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Abstract: Type 1 Gaucher disease (GD1) is a rare, autosomal recessive disorder caused by glucocere-
brosidase deficiency. Skeletal manifestations represent one of the most debilitating and potentially
irreversible complications of GD1. Although imaging studies are the gold standard, early diagnos-
tic/prognostic tools, such as molecular biomarkers, are needed for the rapid management of skeletal
complications. This study aimed to identify potential protein biomarkers capable of predicting the
early diagnosis of bone skeletal complications in GD1 patients using artificial intelligence. An in silico
study was performed using the novel Therapeutic Performance Mapping System methodology to
construct mathematical models of GD1-associated complications at the protein level. Pathophysiolog-
ical characterization was performed before modeling, and a data science strategy was applied to the
predicted protein activity for each protein in the models to identify classifiers. Statistical criteria were
used to prioritize the most promising candidates, and 18 candidates were identified. Among them,
PDGFB, IL1R2, PTH and CCL3 (MIP-1α) were highlighted due to their ease of measurement in blood.
This study proposes a validated novel tool to discover new protein biomarkers to support clinician
decision-making in an area where medical needs have not yet been met. However, confirming the
results using in vitro and/or in vivo studies is necessary.

Keywords: Gaucher disease; GD1; skeletal complications, bone complications; biomarker; early
diagnosis

1. Introduction

Gaucher disease (GD) is a rare autosomal recessive disorder that is considered a
complex molecular storage disease characterized by the accumulation of sphingolipids,
mainly glucosylceramide (GlcCer) [1]. It is caused by a deficiency in the activity of the
enzyme glucocerebrosidase (GCase; EC 3.2.1.45), which leads to an accumulation of GlcCer,
mainly in the monocyte-macrophage lineage, inducing phenotypic changes in Gaucher
cells (GCs) [2]. This lipid buildup can lead to many symptoms and complications, ranging
from bone pain and fatigue to anemia, neurological features, and organ dysfunction. GD is
equally prevalent in males and females, with a worldwide prevalence of 0.70 to 1.75 per
100,000 individuals and 0.9 (95% CI 0.7–1.1) [3].

The disease is a consequence of pathogenic variants in the glucocerebrosidase gene
(GBA1) (MIM*606403) and can be classified into three clinical subtypes based on the age
of onset, clinical signs, rate of progression, or absence of neurologic disease [4]. Type 1
disease (GD1) (MIM#230800) has the most common onset in childhood or adulthood. The
prevalence of GD1 is 0.26 to 0.63 per 100,000 individuals, which is considerably greater in the
Ashkenazi Jewish population (estimated at 1 in 450 births) [3]. The most common clinical
manifestations in GD1 patients are splenomegaly and hepatomegaly (present in up to 90%
of patients). Other symptoms that may appear include anemia, thrombocytopenia, fatigue,
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and bone and joint pain [5,6]. GD1 disease can cause serious long-term complications if not
properly diagnosed and treated. Particularly noteworthy is the significant impact of bone
disease, which affects more than 80% of patients with GD1 studied, representing one of the
complications with the most significant impact on quality of life [7,8].

The pathophysiology of GD1 disease results from the accumulation of GlcCer in
macrophage lysosomes, especially in the spleen, liver, and bone marrow (BM), leading to
chronic inflammation and cellular dysfunction [6,9]. GC infiltration into the BM and osteo-
clasts has been associated with increased osteoclastic activity and decreased osteoblastic
activity [10]. GC infiltration at the BM level can contribute to the activation of T cells and
the production of inflammatory cytokines, which can cause osteoclastic activation and bone
resorption [11]. These processes can lead to decreased hematopoiesis, avascular necrosis
(AVN), fragility fractures, and loss of bone density [12–14]. On the other hand, there is
a scientific consensus for the classification of bone infarcts derived from these processes
as avascular necrosis that can occur in the metaphyses or diaphyses of long bones and
osteonecrosis in the epiphyses [15]. In addition, patients with GD1 are more susceptible
to developing bone disease. These phenotypic variations of the disease are due to genetic
factors and the proinflammatory effect of cytokines induced by GCs. All these components
influence bone metabolism and bone marrow dysfunction in GD1 patients [16,17].

Early diagnosis and prompt intervention with specific therapies for GD are key in
avoiding bone complications as much as possible [14,18,19]. The progressive skeletal
compromise in patients with this disease has led to the proposal of an increasing number
of follow-up recommendations during treatment to reduce associated morbidity and de-
creased quality of life [20–22]. Nevertheless, despite long-term therapy, several patients
develop new bone crises, osteopenia, and other skeletal complications [23]. However,
osteopenia can occur at any age. Despite treatment, some patients may continue to develop
complications due to bone comorbidities. In addition, in a low percentage of GD1 patients,
splenectomy is performed due to the enlargement of the spleen as a result of the accumula-
tion of GCs; consequently, the bone disease becomes more aggressive [24,25]. Therefore, it
is important to monitor the progression of the disease to predict morbidity [26].

