EU, including safety of the nutrient source, intake levels and bioavailability. According
to the EU General Food Law Regulation (EC) No 178/2002, nutraceuticals are considered
foodstuffs, therefore regulated as such. The Directive 2002/46/EC established consensus
lists of the vitamins and minerals that can be used for manufacturing food supplements
and the labelling requirements for these products, while the use of substances other than
vitamins or minerals is subject to the laws prevailing in the different Member States.

In case of foodstuffs not consumed in the EU before 1997, the EFSA requires an applica-
tion for authorization of a “novel food”, including detailed information about composition,
intended use, and safety data before the ingredient is released on the market and it can
only be commercialized once authorized. Additionally, according to the Regulation (EC)
No 2015/2283, EFSA should provide a scientific opinion on a substance’s safety when it
undergoes an application for “novel foods”.

21. Analytics

Since the coining of the term in 1998 [690], metabolomics studies are well into their
third decade [691], where the analysis of small molecules such as KYNA is now dom-
inated by methods combining gas or liquid chromatography with mass spectrometry
(e.g., [692,693]). As an aromatic amino acid that ionizes reasonably well, a variety of such
analytical methods have indeed been developed (e.g., [307,339,380,381,694–699]). In addi-
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tion, as a redox-active fluorophore (whose fluorescence is enhanced by zinc ions [40,700]),
KYNA may also be detected by electrochemistry [35,356] and optically [352,700–710], or
(as any organic molecule) by vibrational spectroscopy [711].

22. KYNA as a Therapeutic for Chronic Inflammatory Diseases

Many of the diseases mentioned above share similar properties, including in particular
that they are chronic and accompanied by inflammation (an interesting recent suggestion
around the latter based on mitochondrial antipathy to their cellular host is worth flag-
ging [712]). Thus, any nutraceuticals that might be able to tackle inflammation would
be of value, and we have set out here the evidence that leads us to suppose that KYNA
might be one. This said, there are seemingly some chronic inflammatory diseases, such as
rheumatoid disease [713], that seem not to have major changes in KYNA.

23. Use of KYNA as an Antioxidant in Processed Foodstuffs

Although ergothioneine has been used successfully in this way as an antioxidant, e.g.,
in seafoods [714–716], we are not aware of any attempts to use KYNA in this way. We
note, however, the important work on the suggestions of fortifying artificial baby milk
with it [359] on the grounds that its levels are significantly lower than those of natural
human milk.

24. KYNA in the Feed of Racing Animals

It is implicit that if KYNA is a nutraceutical, it may have value for elite athletes as well
as for the ‘normal’ population. Purified KYNA is unlikely to be economically competitive
as an additive in the feed of food animals, but its addition may well be worthwhile for
those involved in horse or camel racing. However, the analysis of tryptophan metabolism
in such animals is in its infancy [717].

25. Use of KYNA in Cosmetics

‘Cosmeceuticals’ are nutraceuticals that are marketed for their cosmetic benefits
(e.g., [718–724]). Because significant skin damage is caused by UV-mediated ROS pro-
duction [725–728], it is reasonable—much as with ergothioneine [18]—that KYNA might
be useful as a cosmeceutical, and it can both be formulated in creams and taken up into the
body [551]. As with ergothioneine, it is possible that its relative unavailability is holding
back such uses here, though we note that it is also a photosensitizer. Its value as a topi-
cal treatment in inhibiting scarring has, however, been demonstrated [550,573], and Aryl
hydrocarbon receptor agonists (of which KYNA is one, and including the FDA-approved
tapinarof [729,730]) have been shown to have benefits in both psoriasis and atopic der-
matitis [731–735]. Thus, KYNA would seem well worth exploring as a cosmeceutical
ingredient.

26. Role of KYNA as a Cofactor

While KYNA is clearly capable of acting as an antioxidant directly (as can ergoth-
ioneine), most small molecules (including vitamins) interact with proteins of various kinds,
and many more than we usually credit (e.g., [736–740]. In addition, the relatively low
concentrations of KYNA in humans also imply a more regulatory role that can lead to
genetic induction or repression and thus amplification of their signal. In this vein, as
our ‘index’ antioxidant nutraceutical, ergothioneine acts in part via the redox-active tran-
scription factor Nrf2 (e.g., [741–746]). Studies in KYNA are far behind, but a tantalizing
report [747] shows that chestnut honey—the foodstuff containing by far the largest amount
of KYNA (Table 3)—can exert protective effects via Nrf2 on LPS-treated macrophages and
indomethacin-treated gastric mucosa. Indeed, high levels of KYNA can induce Nrf2 synthe-
sis [94] and prevent the induction of reactive oxygen species [95] and other changes [748]
caused by quinolinic acid. While the aryl hydrocarbon receptor AhR is also a transcription
factor, its activation can itself stimulate the activation of Nrf2 [732,733,749], and a variety
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of known agonists target both ArH and Nrf2 [731,750] and assist with atopic dermatitis
and psoriasis (see above), so this is reasonable. On the other hand it is activated by dioxins,
with somewhat negative effects [749,751], and has a complex expression profile in certain
tumors [752]. Its expression is also affected by NF-κB [752,753], a transcription factor
whose activity depends on frequency rather than amplitude [754–756], and this is still
rarely recorded. Deconvolving the detailed interactions between KYNA and AhR is thus a
highly non-trivial process.

