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Abstract: Railway track defects pose significant safety risks and can lead to accidents, economic
losses, and loss of life. Traditional manual inspection methods are either time-consuming, costly,
or prone to human error. This paper proposes RailTrack-DaViT, a novel vision transformer-based
approach for railway track defect classification. By leveraging the Dual Attention Vision Transformer
(DaViT) architecture, RailTrack-DaViT effectively captures both global and local information, enabling
accurate defect detection. The model is trained and evaluated on multiple datasets including rail,
fastener and fishplate, multi-faults, and ThaiRailTrack. A comprehensive analysis of the model’s per-
formance is provided including confusion matrices, training visualizations, and classification metrics.
RailTrack-DaViT demonstrates superior performance compared to state-of-the-art CNN-based meth-
ods, achieving the highest accuracies: 96.9% on the rail dataset, 98.9% on the fastener and fishplate
dataset, and 98.8% on the multi-faults dataset. Moreover, RailTrack-DaViT outperforms baselines on
the ThaiRailTrack dataset with 99.2% accuracy, quickly adapts to unseen images, and shows better
model stability during fine-tuning. This capability can significantly reduce time consumption when
applying the model to novel datasets in practical applications.

Keywords: railway track inspection; vision transformer; computer vision; transportation safety;
public transportation monitoring

1. Introduction

Railways contribute significantly to economic growth, especially in developing coun-
tries [1]. Moreover, railway transportation systems are a more environmentally friendly
mode, with less noise pollution and energy consumption compared to airways, roads,
and waterways [2,3]. Railway tracks play a crucial role in ensuring the safe and efficient
operation of railway transportation [4]. However, railway track defects are a common
cause of train accidents, which can lead to injuries, fatalities, and significant economic
losses. Therefore, the regular inspection of railway tracks is essential to identify and ad-
dress potential defects [5]. Traditional railway track inspection methods involve visual and
manual inspection by human experts or using specialized vehicles equipped with sensors.
However, these methods are time-consuming, costly, and may not always be effective at
detecting defects [6,7].

There are alternative methods to detect damage and monitor the railway tracks.
Loveday [8] explores a method to detect axial stress in railway tracks by using guided
waves. Hashmi et al. [9] replaced the manual fault identification on the railway, which is
performed by a railway engineer with on-the-fly feature extraction. This feature extraction
is based on a deep learning model to generate spectrograms that can ensure they are less
time-consuming and prone to error than traditional systems. Three deep learning models,
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including Convolutional 1D, Convolutional 2D, and Long-Short Term Memory (LSTM),
are used to analyze different lengths of audio samples.

Computer vision is another technique that can be applied to railway track inspection
and monitoring. There are a number of approaches proposed for inspecting and monitoring
railway tracks using computer vision techniques. Ruvo et al. [10] present a Visual Inspection
System for railway maintenance that can detect and track the rail head in a video sequence,
reducing the area to be analyzed by using FPGA technology, which is highly flexible
and configurable as it is based on classifiers that can be easily reconfigured for different
types of rails. Ritika and Rao [11] propose a method to detect track anomalies, such as
vegetation overgrowth and sun kinks, using a camera mounted on a moving locomotive
and a simulated image pipeline. The Inception V3 model is used for the binary classification
of vegetation overgrowth and sun kinks, and the trained model is tested on professionally
simulated track videos. Although the model shows that the proposed method can classify
track anomalies with high precision, the method relies on a camera mounted on a moving
locomotive, which may not be feasible in all situations or for all types of tracks. Moreover,
the simulated images used for training the model may not perfectly represent real-world
track anomalies, which could affect the accuracy of the model. Gasparini et al. [12] proposed
a vision-based framework for detecting obstacles on railways during the night using RGB or
thermal images. The framework uses a rail drone equipped with cameras and external light
sources to collect data. The collected data are used to train a deep learning model that can
accurately detect obstacles. The experiments show that the proposed approach is suitable
for implementation on a self-powered drone. Nonetheless, the use of drones to collect
data is limited by their unpredictable position and short battery life. Gasparini et al. [13]
proposed another framework for the automatic inspection of railways during the night
using thermal images. The framework consists of three modules for detecting, localizing,
and classifying anomalies. The authors also introduce a new dataset called Vesuvio, which
was acquired from a rail drone specifically created for anomaly detection tasks in a railway
scenario during the night. However, the power consumption of light sources used for
night vision is limited to rail drones that are self-powered. Acquisition cameras with a
high spatial resolution are needed to detect even small-sized objects. Gibert et al. [14]
proposed a new method for fastener detection in railway tracks using a combination of
linear Support Vector Machine (SVM) classifiers and a histogram of oriented gradients
features to improve the classification margin. The system can inspect ties for missing
or defective rail fastener problems for missing and broken components with grayscale
images. Even though these two methods show high accuracy for classification, they are only
applicable for grayscale image datasets. In 2016, Gibert et al. [15] proposed an algorithm
for the automated inspection of railway tracks using deep convolutional neural networks
and a multi-task learning framework to classify different natural color images of materials
and fasteners. The proposed algorithm achieved high accuracy in detecting fasteners and
ties, demonstrating its effectiveness in detecting different types of fasteners and materials.
However, the proposal for the method does not discuss the computational requirements,
which could be a limitation in practical applications. Liu et al. [16] present a method to
improve the performance of rail fastener defect inspection for multiple railways to ensure
the safety of railway operation, including a fastener region location method based on
an online learning strategy and a fastener defect recognition method based on a deep
convolutional neural network. One limitation of the proposed method is that the increase
in the maximum queue length of the online template library improves the detection rate
but reduces the detection speed, thus affecting the system’s efficiency. Eunus et al. [4]
introduced a novel Deep Learning (DL) algorithm named ECARRNet for automatic fault
detection in railway tracks. This method aims to reduce accidents on railway tracks, save
lives, and prevent disasters.