The well-established monitoring biomarkers used for GD1 include chitotriosidase
(ChT), glucosylsphingosine (Lyso-Gb1), the cytokine CCL18/PARC, angiotensin-converting
enzyme (ACE), isoenzyme 5b of acid phosphatase (TRAP5b) and ferritin, among others.
However, these methods have limitations in detecting bone involvement. Other biochemical
markers related to bone, such as osteoclast-activating cytokines [16], MIP1-α, and MIP1-
β [27], have been studied. Imaging studies, such as plain radiology, computed tomography
(CT), dual-energy X-ray absorptiometry (DXA), or magnetic resonance imaging (MRI),
may also be performed. These methods are critical tools for diagnosing and identifying
skeletal involvement in GD patients. MRI is the gold standard for assessing bone marrow
infiltration and identifying bone complications, such as AVN, bone infarcts, and bone
crises [2]. However, no image or biochemical marker is currently available to detect prompt
bone complications before irreversible complications occur at the skeletal level, constituting
an unmet medical need [27,28].

Machine learning and artificial intelligence are bur GSE21899ning fields within biolog-
ical and medical research, utilized to discern recurring patterns in complex datasets. These
methodologies have found applications in the field of lysosomal diseases. For instance, they
have been employed to identify patients at risk of developing Fabry disease by assessing
the presence of phenotypic patterns in a patient’s clinical data [29]. Furthermore, they
have been used to unearth potential biomarkers of early tissue damage in metachromatic
leukodystrophy [30]. This emergent technology has also found utility in the study of more
prevalent diseases such as hypertrophic cardiomyopathy. This is evidenced by the work
conducted by You H. et al., where potential genes were identified as biomarkers [31]. Focus
on GD1, this technology allowed the assessing of changes in bone microstructure [32] and
the identification of characteristics of patients susceptible to developing bone complications
during treatment [19]. Moreover, systems biology-based approaches can help to detect
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promising biomarkers for precisely diagnosing diseases [33,34] and untangle complex
pathological states, especially in rare disease areas [35,36], such as GD, where information
is scarce [37,38].

Therefore, the main objective of this project was to identify protein biomarkers capable
of accurately predicting the early diagnosis of bone complications in GD1 patients using
novel tools, such as machine learning methods.

2. Results
2.1. GD1 Disease Characterization, Interactome and Mathematical Models

The models were trained on a compendium of biological and clinical data describing
human physiology (Supplementary Table S1).

To focus the models on GD1, we used its molecular characterization derived from a non-
systematized literature review, as noted in the methods section (Supplementary Table S2).
We focused our analysis on a set of 7 pathophysiological processes, or motifs (M), and
150 single protein effectors (Table 1, Supplementary Table S2) found to be involved in GD1
disease pathophysiology. The effectors were integrated into the global human protein–
protein interaction network (Figure 1) for a human physiology-based evaluation of GD1.

Table 1. Summary of the motifs identified as involved in type 1 Gaucher disease.

M ID M Name Number of Proteins

M1 GlcCer accumulation–GC formation 6

M2 Inflammation and infiltration factors 24

M3 Iron accumulation in GCs 12

M4 Splenic complications 0 *

M5 Bone marrow complications 21

M6 Liver complications 43

M7
Skeletal complications (Osteoblast/osteoclast uncoupling) 43
Skeletal complications (Hypoxia-induced osteonecrosis) 42

Splenic complications: increased sequestration of platelets. Bone marrow complications: depressed hematopoiesis.
Liver complications: liver fibrosis/liver disease/liver disease and fibrosis. Skeletal complications: vascular
involvement in bone disease/bone turnover dysfunction. * The precise molecular mechanisms by which platelets
are sequestered in the spleen remain unknown. Thus, this motif cannot be defined at the molecular (protein) level.
GlcCer: Glucosylceramide. GCs: Gaucher Cells. M#: the number of identified pathophysiological processes or
motifs involved in type 1 Gaucher Disease.

We queried for publicly available GD1 gene expression datasets in gene expression
data repositories. One study complied with the filters: expression data of cultured skin
fibroblasts from five samples from untreated GD1 patients and four samples from healthy
individuals in the GSE21899 series [39] available from GEO [40]. Exclusively considering
genes mapping to proteins, we defined a GD1 protein expression signature (Supplementary
Table S3).

The network of the proteins directly connected to GD1 contained 3809 proteins, which
were found to be significantly enriched within the fibroblast expression-based GD1 protein
expression signature (p value < 10−4). We evaluated how the skeletal complication-related
proteins connected to the proteins within the initial pathological changes associated with
GD1, including “GlcCer Accumulation–GC Formation”, “inflammation and infiltration
factors” and “iron accumulation in GCs” motifs (Figure 1). We found that although
there was a direct connection between “inflammation and infiltration factors” and “iron
accumulation in GCs”, no direct interactions were found between the proteins and the
“GlcCer Accumulation–GC Formation” motif.
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Figure 1. Graphical representation of the GD1 protein network, including skeletal complication
effectors and their interactions with the selected protein effectors, as well as the most promising
biomarker candidates and their interactions. The image presents directional link information between
proteins, including all available relationships (links, gray color) between proteins (nodes, blue color)
from a regularly updated in-house database drawn from public sources. The shape of the nodes
indicates the GD1 motif to which the depicted proteins belong, and the purple border indicates the
proteins belonging to the GD1 protein expression signature. GD1: type 1 Gaucher disease. GlcCer:
Glucosylceramide. GCs: Gaucher Cells. M#: the number of identified pathophysiological processes
or motifs involved in GD1.