27. Cheminformatics of KYNA

One strategy for understanding the biology of a small molecule is to assess how close
it is to other endogenous metabolites and, in particular, to marketed drugs, as knowledge
of their binding partners or mode of action might give clues to the binding partners
of KYNA. One paper shows such an analysis using the RDKit [757]. Pattern encoding
and the otherwise precise methods are described in detail elsewhere [310,758–761]. Only
four marketed drugs have a Tanimoto similarity exceeding 0.7, and these are displayed
in Figure 9. Interestingly, nalidixic acid is transported in E. coli via the fadL fatty acid
transporter [762] (not studied in [763]), so this kind of observation may provide clues.
However, since this is not our present focus, we simply set out these data and thoughts to
guide future studies.
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28. Predicting the KYNA Interactome

Multiple cheminformatic tools now exist for compound–target interaction prediction
in silico (e.g., [764,765]) (we ignore those based on generative AI, as they are still in their
infancy [766], though this is changing rapidly, and most seek molecules that bind to speci-
fied targets, not the other way round as we are interested in here). These tools employ a
variety of network-based approaches, machine-learning models, and molecular-docking
algorithms to predict the binding of small molecules to target proteins or receptors. As
prediction results depend on both the underlying Knowledgebases and the computational
approaches applied, it is prudent to examine both the intersection and the compiled results,
including with pathway topology and other functional annotation approaches from multi-
ple prediction tools. We have investigated potential KYNA binding targets using three such
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OpenSource tools with recently updated databases and differing prediction approaches.
Specifically, we used PharmMapper [767] that uses a reverse pharmacophore mapping
approach and requires a 3D structure (mol2 or sdf format) for ligand input, SwissTarget-
Prediction [768] that examines 2D and 3D molecular similarity, and SuperPred 3.0 [769]
that uses machine learning models for prediction. SwissTargetPrediction and SuperPred
take ligand input in a simplified molecular-input line-entry system (SMILES) [770] for-
mat. The full dataset is given in Supplementary Spreadsheet S1. Remarkably, only one
protein was predicted by all three tools, the thyroid hormone receptor alpha (THA, Fig-
ure 10A). This is especially interesting, as previously impaired removal of KYNA from the
brain during has been observed in experimental hypothyroidism [625] (Table 8). Twenty-
seven predicted targets for KYNA were identified by at least two of these computational
compound-target prediction tools, including the aforementioned AhR (Table 12). Other
nuclear receptor family members predicted in addition to THA and AhR, included the
peroxisome proliferator-activated receptor alpha (PPAR-alpha) and estrogen receptor beta
(ER-beta). The latter is notable in the light of a recent report of lower plasma KYNA levels
in users of estrogen contraceptives [632] (Table 8). Notably, however, several of those in
Table 7 were not picked up using this approach. Also of interest is that KYNA was predicted
to bind multiple isomers of the zinc-containing enzyme carbonic anhydrase, which seems
at least plausible as tryptophan has been shown by crystallography to bind and activate
carbonic anhydrase 2 [771]. Not least of note is the prediction that KYNA was predicted
to bind the lymphocyte specific tyrosine kinase (LCK). Critical to T cell signalling, LCK
function has been shown by us to be exquisitely sensitive to dietary zinc supply [772], and
this too may contribute to the immunological effects caused by KYNA.
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clusters, significantly enriched among the predicted KYNA interactome.

As experimentally validated and/or plausible targets were among the proteins pre-
dicted by only one tool (e.g., acetylcholine receptors from SuperPred, SLC16A1 from
SwissTargetPrediction, albumin from PharmMapper) we performed functional enrich-
ment analyses in the DAVID Knowledgebase [773] on all (n = 455) predicted interactors
(Figure 10B). The top functional clusters included carbonic anhydrase activity and multiple
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neuromodulatory receptor and ion channel activities. Notably, neurotransmitter function
and neurodegenerative disease were among the top biological functional clusters associated
with the predicted KYNA interactome (Figure 10B).