All the above works rely on Convolutional Neural Networks (CNNs). However,
CNNs struggle with capturing long-range dependencies due to their local receptive field
limitations [17]. Images with thin structures, complex spatial layouts, or multiple views
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tend to exhibit long-range dependencies [18,19]. Capturing long-range dependencies is
crucial for the tasks that handle the complex and interconnected-structure images [20].
Vision Transformer (ViT) [21] is one method that can effectively handle this type of image.
Vision Transformers are currently applied to various visual inspection tasks such as road
tunnel defect classification [22] and structural condition assessment [23]. In this study,
we employ Vision Transformer instead of CNNs for the railway track inspection task.
ViT is a deep learning model architecture that is designed for image recognition tasks.
Traditional CNN uses a set of convolutional filters to extract image features, which are
then processed by fully connected layers to produce a final prediction. ViT replaces the
convolutional layers of CNN with a self-attention [24] mechanism. It processes the input
image directly by dividing an image into a sequence of non-overlapping patches of equal
size. Then, each patch is embedded linearly in a low-dimensional feature space. These
embedded patches form the input sequence for Transformer blocks. In the Transformer
blocks, the self-attention mechanism is used to monitor all input patches and capture
their dependencies. The output of the self-attention mechanism is then passed through
a feedforward neural network to produce the block’s final output. The output of the last
block is then fed to a classification head, which produces the final prediction. In addition to
patch embeddings, ViT includes positional embeddings that provide information about the
spatial location of each patch. This enables the model to encode the spatial relationships
between patches in an image and capture the long-range dependencies, enabling stronger
global context modeling [25–27]. Additionally, ViT can handle images of any size because it
processes image patches independently. This makes ViT more adaptable than CNNs, which
require the image to be resized or cropped to a fixed size. Furthermore, ViT has shown
promising results not only on large datasets but also on small datasets [28]. Moreover, ViT
has demonstrated state-of-the-art (SOTA) performance on a variety of image classification
tasks, outperforming CNNs on certain benchmark datasets [21].

This paper proposes a novel transformer-based deep learning approach, called RailTrack-
DaViT, for detecting defects in railway track images. Railway track images inherently
contain long-range dependencies due to the extended, curved geometry of the tracks
themselves. Capturing global context and relationships between distant regions is crucial
for the classification task. The key contributions are listed as follows:

• RailTrack-DaViT is a novel approach that applies a Vision Transformer (ViT) to railway
track defect binary classification. RailTrack-DaViT is not only able to capture long-
range dependencies but also effectively models both global and local information in
railway track images.

• RailTrack-DaViT incorporates a customized classification head and training pipeline
that can be effectively trained and tested on datasets containing limited data. These
modifications enable RailTrack-DaViT to achieve greater stability and quicker adapta-
tion to unseen images during the fine-tuning process compared to baseline methods.

• The ThaiRailTrack dataset is constructed by collecting Thai railway track images from
two sources: the National Science and Technology Development Agency (NSTDA)
and the Passenger Service Department (Operation) of the State Railway of Thailand.

• A comprehensive analysis of model performance is presented, including metrics such
as a confusion matrix, training history visualization, and classification metrics. For ex-
tensive evaluation, the proposed model is evaluated on various datasets, including
Rail, Fastener and fishplate, Multi-faults, and ThaiRailTrack datasets.

2. Method
2.1. Overview of RailTrack-DaViT Architecture

In this study, we propose a deep learning approach for defecting defects in railway
tracks, called RailTrack-DaViT. The RailTrack-DaViT utilizes a pre-trained Dual Attention
Vision Transformers (DaViT) [29] base model as the feature extractor backbone. DaViT
is a recently proposed vision transformer variant that achieves a strong performance on
ImageNet [30] classification while using fewer parameters and demonstrating improved
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data efficiency compared to other Vision Transformer (ViT) models [29] architectures.
With spatial window and channel group attentions, DaViT efficiently captures not only local
representation but also global context. To leverage the powerful representations learned by
DaViT on ImageNet while reducing the risk of overfitting to our smaller railway dataset, we
froze all layers of the base model initially and used it as a fixed feature extractor. The original
1000-class classification head was replaced with a custom multilayer perceptron (MLP)
classification head for a binary classification task. The completed network architecture of
RailTrack-DaViT is shown in Figure 1.

Figure 1. RailTrack-DaViT network architecture.