Once the proteins involved in GD1 were identified, we aimed to identify the proteins
most prone to triggering GD1 initiation. Although the “GlcCer Accumulation–GCs For-
mation” motif is the initial trigger of the disease [2], its lack of direct connectivity with the
“inflammation and infiltration factors”, “iron accumulation” and “skeletal complications”
motifs prevented us from using it as a direct trigger of the rest of the disease. Accordingly,
given that GC formation leads to infiltration and subsequent manifestation [2], we evalu-
ated which of the proteins affected by the “inflammation and infiltration factors” pathway
were more prone to triggering the rest of this pathway and the “iron accumulation” path-
way; both of these pathological changes subsequently lead to disease manifestation. To do
so, we used pretrained therapeutic performance mapping system (TPMS) models [41] to ob-
tain the number of proteins associated with the GD1 motifs “inflammation and infiltration
factors” and “iron accumulation”, with the sign assigned at distances of 1, 2 and 3 for each
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“inflammation and infiltration factors” protein effector indicating that protein proximity
was positively correlated. A mean value was obtained for the universe of solutions, and a
normalized value was obtained considering the maximum signal that could be achieved
(maximum value: 100%). We selected the effector group that allowed 100% of the remaining
effectors to reach “inflammation and infiltration factors” and “iron accumulation” as a
stimulus. We found that nuclear factor interferon gamma (IFNG), interleukin-6 (IL6) and
macrophage colony-stimulating factor 1 (CSF1) were able to induce the protein expression
of 100% of these genes in terms of the predicted protein activity signal.

To simulate GD1 with different complications, we created 8 TPMS models using the
following components: (1) stimulus: the GD1 triggering identified stimulus; (2) restrictions:
in addition to the training set (Supplementary Table S1), the GD1 protein expression
signature, as previously described [41], was used to better model the pathophysiology of
GD1; and (3) response: a combination of GD1-defined motifs (Table 2).

Table 2. Type 1 GD models and combinations of motifs used for response.

TPMS Model Name Response (GD1 Motif Combination)

GD1 without complications M2. Inflammation and infiltration factors
M3. Iron accumulation in GCs

GD1 with skeletal complications
M2. Inflammation and infiltration factors
M3. Iron accumulation in GCs
M7. Skeletal complications

GD1 with liver complications
M2. Inflammation and infiltration factors
M3. Iron accumulation in GCs
M6. Liver complications

GD1 with BM complications
M2. Inflammation and infiltration factors
M3. Iron accumulation in GCs
M5. BM complications motif

GD1 with BM and liver complications

M2. Inflammation and infiltration factors
M3. Iron accumulation in GCs
M5. BM complications
M6. Liver complications

GD1 with liver and skeletal complications

M2. Inflammation and infiltration factors
M3. Iron accumulation in GCs
M6. Liver complications
M7. Skeletal complications

GD1 with BM and skeletal complications

M2. Inflammation and infiltration factors
M3. Iron accumulation in GCs
M6. BM complications
M7. Skeletal complications

GD1 with BM, liver and skeletal complications

M2. Inflammation and infiltration factors
M3. Iron accumulation in GCs
M5. BM complications
M6. Liver complications
M7. Skeletal complications

Splenic complications: increased sequestration of platelets. Bone marrow complications: depressed hematopoiesis.
Liver complications: liver fibrosis/liver disease/liver disease and fibrosis. Skeletal complications: involvement
in bone disease/bone turnover dysfunction. BM: Bone Marrow. GD1: Type 1 Gaucher disease. GCs: Gaucher
Cells. M#: the number of identified pathophysiological processes or motifs involved in GD1. TPMS: Therapeutic
Performance Mapping System.

A total of eight models were created, each containing 250 mathematical model solu-
tions, simulating the pathophysiology of patients with GD1 and its possible associated
complications, including modeling GD1 without complications and modeling GD1 with
individuals or combinations of skeletal, bone marrow and liver complications. The mean
between these solutions provides the most likely paths from the stimulus to the response.
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In addition to the interactions that link stimulus and response, sample-based method
models allow the exploration of how signals flow between proteins in the network and the
predicted protein activity achieved for each protein (ranging from [−1 to 1]) within the
models. This predicted protein activity can be used to analyze and compare the models.

The aim of the current study was to identify markers of skeletal involvement (defined
as proteins involved in osteoblast/osteoclast uncoupling and hypoxia-induced osteonecro-
sis). To do so, the following comparisons were defined for identification:

- Biomarker candidates for skeletal complications: GD1 with skeletal complications model
vs. the other models.

- Biomarker candidates for bone marrow complications: GD1 with bone marrow complication
models vs. the other models.

- Biomarker candidates for liver complications: GD1 with liver complication models vs. the
other models.

To prioritize specific biomarkers of skeletal complications, the candidates that also
complied with the first three filters when considering biomarker candidates for bone marrow
complications (GD1 with bone marrow complications models vs. the rest of the models) or
biomarker candidates for liver complications (GD1 with liver complications models vs. the rest
of the models) were discarded.