Table 12. KYNA protein targets predicted by two or more computational cheminformatics tools.

Protein Names UniProt ID Entry Name Predicted to Bind KYNA by

Thyroid hormone receptor alpha P10827 THA_HUMAN SuperPred, SwissTarget,
PharmMapper

Glutathione S-transferase P P09211 GSTP1_HUMAN SuperPred, PharmMapper

Inosine-5′-monophosphate dehydrogenase 2 P12268 IMDH2_HUMAN SuperPred, PharmMapper

Galectin-3 P17931 LEG3_HUMAN SuperPred, PharmMapper

Histone deacetylase 8 Q9BY41 HDAC8_HUMAN SuperPred, PharmMapper

Gamma-aminobutyric acid receptor subunit alpha-1 P14867 GBRA1_HUMAN SuperPred, SwissTarget

D-amino-acid oxidase P14920 OXDA_HUMAN SuperPred, SwissTarget

Amine oxidase (flavin-containing) A P21397 AOFA_HUMAN SuperPred, SwissTarget

Aryl hydrocarbon receptor P35869 AHR_HUMAN SuperPred, SwissTarget

Dual specificity protein kinase CLK4 Q9HAZ1 CLK4_HUMAN SuperPred, SwissTarget

Prothrombin Thrombin heavy chain P00734 THRB_HUMAN SwissTarget, PharmMapper

Renin P00797 RENI_HUMAN SwissTarget, PharmMapper

Carbonic anhydrase 1 P00915 CAH1_HUMAN SwissTarget, PharmMapper

Carbonic anhydrase 2 P00918 CAH2_HUMAN SwissTarget, PharmMapper

Thymidylate synthase P04818 TYSY_HUMAN SwissTarget, PharmMapper

Lymphocyte specific tyrosine kinase P06239 LCK_HUMAN SwissTarget, PharmMapper

Neprilysin P08473 NEP_HUMAN SwissTarget, PharmMapper

Leukotriene A-4 hydrolase P09960 LKHA4_HUMAN SwissTarget, PharmMapper

Thyroid hormone receptor beta P10828 THB_HUMAN SwissTarget, PharmMapper

Angiotensin-converting enzyme P12821 ACE_HUMAN SwissTarget, PharmMapper

Farnesyl pyrophosphate synthase P14324 FPPS_HUMAN SwissTarget, PharmMapper

Neutrophil collagenase P22894 MMP8_HUMAN SwissTarget, PharmMapper

Macrophage metalloelastase P39900 MMP12_HUMAN SwissTarget, PharmMapper

Aldo-keto reductase family 1 member C3 P42330 AK1C3_HUMAN SwissTarget, PharmMapper

Mitogen-activated protein kinase 10 P53779 MK10_HUMAN SwissTarget, PharmMapper

Peroxisome proliferator-activated receptor alpha Q07869 PPARA_HUMAN SwissTarget, PharmMapper

Estrogen receptor beta (ER-beta) Q92731 ESR2_HUMAN SwissTarget, PharmMapper

29. Biotechnological Production

Current laboratory [774–776] and commercial production of KYNA is via chemical
synthesis, which presently uses some environmentally unpleasant chemicals and has
modest yields. However, as with ergothioneine (e.g., [18,777–779]), it is possible to product
KYNA by fermentation, Studies of the fermentative production of KYNA are relatively
limited, however, and are summarized in Table 13.
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Table 13. Fermentative production of KYNA in microorganisms.

Organism Genetic Modification(s) Titer Conditions and
Comments References

Escherichia coli Remove competing pathway,
enhance SAM pathway 350 mg/mL Main target was

actinocin [780]

Saccharomyces cerevisiae
None, but a chemical defined
medium including 400 mg/L
tryptophan was used

9 mg/L [781]

~1.5 µM (~280 ng/mL) [782]

Yarrowia lipolytica None 21 µg/mL in culture broth or
494 µg/g cell dry weight

trp-supplemented
media [783–785]

30. Conclusions and Forward Look

Thanks to advances in scientific knowledge and in public health, human lifespan has
been increasing in developed countries since the middle of the 19th century at something
like 6 y per 25 y (ungendered and aggregated data for the UK at https://www.statista.
com/statistics/1040159/life-expectancy-united-kingdom-all-time/, accessed on 19 Au-
gust 2024), and its variation between individuals and countries has also decreased [786].
However, the healthspan, the period in which one is free of significant ill-health, has not
matched it [787]. It is widely recognized (e.g., [788–790]) that diet has a significant role
in bringing the healthspan closer to the lifespan. In particular, nutraceuticals, molecules
that influence health positively and that might be part of or added to a ‘healthy diet’, are
seen as a contributor. Ergothioneine (ERG), a potent and effective antioxidant, seems to be
one [1,18,29,508,791,792], with experimental evidence and ongoing studies for this contin-
uing to emerge (e.g., [320,793]), and we here make the case that KYNA is another. It is
instructive to provide a comparison of the two molecules, and Table 14 does so.