The MLP classification head consists of two fully connected layers with 512 and
128 units, respectively. The ELU [31] activation functions were utilized for non-linearity as
shown in Equation (1).

f (z) =

{
z for z ≥ 0
β · (ez − 1) for z ≤ 0

(1)

where:

• z is the feature between layers used as input for the ELU activation function;
• β is a hyperparameter that controls the value to which an ELU saturates for nega-

tive inputs.

ELU has been shown to speed up learning in deep neural networks and tends to have
a significantly better generalization performance compared to other activation functions.
Moreover, dropout regularization (p = 0.5) between each layer was applied. The final
output is a single sigmoid unit representing the probability of a defect being present in the
input image.

2.2. RailTrack-DaViT Model Training Process

Figure 2 illustrates the overall process in training RailTrack-DaViT. The RailTrack-
DaViT was trained in two stages. In the first stage, only the classification head was trained
for 90 epochs while the RailTrack-DaViT backbone remained frozen. Binary cross-entropy
loss was used as the loss function. The equation of binary cross-entropy loss can be
derived as:

L(y, ŷ) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (2)
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where:

• L(y, ŷ) is the binary cross-entropy loss;
• N is the number of samples;
• yi is the true label of the i-th sample (0 or 1);
• ŷi is the predicted probability of the i-th sample belonging to class 1.

Figure 2. Overall process for training RailTrack-DaViT.

The loss function penalizes the model for making incorrect predictions. It encourages
the predicted probabilities to be close to the true labels, minimizing the difference between
them. The logarithmic terms ensure that the loss is high when the predicted probability is
far from the true label and low when it is close.

The optimization was performed using the Adam optimizer [32] with a learning rate
of 0.001. The one-cycle learning rate policy [33] was employed and linearly increased
the learning rate from a low value to a maximum of 0.003 in the first 30% of iterations,
then linearly decreased it back to the minimum in the remaining iterations. The one-cycle
learning rate policy can be expressed as Equation (3). This learning rate schedule has been
shown to speed up convergence and achieve better final accuracy compared to a fixed
learning rate.

α(t) =

{
αmin + t

0.3T (αmax − αmin), 0 ≤ t < 0.3T
αmax − t−0.3T

0.7T (αmax − αmin), 0.3T ≤ t ≤ T
(3)

where:

• α(t) is the learning rate at iteration t;
• αmin is the minimum learning rate (initial learning rate, 1 × 10−3);
• αmax is the maximum learning rate (3 × 10−3);
• T is the total number of iterations (steps per epoch × number of epochs).

In the second stage, the entire RailTrack-DaViT model was unfrozen and fine-tuned
end-to-end for an additional 10 epochs. The model was trained during these 10 epochs
by utilizing the Adam optimizer with an initial learning rate of 0.0001 and a one-cycle
learning rate policy with a maximum learning rate of 0.001. This fine-tuning allows the
visual features extracted by RailTrack-DaViT to adapt to specific defect patterns present in
the dataset, while the lower learning rate helps limit overfitting.

To further improve training stability, gradient clipping [34] with a maximum L2 norm
regularization of 1.0 was applied to the gradients at each optimization step. Gradient
clipping is a technique that limits the magnitude of gradients to prevent unstable training.
It prevents the gradients from growing too large and causing training to diverge. It is
typically formulated as

gclipped =
g

max
(

1, ∥g∥2
c

) (4)
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where:

• g is the gradient vector;
• ∥g∥2 is its L2 norm;
• c is the clipping threshold.

The clipping threshold value c determines the maximum allowed L2 norm of the
gradient. In this study, we set the clipping threshold equal to 1.0. This means that if the
gradients have an L2 norm larger than 1.0, they will be clipped to have an L2 norm of
1.0 while preserving direction. Gradients with an L2 norm less than or equal to 1.0 will
remain unchanged.

3. Dataset

There are four datasets that are utilized to evaluate the performance of our approach
in this work. The datasets consist of Rail, Fastener and fishplate, Multi-faults, and ThaiRail-
Track datasets. The first three datasets (Rail, Fastener and fishplate, and Multi-faults
datasets) are public datasets that can be accessed through Kaggle (https://www.kaggle
.com/datasets (accessed on 19 April 2024)), which is an online community platform for
data scientists and machine learning practitioners. These datasets were constructed by
Eunus et al. [4]. ThaiRailTrack dataset is a private dataset that is collected from Thailand’s
railway organizations. Figure 3 presents the distribution of images of railway track defect
detection across the four datasets used in our study. ThaiRailTrack (Before) represents
the number of images before oversampling. ThaiRailTrack (After) presents the number of
images after performing the oversampling technique.

Figure 3. The number of defective and non-defective images in both the training and test sets of Rail,
Fastener and fishplate, Multi-faults, and ThaiRailTrack datasets. “D” refers to the defective images
category and “ND” refers to the non-defective images category.

The details of each dataset are described as follows:

3.1. Rail Dataset

The rail dataset [35] contains images of regular railway tracks and faults on railway
tracks. There are 800 defective and non-defective images. The dataset was divided into
640 images for the training set and 160 images for the test set. Examples of defective images
on rails are illustrated in Figure 4.

https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
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Figure 4. The sample images of railway tracks with faults (defect). The dataset consists of images of
different views, including top and side views.