Although the TPMS models are protein based, the interactome in which they are built
includes gene and RNA regulation data; thus, for standardization purposes, we will use
gene names to refer to all genes/proteins mentioned in this manuscript when referring to
the model results.

The models created allowed the exploration of the classification potential of 423 GD1-
related proteins, 89,253 pairwise combinations between them and 12,525,171 combinations
of 3 proteins to accomplish the goal of this project.

2.2. Evaluation of Previously Described Biomarkers

Previously proposed skeletal complication (such as osteonecrosis, bone damage, or
metabolic changes in bone tissue) biomarkers in GD1 according to the literature were
primarily chemokines: C-C motif chemokine 3 (CCL3 gene, MIP-1α), cathepsin K (CTSK
gene), C-C motif chemokine 4 (CCL4 gene, MIP-1β), osteocalcin (BGLAP gene), interleukin-
8 (CXCL8 gene), C-C motif chemokine 18 (CCL18 gene) and C-C motif chemokine 5 (CCL5
gene). According to our models and the data science strategy applied, four out of the
seven candidates showed statistically significant cross-validated balanced accuracy (cross-
validated p value < 0.01) (Table 3). CCL4/MIP-1β was the previously proposed biomarker
with higher cross-validated balanced accuracy (58.54%); thus, we set this value as the
threshold for new potential candidate discovery. The validation process applied was leave-
one-out (LOO) cross-validation. This validation consists of estimating the threshold value
for all available samples, except the sample that is excluded from the analysis. The process
is repeated, keeping a different sample out of the analysis each time, and the final threshold
is determined as the average of all thresholds determined.

Table 3. Classification performance of the biomarkers of skeletal complications that were previously
proposed by third authors.

Protein Name Gene Name [40] UniProt ID [42] crosVal Accuracy (%) crosVal p-Value

MIP-1β CCL4 P13236 58.54 9.32 × 10−32

Cat K CTSK P43235 58.4 6.72 × 10−41

MIP-1α CCL3 P10147 53 0.000218

OC BGLAP P02818 51.31 2.83 × 10−10

The classification was performed in terms of cross-validated balanced accuracy to separate the GD1 skeletal
complication models from the other GD1 models. Only candidates showing crosVal-Accuracy > 50% are shown.
For the creation of the in silico model, the gene nomenclature was used, because the model includes protein and
genetic regulation relationships. Cat K: cathepsin; GD1: Type 1 Gaucher disease; OC: osteocalcin; MIP-1α: C-C
motif chemokine 3; MIP-1β: C-C motif chemokine 4.
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2.3. Identification of Potential Biomarkers of GD1-Related Skeletal Complications

Applying this cross-validated accuracy filter as well as precision and sensitivity (≥65%)
filters, we identified 18 biomarker candidates (formed by 1, 2 or 3 proteins) that showed
potential as biomarker candidates for skeletal complications and not as biomarker candidates for
bone marrow complications or biomarker candidates for liver complications (Table 4). Sixteen of
these biomarker candidates contained at least 1 protein measurable in plasma or urine,
namely, CCL3/MIP-1α, interleukin-8, interleukin 1 receptor type 2 (IL1R2 gene), platelet-
derived growth factor B subunit (PDGFB gene) and parathyroid hormone (PTH gene) in
plasma and G protein subunit alpha I3 (GNAI3 gene) in urine.

Table 4. The new potential classifier candidates were ranked from lowest to highest based on their
cross-validated percentage-balanced accuracy.

Gene Name
[40]

UniProt ID
[42]

crosVal Accuracy
(%)

crosVal Precision
(%)

crosValSensitivity
(%) crosVal p-Value Plasma Protein

[43,44]
Urine Protein

[45]