Table 14. A comparison of some properties ergothioneine and KYNA in terms of our knowledge and
their present status as nutraceuticals.

Property Ergothioneine Kynurenic Acid

Overall status as a nutraceutical Fairly well established
[1,18,29,508,791,792,794,795] Emerging [86,99,308,533]

Biosynthesized endogenously No Yes

Largest dietary source Mushrooms (fruiting bodies of
basidiomycetes) [29,796–799] Chestnut honey [308,392]

Highest natural product level ~9 g/kg [29,800] ~0.6 g/kg [308,392]

Approximate serum/plasma level in
‘healthy’ populations ~260 ng/mL, ~1.1 µM ~40 nM

Degree of concentration in erythrocytes Maybe as much as 10 times [801] Possibly 3× but unclear how calculated [425]; no
increase in a related study [459]

Known ‘uptake’ transporters in humans Relatively specific and concentrative e.g.,
SLC22A4 [802,803], SLC22A15 [804]

Those known are non-specific and
non-concentrative [235,236]

Concentrated in erythrocytes as a kind of
‘buffer’ for plasma

Significantly (up to ten-fold [801,805]),
probably accumulated via SLC22A4 [806] Much less so (note that RBC express ABCC4 [807])

Known ‘efflux’ (pump) transporters in
humans Not known ABCC4 [242,696] and possibly ABCG2 [263,264]

Known transporters in microorganisms Several, e.g., [778,808,809] None seemingly published

Thermostability High (can be extracted at 95 ◦C [810]) High (stable to boiling and frying [37]), and in
blood samples [699]

Pharmacokinetics studies Somewhat, with human feeding trials for
35 d [319] Not really initiated orally

https://www.statista.com/statistics/1040159/life-expectancy-united-kingdom-all-time/
https://www.statista.com/statistics/1040159/life-expectancy-united-kingdom-all-time/
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Overall, the evidence that KYNA may indeed be a worthwhile nutraceutical that might
be added exogenously involves at least the following:

• Many examples in which its exogenous addition seems to offer benefits of health or of
protection against disease

• Evidence that its concentration is relatively low in normal populations
• Safety evidence to the effect that there do not seem to be examples in which hyperactive

alleles of KAT enzymes lead to overt disease, and that exogenous KYNA cannot
realistically ‘go back’ to L-kynurenine

• Evidence that it is more or less readily bioavailable for entering plasma from the
diet rather than simply being produced by compounds such as tryptophan and L-
kynurenine that are more easily transported but that can lead to other, potentially
toxic molecules.

This said, not least by comparison with ergothioneine, there are considerable gaps
in our knowledge of its biology. In the case of ergothioneine, there has been a massive
upsurge in interest in the last 20 years, and as pointed out by Halliwell and Cheah [792], “a
key factor was the discovery that an organic cation transporter, OCTN1, is responsible for
uptake of “ergothioneine” from the gastrointestinal tract and for its distribution to tissues
in the bodies of humans and other animals” (see [802,803]). Given the evidence for ‘missing’
transporters that we present above, a similar trajectory seems plausible for KYNA.

From the perspective of nutrition, the number of foodstuffs for which KYNA contents
have been measured by multiple laboratories using modern, quantitative methods is rather
limited, and such studies demand extension.

Other glaring gaps in our knowledge involve pharmacokinetic studies of KYNA
uptake, distribution, metabolism and excretion in both humans and laboratory animals (for
ergothioneine, see e.g., [319]), the effects of KYNA supplementation on measures of health
such as antioxidant status and indeed longevity, and other studies manipulating KYNA as
an independent variable to establish suitable nutraceutical dosing levels. We may also be
sure that it interacts with other proteins whose identity has not yet been discovered, not
least for some of the other targets that were predicted by in silico docking (Table 12), where
modern proteomics approaches to attack such questions are available [740,811,812].

The biggest issue with many studies where, for example, tryptophan or L-kynurenine
was added, is that they often infer effects of KYNA that are equally plausibly due to changes
in other metabolites of the kynurenine pathway or elsewhere that were not in fact measured.
In a sense, this is one of the great strengths of KYNA as a candidate nutraceutical, as it
can be added without being expected to affect upstream metabolites significantly, at least
directly. This offers particular levels of safety.
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