3.2. Fastener and Fishplate Dataset

The Fastener and fishplate dataset [36] contains images of regular railway tracks,
broken clips (fasteners), and broken fishplates. Clips are a type of fastener responsible for
securing the steel rail to the sleeper. Occasionally, the clip may fracture or become detached,
making it incapable of serving its intended function [37]. Rail fishplates, one of the most
common types of rail fastener [38], are often small copper or nickel silver plates employed
to connect two rails together in a railway track. They ensure the proper alignment and
continuity of the rails. In total, there were 1300 images of defective and non-defective
fasteners and fishplates. The images were divided into 1120 for the training set and 280 for
the test set. The samples of broken fasteners and fishplates on railway tracks are illustrated
in Figure 5.

Figure 5. The sample images of broken fasteners and fishplates. The dataset consists of images from
different views including top and side views. The first row presents the images of broken fasteners
on railway tracks. The second row represents the images of broken fishplates on railway tracks.

3.3. Multi-Faults Dataset

The Multi-faults dataset is a combination of three datasets—Rail [35], Fastener and
fishplate [36], and Railway Track fault Detection [39] datasets. There are 2584 images of
both defective and non-defective railway tracks. The images were split into 2343 for the
training set and 242 for the test set.
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3.4. ThaiRailTrack Dataset

The ThaiRailTrack dataset consists of railway track images in Thailand, including both
defective and non-defective tracks collected from two sources—the National Science and
Technology Development Agency (NSTDA) and the Passenger Service Department (Oper-
ation) of the State Railway of Thailand. The original dataset had 297 images of defective
railway tracks and 23 of non-defective railway tracks. To prevent a class imbalance problem
when evaluating the model, we applied an oversampling technique by using random
data augmentation for images of non-defective tracks. Finally, we obtained 594 images.
The images were divided into 474 images for the training set and 120 images for the test set.
The example images from the ThaiRailTrack dataset are illustrated in Figure 6.

Figure 6. The top and side image views of Thai railway tracks collected from two Thailand organiza-
tions, NSTDA and the Passenger Service Department (Operation) of the State Railway of Thailand.

4. Experiment and Result Analysis
4.1. Performance Confusion Matrix

A confusion matrix is a table used to describe the performance of a classification
model on a set of test data where the true values are known [40]. Figure 7 illustrates the
confusion matrix for binary classification utilized in this study. The matrix consists of
two axes—x-axis and y-axis—with corresponding labels. The 0 label represents positive or
defective samples, which are images of broken rail tracks. The 1 label denotes negative or
non-defective samples, which are images of regular rail tracks. TP, TN, FP, and FN refer to
True Positive, True Negative, False Positive, and False Negative, respectively.

Figure 7. The confusion matrix of binary classification consisting of x-axis, y-axis, and the values.

4.2. Performance Evaluation Metrics

In this study, we utilized key performance evaluation metrics for classification mod-
els. The metrics include precision, recall, specificity, F1 score, and accuracy. These key
performance evaluation metrics can be calculated with the following equations:

Precision measures the proportion of true positive predictions among all positive
predictions:

Precision =
TP

TP + FP
× 100%. (5)
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Recall or sensitivity measures the proportion of actual positives that are correctly
identified by the model:

Recall =
TP

TP + FN
× 100%. (6)

Specificity measures the proportion of actual negatives that are correctly identified by
the model:

Specificity =
TN

TN + FP
× 100%. (7)

The F1 score provides a balanced measure of a model’s performance, especially when
the classes are imbalanced:

F1 score =
2 × Precision × Recall

Precision + Recall
× 100% =

2 × TP
2 × TP + FP + FN

× 100% (8)

Accuracy measures the overall correctness of model’s predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%. (9)

4.3. Data Pre-Processing

In the beginning, we prepared four different datasets including Rail, Fastener and
fishplate, Multi-faults, and ThaiRailTrack. The Rail, Fastener and fishplate, and ThaiRail-
Track datasets were divided into 80 percent for the training set and 20 percent for the test
set. For the Multi-faults dataset, we used 10 percent as the test set. Four types of data
augmentation were randomly applied, including horizontal rotation, vertical rotation, 90 or
270-degree rotations, and brightness adjustment during model training. The images were
performed randomly center-cropped to 256 × 256, resized to 224 × 224, and then randomly
shuffled with a seed value equal to 42 before model training. In this study, we set the batch
size to 16.

4.4. Comparison Models Overview

In this study, there are different CNN-based models as the baseline, compared with
our RailTrack-DaViT for image classification. The models include Xception [41], ResNet-
18 [42], ResNet-50 [42], EfficientNet-B0 [43], and EfficientNet-B7 [43]. The models were
implemented using the PyTorch library in Python and executed on an NVIDIA GeForce
RTX 3060 GPU. To ensure a fair comparison, we established consistent parameters for
training both RailTrack-DaViT and the baseline models. The training parameters were set
as follows: learning rate of 0.001, Adam optimizer, and batch size of 16.

Xception [41]: A deep convolutional neural network architecture inspired by Incep-
tion [44]. It replaces the standard Inception modules with depthwise separable convolu-
tions, which results in a more efficient use of model parameters.