MCL1 Q07820
66.69 65.32 71.14 3.62 × 10−89 No No

PLCB1 Q9NQ66 No No

JAK2 O60674
66.80 65.46 71.14 2.37 × 10−90 No No

MCL1 Q07820 No No

IL1R2 P27930 67.54 68.25 65.60 7.26 × 10−98 Yes No

PDGFB P01127
68.31 65.04 79.20 1.97 × 10−112

Yes No
PTH P01270 Yes No
CCL3 P10147 Yes No

PDGFB P01127
68.54 66.30 75.43 1.51 × 10−111 Yes No

PLCB1 Q9NQ66 No No

GNAI3 P08754
70.11 72.25 65.31 4.77 × 10−130

No Yes
CXCL8 P10145 Yes No
MCL1 Q07820 No No

PDGFB P01127
70.26 67.18 79.20 1.62 × 10−135 Yes No

SREBF1 P36956 No No

IL1R2 P27930
70.77 72.15 67.66 5.66 × 10−138 Yes No

MCL1 Q07820 No No

PDGFB P01127
70.97 71.92 68.80 2.29 × 10−140 Yes No

IL1R2 P27930 Yes No

IL1R2 P27930
71.54 69.41 77.03 4.62 × 10−150 Yes No

SREBF1 P36956 No No

IL1R2 P27930
73.14 70.19 80.46 6.74 × 10−176 Yes No

PLCB1 Q9NQ66 No No

JAK2 O60674
73.83 70.44 82.11 2.45 × 10−188 No No

IL1R2 P27930 Yes No

PDGFB P01127
74.00 76.12 69.94 3.55 × 10−186 Yes No

MCL1 Q07820 No No

PDGFB P01127
74.20 78.03 67.37 2.58 × 10−192

Yes No
MCL1 Q07820 No No
CCL3 P10147 Yes No

PDGFB P01127
75.20 77.43 71.14 4.96 × 10−206

Yes No
PTPN11 Q06124 No No
MLC1 Q07820 No No

PDGFB P01127
76.26 79.82 70.29 8.24 × 10−227

Yes No
SREBF1 P36956 No No
MCL1 Q07820 No No

PDGFB P01127
76.54 77.86 74.17 2.31 × 10−228

Yes No
CXCL8 P10145 Yes No
MCL1 Q07820 No No

PDGFB P01127
77.26 79.96 72.74 2.15 × 10−243

Yes No
GNAI3 P08754 No Yes
MCL1 Q07820 No No

Previously proposed skeletal complication biomarkers are highlighted in bold, and whether the protein compo-
nents of the candidates are measurable in plasma or urine according to dedicated databases is indicated. For the
creation of the in silico model, gene nomenclature has been used because the model includes protein and genetic
regulation relationships.
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Among these candidates, we identified combinations of previously proposed biomark-
ers with additional proteins, which increase their classification potential within our models.
We identified two combinations improving CCL3/MIP-1α (in combination with the platelet-
derived growth factor B subunit and induced myeloid leukemia cell differentiation protein
Mcl-1 (MCL1 gene) and in combination with the platelet-derived growth factor B subunit
and parathyroid hormone) and two combinations improving interleukin-8 (in combination
with PDGFB and MCL-1 in combination with GNAI3 and MCL-1). The CCL3/MIP-1α,
PDGFB and PTH combination consisted of proteins that are easily measurable in plasma.

Considering proteins not previously proposed as potential skeletal complication biomark-
ers (Table 4), we identified a classifier formed exclusively by one protein, IL1R2, which is
reported to be measurable in plasma. We identified 10 combinations of two proteins and
3 combinations of three proteins fulfilling all the filters. Among them, only the combination
of IL1R2 with PDGFB is easily measurable in blood. Moreover, the addition of PDGFB
increases the IL1R2 classification capability based on cross-validated accuracy, precision
and sensitivity.

When considering the 18 biomarker classifiers, three GD1 effectors appeared repeat-
edly, either alone or as part of a combination with other proteins, in several of the candidates:
IL1R2, MCL-1 and PDGFB.

Of the 18 biomarker candidates, 4 were composed of elements all suitable for labora-
tory plasma measurements (Table 4): IL1R2, PDGFB, CCL3/MIP-1α and PTH. These four
proteins, in addition to being GD1 protein effectors, are highly connected to the molecular
characterization of GD1 (Figure 2).
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Figure 2. GD1 protein effectors around measurable biomarker candidate components. The image
presents directional link information between proteins, including all available relationships (links,
gray color) between proteins (nodes, blue color) and candidate biomarkers (nodes, yellow color) from
a regularly updated in-house database drawn from public sources. The shape of the nodes indicates
the GD1 motif to which the depicted proteins belong. M#: the number of identified pathophysiological
processes or motifs involved in type 1 Gaucher disease; GD1: Type 1 Gaucher disease.

3. Discussion

Models predicated on systems biology and machine learning represent innovative and
potent tools for the study of rare diseases. These diseases often suffer from a paucity of
data. Current recommendations, as suggested by several authors, underscore the necessity
for in vitro and/or in vivo validation of all predictive models. This validation is crucial
for their subsequent utilization for clinical or biomedical purposes [46]. In addition, rare
disease populations are very heterogeneous compared to those with other diseases [35,36].
In the case of this study, our methodology is based on a well-established technology that
has provided validated results in vitro and in vivo [47–50]. Emerging omics technologies
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for quantifying thousands of molecules, coupled with the sophisticated development of
artificial intelligence algorithms, can accelerate biomarker discovery [51]. Many studies
have shown that machine learning, versus classical methods, can better discriminate
between healthy and diseased groups and identify essential biomarkers for use in clinical
decision-making in various settings [52]. In addition, we observed that the theoretical
interactome on which our model is based reflects enrichment in the observed expression
differences between GD1 fibroblasts and healthy fibroblasts in publicly available expression
datasets. In the present study, systems biology-based models have allowed us to propose
the repurposing and combination of proteins as potential early diagnostic biomarkers
related to skeletal complications in GD1 patients.

Currently, skeletal complications in GD1 patients are diagnosed using imaging ap-
proaches that quantify skeletal involvement once established [2,53]. The identification
of biomarkers as predictive tools for skeletal complications in GD1 patients is an unmet
medical need because imaging techniques, although good follow-up tools, do not allow the
prediction of bone comorbidities, and the available bone biomarkers are insufficient [13].
The wide spectrum of clinical manifestations and their unpredictable progression make
it necessary to use more precise biomarkers that facilitate early diagnosis and avoid irre-
versible complications [54]. Most patients with GD1 have lesions at the time of diagnosis,
and this debilitating skeletal involvement affects their quality of life [55]. It would be desir-
able to identify biomarkers for early diagnosis in young patients to anticipate irreversible
complications or perform more sensitive follow-up than imaging techniques.