ResNet or Residual Networks [42]: The key innovation of ResNet is the introduction
of “identity shortcut connections” that skip one or more layers, allowing the network to
learn residual functions with reference to the layer inputs. ResNet-18 and ResNet-50 are
two specific architectures with 18 and 50 layers, respectively.

EfficientNet [43]: A family of models that are designed to achieve better accuracy and
efficiency. The key idea is to uniformly scale the network width, depth, and resolution with
a set of fixed scaling coefficients. EfficientNet-B0 is the baseline model and EfficientNet-B7
is a larger model obtained by scaling up the baseline.

4.5. The Performance Evaluation of RailTrack-DaViT and Conventional CNN-Based Models on
Rail Dataset

Figure 8 illustrates the training and test accuracy of baseline and RailTrack-DaViT on
the Rail dataset. The models were trained on the Rail dataset with 100 epochs. In terms of
training accuracy, RailTrack-DaViT achieved the highest accuracy from the early epoch. It
achieved peak accuracy compared to other models in five epochs and constantly increased
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the accuracy up to 100 epochs. Additionally, RailTrack-DaViT performed the highest test
accuracy, which was evaluated on the test set of the rail dataset after training the model
for 30 epochs. The performance curves for precision, recall, specificity, and F1 score of the
baseline models and RailTrack-DaViT on the Rail dataset are presented in Appendix A.

(a) Training accuracy on Rail dataset (b) Test accuracy on Rail dataset

Figure 8. Comparative analysis of training and test accuracies for different classification models on
the Rail dataset over 100 training epochs.

Table 1 demonstrates that RailTrack-DaViT and ResNet-50 achieve an impressive
performance across all evaluation metrics tested on the Rail dataset. Specifically, for the
“Defective” category, it attains a precision of 96.3%, a recall of 97.5%, a specificity of
96.3%, and an F1 score of 96.9%. The overall average accuracy of RailTrack-DaViT is
96.9%, which is among the highest in the table, indicating its exceptional performance in
defect classification.

Table 1. Classification report of various models for defective and non-defective images of the Rail
dataset on different metrics.

Model Category Precision Recall Specificity F1 Score Accuracy

Xception
Defective 96.1 92.5 96.3 94.3 94.4

Non-defective 92.8 96.3 92.5 94.5 94.4
Average 94.4 94.4 94.4 94.4 94.4

ResNet-18
Defective 96.1 92.5 96.3 94.3 94.4

Non-defective 92.8 96.3 92.5 94.5 94.4
Average 94.4 94.4 94.4 94.4 94.4

ResNet-50
Defective 96.3 97.5 96.3 96.9 96.9

Non-defective 97.5 96.3 97.5 96.9 96.9
Average 96.9 96.9 96.6 96.6 96.9

EfficientNet-B0
Defective 96.3 96.3 96.3 96.3 96.3

Non-defective 96.3 96.3 96.3 96.3 96.3
Average 96.3 96.3 96.3 96.3 96.3

EfficientNet-B7
Defective 94.9 92.5 95.0 93.7 93.7

Non-defective 92.7 95.0 92.5 93.8 93.7
Average 93.8 93.7 93.7 93.7 93.7

RailTrack-DaViT
Defective 96.3 97.5 96.3 96.9 96.9

Non-defective 97.5 96.3 97.5 96.9 96.9
Average 96.9 96.9 96.9 96.9 96.9

Figure 9 represents the confusion matrices for the baseline and our proposed model
on the test set of the Rail dataset. The results show that RailTrack-DaViT and ResNet-
50 can produce the highest true positives and true negatives, which equal 78 and 77,
respectively, while preserving the lowest false negatives and false positives, which equal
2 and 3, respectively. This demonstrates that our proposed model is comparative to the
traditional CNN-based baseline model for this Rail dataset.
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(a) Confusion matrix for Xception. (b) Confusion matrix for ResNet-18.

(c) Confusion matrix for ResNet-50. (d) Confusion matrix for EfficientNet-B0.

(e) Confusion matrix for EfficientNet-B7. (f) Confusion matrix for RailTrack-DaViT.

Figure 9. Confusion matrices for baseline and our RailTrack-DaViT on the Rail dataset.

4.6. The Performance Evaluation of RailTrack-DaViT and Conventional CNN-Based Models on
Fastener and Fishplate Dataset

Figure 10 presents a comprehensive analysis of the training and test accuracy of
CNN-based deep learning models and our RailTrack-DaViT over 100 training epochs.
The RailTrack-DaViT model consistently outperforms other models in training accuracy.
Despite fluctuations in test data performance due to the optimization landscape of the
Transformer-based model itself or dataset complexities arising from a combination of fas-
tener and fishplate images, the accuracy significantly improves after unfreezing the model’s
weights (the last 10 epochs). This demonstrates the impact of unfrozen layer operations on
model efficiency. The additional performance curves are presented in Appendix B.
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(a) Training accuracy on Fastener
and fishplate dataset.

(b) Test accuracy on Fastener and
fishplate dataset.

Figure 10. Comparative analysis of training and test accuracies for different classification models on
Fastener and fishplate dataset over 100 training epochs.