The relationships between chemokines and cytokines and osteonecrosis in GD, as
well as between chemokines and proinflammatory cytokines in GD1, have already been
studied [11,16,56]. Several proinflammatory cytokines, including interleukin-1 beta (IL-1
beta), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF alpha) and interleukin-10
(IL-10), have been used to evaluate the systemic and local manifestations of GD [57]. In
our study, we propose a list of 18 biomarkers, including some of the previously proposed
markers (CCL3/MIP-1α, CXCL8), as well as the involvement of the proinflammatory state
(IL1R2) [57,58]. Most of these proteins are defined as effectors, although they have not
been described as markers of skeletal complications. Some of the proteins that we did
not include in the characterization at the time should also be highlighted: isoform B of
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (PLCB1 gene), sterol
regulatory element-binding protein 1 (SREBF1 gene), G protein subunit alpha I3 (GNAI3
gene), and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11 gene). PLCB1 is typ-
ically used for the evaluation of bone regulation [59]. SREBF1 is associated with pathogenic
changes in Parkinson’s disease and plays a role in lysosomal cholesterol accumulation [60],
and changes in this biomarker have also been detected in the brains of GD1 model mice
after treatment [61]. GNAI3 functions as a downstream transducer of G protein-coupled
receptors (GPCRs) in numerous signaling cascades. Guanine and nucleotide binding pro-
tein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells through the
JNK and ERK signaling pathways, although one of the manifestations of GD1 patients
includes delayed eruption of definite teeth [62]. Finally, PTPN11 acts downstream of vari-
ous receptor and cytoplasmic protein tyrosine kinases to participate in signal transduction
from the cell surface to the nucleus, and this process plays an essential role in osteoblast
differentiation [63]. However, we did not find an association between any of these proteins
and GD1 patients in the scientific literature.

To facilitate further studies and potential clinical translation, we highlighted those
proteins within the biomarker candidates that have been shown to be measurable in plasma.
There are four biomarker candidates that are composed of proteins that are all measurable:
IL1R2, PDGFB, CCL3/MIP-1α and PTH. IL1R2 is found in neutrophils, B cells, monocytes,
and macrophages. IL1R2 is a natural inhibitor of IL1, plays essential roles in inflammation
and immune regulation [64,65], and is specifically involved in activating hematopoietic pre-
cursors in the BM [66]. The accumulation of glycolipids in GD1 contributes to the activation
of different inflammatory mediators [6]. The regulation of IL1R2 expression in different
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cell types has been described as a mechanism to counteract exacerbated inflammation in
response to exogenous stimuli. In the context of bone pathophysiology under inflammatory
conditions, the exacerbated osteoclastic activity that results in bone loss is related to the IL1
response and IL1R2 expression [65].

PDGFB is responsible for the development of fibroblastic and myofibroblastic tu-
mors [67]. PDGFB regulates stem cell-based bone regeneration [68]. Specifically, the PDGFB
chain increases trabecular bone formation and trabecular connectivity, and decreases corti-
cal porosity [69]. At the vascular level, it stimulates the thickening of the intima layer of
blood vessels [70]. These proteins also play important roles in maintaining homeostasis and
normal cell function. When this regulation is compromised, as occurs in GD1 disease [71],
changes in cell metabolism, intracellular signaling, and other biological processes can occur
that can alter these proteins.

CCL3/MIP-1α serves as a critical mediator of the immune response by attracting
leukocytes to sites of inflammation. In patients with GD1, elevated CCL3/MIP-1α levels
are correlated with the severity of bone involvement, suggesting a central role for this
chemokine in the underlying pathological process [16,72,73]. Alterations in the inflamma-
tory secretome of bone marrow mesenchymal stromal cells could contribute substantially
to the skeletal pathology observed in patients with GD1 [74].

PTH is essential for bone metabolism to regulate calcium homeostasis and remodeling,
mediating critical actions through its type-1 receptor (PTHR1) in bone development and
mineral regulation [75,76]. In this context, osteocytes modulate the activity of sclerostin, a
key inhibitor of bone formation, in response to PTH using posttranslational degradation
mechanisms through lysosomal pathways, which are essential for bone formation induced
by anabolic stimuli. Lysosomal dysfunction, which is characteristic of patients with GD1
disease, compromises this process, establishing a direct connection between bone alterations
in the disease and PTH [77]. Additionally, teriparatide, a synthetic form of PTH (1–34), is
an effective therapeutic strategy for improving bone mineral density and architecture in
patients with GD1 disease who do not respond to bisphosphonate treatments [78].

This, together with the fact that all these genes are GD1 effectors and are connected
to other players in the disease, make these results good candidates for further validation.
Although our strategy is theoretical, the approach aims at minimizing biases by using
available information from GD1 disease to train our artificial network and has adequate
biological contextualization. Additionally, we used previously proposed biomarkers to set
a threshold for the identification of good candidates.