Table 2 represents the performance metrics for CNN-based classification models and
our proposed model on the Fastener and fishplate dataset. According to the table, the
RailTrack-DaViT model demonstrates exceptional performance across both the defective
and non-defective categories, with consistently high values for precision, recall, specificity,
F1 score, and accuracy. The overall average metrics further underscore the robust and
balanced performance of the model.

Table 2. Classification report of various models for defective and non-defective images of the Fastener
and fishplate dataset on different metrics.

Model Category Precision Recall Specificity F1 Score Accuracy

Xception
Defective 87.7 91.4 87.1 89.5 89.3

Non-defective 91.0 87.1 91.4 89.1 89.3
Average 89.4 89.3 89.3 89.3 89.3

ResNet-18
Defective 88.1 90.0 87.9 89.0 88.9

Non-defective 89.8 87.9 90.0 88.8 88.9
Average 88.9 88.9 88.9 88.9 88.9

ResNet-50
Defective 96.9 90.7 97.1 93.7 93.9

Non-defective 91.3 97.1 90.7 94.1 93.9
Average 94.1 93.9 93.9 93.9 93.9

EfficientNet-B0
Defective 93.2 97.9 92.9 95.5 95.4

Non-defective 97.7 92.9 97.9 95.2 95.4
Average 95.5 95.4 95.4 95.4 95.4

EfficientNet-B7
Defective 93.4 90.7 93.6 92.0 92.1

Non-defective 91.0 93.6 90.7 92.3 92.1
Average 92.2 92.1 92.1 92.1 92.1

RailTrack-DaViT
Defective 98.6 99.3 98.6 98.9 98.9

Non-defective 99.3 98.6 99.3 98.9 98.9
Average 98.9 98.9 98.9 98.9 98.9

Figure 11 represents the confusion matrices for baseline models and our proposed
model on the test set of the Fastener and fishplate dataset. Based on 280 images of the test
set, the confusion matrix reveals that the RailTrack-DaViT outperforms the other models
by correctly classifying between defective and non-defective images with the highest true
positives and true negatives.
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(a) Confusion matrix for Xception. (b) Confusion matrix for ResNet-18.

(c) Confusion matrix for ResNet-50. (d) Confusion matrix for EfficientNet-B0.

(e) Confusion matrix for EfficientNet-B7. (f) Confusion matrix for RailTrack-DaViT.

Figure 11. Confusion matrices for baseline and our RailTrack-DaViT on the Fastener and fish-
plate dataset.

4.7. The Performance Evaluation of RailTrack-DaViT and Conventional CNN-Based Models on
Multi-Faults Dataset

Figure 12 presents a comprehensive evaluation of the training and test accuracy for
various CNN-based models and our RailTrack-DaViT model on the Multi-faults dataset.
Based on the training and test accuracy curve, the RailTrack-DaViT model (represented by
the blue line) exhibits a consistent and steady increase in accuracy as the number of epochs
progresses. It achieves the highest training and test accuracy at the beginning of model
training. The RailTrack-DaViT can maintain a competitive performance and outperform
the EfficientNet-B0 model in the later stages of training according to the test accuracy.
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The performance curves for precision, recall, specificity, and F1 score of the baseline models
and RailTrack-DaViT on the Multi-faults dataset are presented in Appendix C.

(a) Training accuracy on Multi-faults dataset. (b) Test accuracy on Multi-faults dataset.

Figure 12. Comparative analysis of training and test accuracies for different classification models on
the Multi-faults dataset over 100 training epochs.

Table 3 presents a comprehensive performance analysis of several models on various
evaluation metrics on the Multi-faults dataset. The RailTrack-DaViT model demonstrates
an excellent performance in distinguishing between defective and non-defective instances,
with high scores across all evaluation metrics. This indicates its robustness and reliability
in the defect defection task.

Table 3. Classification report of various models for defective and non-defective images of the
Multi-faults dataset on different metrics.

Model Category Precision Recall Specificity F1 Score Accuracy

Xception
Defective 89.2 95.9 88.4 92.4 92.1

Non-defective 95.5 88.4 95.9 91.8 92.1
Average 92.4 92.1 92.1 92.1 92.1

ResNet-18
Defective 96.3 85.1 96.7 90.4 90.9

Non-defective 86.7 96.7 85.1 91.4 90.9
Average 91.5 90.9 90.9 90.9 90.9

ResNet-50
Defective 90.0 89.3 90.1 89.6 89.7

Non-defective 89.3 90.1 89.3 89.7 89.7
Average 89.7 89.7 89.7 89.7 89.7

EfficientNet-B0
Defective 97.5 96.7 97.5 97.1 97.1

Non-defective 96.7 97.5 96.7 97.1 97.1
Average 97.1 97.1 97.1 97.1 97.1

EfficientNet-B7
Defective 94.2 94.2 94.2 94.2 94.2

Non-defective 94.2 94.2 94.2 94.2 94.2
Average 94.2 94.2 94.2 94.2 94.2

RailTrack-DaViT
Defective 99.2 98.3 99.2 98.8 98.8

Non-defective 98.4 99.2 98.3 98.8 98.8
Average 98.8 98.8 98.8 98.8 98.8

Figure 13 presents a comprehensive evaluation of the classification performance of
various models, including our RailTrack-DaViT model, through a series of confusion
matrices. For the 242 images in the test set in the Multi-faults dataset, the confusion matrix
demonstrates that the RailTrack-DaViT model achieves the highest number of true positives
and true negatives, equaling 119 and 120, respectively.
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(a) Confusion matrix for Xception. (b) Confusion matrix for ResNet-18.

(c) Confusion matrix for ResNet-50. (d) Confusion matrix for EfficientNet-B0.

(e) Confusion matrix for EfficientNet-B7. (f) Confusion matrix for RailTrack-DaViT.

Figure 13. Confusion matrices for baseline and our RailTrack-DaViT on the Multi-faults dataset.

4.8. The Performance Evaluation of RailTrack-DaViT and Conventional CNN-Based Models on
ThaiRailTrack Dataset

Figure 14 presents a comparative analysis of the training and test accuracy of various
models, including RailTrack-DaViT, over 10 epochs. It highlights the superior performance
of RailTrack-DaViT in terms of both training and test accuracy, demonstrating its effec-
tiveness in transfer learning and generalizing from the given data within only 10 epochs.
Notably, the RailTrack-DaViT shows the highest test accuracy compared to baseline meth-
ods from the initial stages of fine-tuning. This suggests that the model adapts quickly to
unseen images compared to other models. The performance curves for precision, recall,
specificity, and F1 score of the baseline models and RailTrack-DaViT on the ThaiRailTrack
dataset are presented in Appendix D.
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(a) Training accuracy on ThaiRailTrack dataset. (b) Test accuracy on ThaiRailTrack dataset.

Figure 14. Comparative analysis of training and test accuracies for different classification models on
ThaiRailTrack dataset over 10 training epochs.

Table 4 presents a comprehensive performance analysis of several models on the
ThaiRailTrack dataset for various evaluation metrics. The RailTrack-DaViT achieves a re-
markable performance across all metrics. Specifically, for the “Defective” category, it attains
a perfect precision and specificity score of 100.0%, indicating no false positives and an
excellent ability to identify true defective instances. Considering the average performance
across categories, RailTrack-DaViT maintains its exceptional performance, achieving an
average precision, recall, specificity, F1 score, and accuracy of 99.2%. This highlights the
model’s robustness and ability to generalize effectively across diverse instances.

Table 4. Classification report of various models for defective and non-defective images of ThaiRail-
Track dataset on different metrics.

Model Category Precision Recall Specificity F1 Score Accuracy

Xception
Defective 96.7 98.3 96.7 97.5 97.5

Non-defective 98.3 96.7 98.3 97.5 97.5
Average 97.5 97.5 97.5 97.5 97.5

ResNet-18
Defective 96.7 98.3 96.7 97.5 97.5

Non-defective 98.3 96.7 98.3 97.5 97.5
Average 97.5 97.5 97.5 97.5 97.5

ResNet-50
Defective 100.0 90.0 100.0 94.7 95.0

Non-defective 90.9 100.0 90.0 95.2 95.0
Average 95.5 95.0 95.0 95.0 95.0

EfficientNet-B0
Defective 100.0 96.7 100.0 98.3 98.3

Non-defective 96.8 100.0 96.7 98.4 98.3
Average 98.4 98.3 98.3 98.3 98.3

EfficientNet-B7
Defective 100.0 93.3 100.0 96.6 96.7

Non-defective 93.8 100.0 93.3 96.8 96.7
Average 96.9 96.7 96.7 96.7 96.7

RailTrack-DaViT
Defective 100.0 98.3 100.0 99.2 99.2

Non-defective 98.4 100.0 98.3 99.2 99.2
Average 99.2 99.2 99.2 99.2 99.2

Figure 15 presents a comprehensive evaluation of the classification performance
of baseline and our proposed models through a series of confusion matrices. For the
120 images in the test set of the ThaiRailTrack dataset, the confusion matrix demonstrates
that the RailTrack-DaViT model outperforms other models in terms of achieving the highest
number of both true positives and true negatives. This indicates that our proposed model
performs best on both defective and non-defective images.
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(a) Confusion matrix for Xception. (b) Confusion matrix for ResNet-18.

(c) Confusion matrix for ResNet-50. (d) Confusion matrix for EfficientNet-B0.

(e) Confusion matrix for EfficientNet-B7. (f) Confusion matrix for RailTrack-DaViT.

Figure 15. Confusion matrices for baseline and our RailTrack-DaViT on the ThaiRailTrack dataset.

5. Ablation Study

In this section, we analyze the impact of each optimizer, five-fold cross validation,
and alternative network designs on the Multi-faults dataset. We focus on this dataset
because it encompasses both the Rail dataset and the Fastener and fishplate dataset and con-
tains the highest number of image samples.

5.1. Network Design

Table 5 presents the classification performance for each component and operation
in the RailTrack-DaViT model, evaluated based on the training and test accuracies over
100 epochs. It demonstrates that RailTrack-DaViT without pre-trained weights achieves the
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lowest accuracies, indicating that the model fails to converge without pre-trained weights.
Moreover, the results show that RailTrack-DaViT—with either an unfrozen layer operation
or a custom MLP, or incorporating both—outperforms the traditional DaViT model.

Table 5. Accuracy of different network architectures and operations. The highest training and test
accuracies are highlighted in bold.