Within the limitations of our study, this is due to the gene/protein nature of the TPMS
modeling approach, as other relevant biological molecules cannot be directly evaluated.
In this sense, other approaches based on other biological molecules (lipidomics [79] or
fibroblasts, for example) could complete our findings.

Additionally, there is a lack of information associated with this disease, and this
limitation is especially relevant for rare diseases such as GD1. Although we compiled
all available information and applied TPMS technology [41], which considers not only
disease but also the entire landscape of human physiology, to reduce this limitation, there
are other factors that our models might not have considered. In this study, we focused on
proteins of skeletal involvement (involved in osteoblast/osteoclast uncoupling and hypoxia-
induced osteonecrosis) and separated them from BM complications. BM complications are
associated with depressed hematopoiesis characterized by an infiltrative phenomenon [13],
which could explain why medullary pathology is reflected in the hematopoiesis process [2].
Although a vascular component is involved in the pathophysiology of BM and we cannot
rule out local vascular phenomena, we excluded it from BM complications because the
vascular factors involved are still unknown and their effect on BM organization and
function remains unclear, as the infiltrative phenomenon is the most established process
for BM pathology in GD [2]. We also consider GC infiltration a global process because
we found no evidence of specific search mechanisms for different tissues; if there were
diverse mechanisms, our models could have proposed non-skeleton-specific markers. To
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control for this bias, we discarded those candidates that also had the potential to rank
model solutions for liver complications and complications due to BM infiltration.

Overall, we believe that machine learning-driven modeling can help deepen our
understanding of the skeletal and bone marrow complications of GD1, as shown by our
biomarker candidate results, which are consistent with current GD1 knowledge and could
be readily evaluated in preclinical or clinical settings.

Consequently, our strategy has proposed panels of markers with the capacity for
classification, repositioned previously proposed markers and combinations of proteins
that could complement current strategies to promptly identify skeletal involvement in
patients with GD1. Further research in this field must align with an in vitro and/or in vivo
validation [46] in a cohort of patients who have a thorough clinical characterization of the
pathology. This will allow for the validation of those markers that present a diagnostic and
prognostic purpose related to the skeletal complications of GD1.

4. Materials and Methods

An in silico study was developed using the TPMS patented by Anaxomics [41], which
is based on systems biology, machine learning, and pattern recognition techniques that
integrate all available biological, pharmacological, and medical knowledge to create mathe-
matical models that simulate human pathology and physiology. The steps were as follows:
data compilation (Figure 3A), modeling task (Figure 3B) and results prediction (Figure 3C).
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Figure 3. Workflow for the identification of potential biomarker candidates for GD1-related skeletal
complications. This process involves three steps: (A) data compilation for molecular characterization
of GD1 generation to develop the HPN; (B) modeling to generate GD1 mathematical models using
a systems biology-based TPMS approach; and (C) data analyses employing model outputs, which
were applied to the protein activity inferred from the mathematical models to classify and identify
potential biomarker candidates. GD1: Type 1 Gaucher disease; HPN: human protein network; TPMS:
Therapeutic Performance Mapping System.

4.1. Data Collection and Gaucher Disease Interactome Characterization

The first step in modeling GD1 was molecular characterization (Figure 3A). We re-
viewed the nonsystematized literature in the Medline/PubMed database. The search
strategy is shown in Supplementary Table S4.

We evaluated the results at the title, abstract, and, if containing molecular information
(i.e., proteins related to the pathophysiology of GD1), full-text level to identify the main
pathophysiological processes or motifs involved in GD1. The search was expanded by
checking relevant articles in the reference lists of the resulting articles. Subsequently, we
identified proteins that are functionally associated with the development of GD1 through
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their activity and functions (or lack thereof), and these proteins were defined as protein
effectors. After identifying potential candidate proteins, in those cases where the evi-
dence found was not sufficiently consistent to be attributed to an effector (i.e., assigning a
functional role for the protein in disease development), specific literature searches were
performed using the Medline/PubMed database either to confirm or discard the candidate.
This procedure has been previously applied in studies yielding experimentally validated
conclusions [47–50].

Gene expression data were searched in the following databases: Gene Expression Om-
nibus (GEO) [40], ArrayExpress [80] and Omics Discovery Index (DI) [81]. The following
search and filters were used: “Gaucher” [ALL FIELDS] AND “Homo sapiens” [Organism];
only transcriptomics experiments were considered. The selected data were processed
with GEO2R [82,83]. The genes considered significantly differentially expressed between
diseased and control fibroblasts were those with an adjusted p value ≤ 0.05 and an absolute
value of log2FC ≥ 1. Exclusively considering genes mapped to proteins, we defined a GD1
protein expression signature (Supplementary Table S2).

Hypergeometric enrichment analysis [84] was applied to evaluate the presence of the
GD1 protein expression signature within the bibliography- and database-based GD1 interac-
tomes, using UniProtKB [42], THPA [43,44] and the Clinical Urine Proteomics Database [45]
as the protein universe.

TPMS technology [41] was applied to build GD1 models considering the human map
of known protein relationships described in the following databases: KEGG [85], REAC-
TOME [86], INTACT [87], BIOGRID [88], HPRD [89] and TRRUST [90]. Using the compiled
data, we created a network of human proteins (Figure 3A). Network representations were
created using Cytoscape 3.8 [91].

4.2. Generation of Mathematical Models

This section shows the modeling process using mathematical models (Figure 3B).
TPMS mathematical models are created using a whole human protein–protein interaction
network that incorporates the available relationships (edges or links) between proteins
(nodes) from a regularly updated in-house database drawn from public sources, as pre-
viously described [41,92]. To transform this network or map into mathematical models
capable of both reproducing existing knowledge and predicting new data, it was trained on
a compendium of biological and clinical data describing human physiology. This training
set is defined as the input–output relationships between drug definitions and indications
at the protein level. Therefore, the protein map derives a mathematical model similar to
the multilayer perceptron (MLP) of an artificial neural network over the human protein
network. To do so, each link in the network is assigned a weight, and the signal is propa-
gated across the system starting from the input. Then, the sample-based methods allow the
exploration of how the signal flows between the proteins in the network and the predicted
protein activity reached for each protein (ranging from [−1 to 1]) within the models. This
predicted protein activity can be used to analyze and compare the models.

Although the TPMS models are protein based, the interactome in which they are built
includes gene and RNA regulation data; thus, for standardization purposes, we will use
gene names to refer to all genes/proteins of the model results mentioned in the tables
and figures.

4.3. Results Prediction
4.3.1. Statistical Analysis: Classifier Identification

This section describes the data science strategy used to predict the model’s results
(Figure 3C). Potential biomarkers based on single variables, pairs, and 3-variable combina-
tions were identified using a data science strategy, comparing predicted protein activity
derived from the models.

The previously described data science strategy [41] consisted of 3 steps: data cleaning,
data mining and cross-validation. Data cleaning consisted of removing uninformative
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variables. Data mining included two steps. First, feature selection was performed for the
evaluation of classifiers composed of 2 or 3 variables (1-variable classifiers were explored
by brute force) by applying the following feature selection methods: CHOW-LIU [93],
MRMR [94], RELIEFF [95], RFE-SVM [96], SFFS [97] and Wilcoxon with correlation [98].
Then, a base classifier was calculated either by identifying the optimal linear or quadratic
threshold for classifiers composed of 1 variable or GLM binomial [99], naive Bayes [100]
or MLPs for classifiers composed of 2 or 3 variables. Finally, a 10 K-fold cross-validation
was applied. The cross-validated balanced accuracy was used as a classifier optimization
measure together with the cross-validated p value.

To select the most promising protein candidates, the following filters were applied.
First, we considered the capability of the previously proposed biomarkers as biomarker candidates
for skeletal complications in terms of their cross-validated balanced accuracy (Equation (1))
in separating GD1 from the skeletal complications model vs. the other models; thus, only
candidates improving the best performing previously proposed biomarker were retained. The
BACC was calculated considering both sensitivity (how well the positives are predicted,
i.e., cohort 1) and specificity (how well the negatives are predicted, i.e., cohort 2) as follows:

BACC =
(specificity + sensitivity)

2
(1)

To select those candidates that maximize the identification of solutions in the models
of skeletal complications compared to the rest, we set thresholds to ensure a minimum of
sensitivity but also precision (success rate when a sample is predicted as positive) and select
candidates with a minimum of quality with respect to these parameters. Thus, relevant
literature highlighting the importance of selecting balanced sensitivity and specificity
thresholds was consulted as a second filter, especially in studies characterized by high
clinical heterogeneity. This methodology was adopted to maximize diagnostic accuracy
and clinical relevance for diverse populations, such as those with GD1 disease, establishing
a sensitivity threshold ≥ 65% to ensure minimum diagnostic sensitivity and adequate
precision [41].

The objective was to obtain a selection of candidates for the following evaluations.
Third, candidate biomarkers that included an unmodulated protein in at least 75% of the
model solutions from either of the two cohorts tested were excluded. Considering that
the Gaucher population is very heterogeneous, this filter aims to identify proteins that
are modulated homogeneously. Thus, it is relevant to measure the protein in any patient
despite this heterogeneity.

All the simulations and computational processes described in this project were exe-
cuted in the Anaxomics computing cloud, which integrates over 800 computational threads
on machines with 64 gigabytes of RAM. The software, databases and tools used are from
Anaxomics Biotech.

4.3.2. Measurability Information

Additionally, to provide further information on the classifiers to obtain the most
promising biomarker candidates from a clinical translation point of view, we used the
information stored in dedicated databases. To obtain information on biomarkers detectable
in plasma and urine, we explored The Human Protein Atlas (THPA) [43,44] (Plasma protein
in Table 1) and the Clinical Urine Proteomics Database [45] (Urine protein in Table 1).

5. Conclusions

An in silico model suggested repositioning known biomarkers and biomarker com-
binations for the early diagnosis of bone complications in GD1 patients using plasma
measurements of IL1R2, PDGFB, CCL3/MIP-1α and PTH, although in vitro and/or in vivo
validation is needed. Machine learning-based modeling may further our understanding of
GD1 bone complications.
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