Model Pre-Training Unfreeze Custom Head Training
Accuracy Test Accuracy

DaViT ✓ ✗ ✗ 97.0 91.7

RailTrack-DaViT

✗ ✗ ✓ 49.2 50.0
✗ ✓ ✓ 50.7 50.0
✓ ✗ ✓ 99.4 97.5
✓ ✓ ✗ 99.5 97.5
✓ ✓ ✓ 99.7 98.8

5.2. Optimizer

We selected the optimal optimizer based on its performance scores for both train-
ing and test sets. The RMSProp, SGD with Nesterov momentum, AdamW, and Adam
optimizers were evaluated for model performance. Figure 16 illustrates the training and
test accuracies of RailTrack-DaViT utilizing different optimizers. The Adam optimizer
demonstrates the best performance and greater stability compared to the others on both
training and test sets.

(a) Training accuracy for different optimizers. (b) Test accuracy for different optimizers.

Figure 16. Comparative analysis of training and test accuracies for different optimizers on the
Multi-faults dataset over 100 training epochs.

5.3. Five-Fold Cross Validation

In addition to standard model training, we conducted five-fold cross-validation to
monitor the average performance accuracy metrics on both training and test sets. In this
study, the training set was randomly split into k folds, where k = 5. The model was then
trained on k − 1 folds, while one fold was left for model validation.

Table 6 summarizes the comparison of training and test accuracies between standard
model training and five-fold cross-validation. Our RailTrack-DaViT model achieves the
highest scores in both training and test accuracies while maintaining model training stability,
as evidenced by the lowest standard deviation values (0.1 for training accuracy and 0.4 for
test accuracy) among baseline models.
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Table 6. Accuracy of various models using standard training and five-fold cross-validation on
both training and test sets. “Standard” refers to standard model training, and “Five-fold” refers to
five-fold cross-validation. The highest training and test accuracies are highlighted in bold.

Model Technique Training Accuracy Test Accuracy

Xception Standard 94.5 92.1
Five-fold 93.5 ± 1.0 90.5 ± 1.3

ResNet-18 Standard 92.8 90.9
Five-fold 93.3 ± 0.3 91.7 ± 1.8

ResNet-50 Standard 92.1 89.7
Five-fold 91.2 ± 1.1 88.1 ± 1.0

EfficientNet-B0 Standard 96.8 97.1
Five-fold 96.4 ± 0.3 96.2 ± 0.5

EfficientNet-B7 Standard 95.5 94.2
Five-fold 92.0 ± 0.2 92.4 ± 1.7

RailTrack-DaViT Standard 99.7 98.8
Five-fold 99.7 ± 0.1 98.6 ± 0.4

6. Discussion and Conclusions

In this paper, we proposed RailTrack-DaViT, a novel vision transformer-based deep
learning approach for detecting defects from railway track images. By employing a Dual
Attention Vision Transformer (DaViT) architecture, RailTrack-DaViT effectively captures
both global and local information, addressing the limitations of traditional CNN-based
models in capturing long-range dependencies on railway track datasets. The customized
classification head and training pipeline enable the model to adapt pre-trained DaViT
features for binary defect identification.

Extensive evaluations on various datasets, including Rail, Fastener and fishplate, Multi-
faults, and ThaiRailTrack datasets, demonstrate the superior performance of RailTrack-
DaViT compared to conventional CNN-based models used in this paper including Xception,
ResNet-18, ResNet-50, EfficientNet-B0, and EfficientNet-B7. Overall, the proposed approach
consistently achieves high precision, recall, specifically, F1 score, and accuracy across all
datasets, highlighting its robustness and generalization capabilities. Moreover, when fine-
tuning the model on the ThaiRailTrack dataset, RailTrack-DaViT demonstrates its capability
for handing unseen data through its ability to quickly adapt to novel images. This rapid
adaptation can significantly reduce time consumption in practical applications.

The ability of RailTrack-DaViT to capture long-range dependencies and effectively
model both global and local information makes it a promising solution for automated
railway track defect detection. By automating the inspection process, RailTrack-DaViT has
the potential to significantly reduce the time and cost associated with manual inspections
while improving the accuracy and reliability of defect detection.
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Appendix A. The Curves of Precision, Recall, Specificity, and F1 Score for Baselines and
RailTrack-DaViT on Rail Dataset

Figure A1 illustrates training curves for precision, recall, specificity, and F1 score for
our RailTrack-DaViT model and baseline models on rail dataset. The results demonstrate
that RailTrack-DaViT and EfficientNet-B0 perform comparably; however, RailTrack-DaViT
achieves the highest scores across all four metrics from the early training epochs onward.

(a) Training precision on rail dataset (b) Training recall on rail dataset

(c) Training specificity on rail dataset (d) Training F1 score on rail dataset

Figure A1. Comparative analysis of training precision, recall, specificity, and F1 score for different
classification models on rail dataset over 100 training epochs.

https://www.kaggle.com/datasets/ashikadnan/railway-track-fault-detection-dataset2fastener/data
https://www.kaggle.com/datasets/ashikadnan/railway-track-fault-detection-dataset2fastener/data
https://www.kaggle.com/datasets/ashikadnan/railway-track-fault-detection-dataset2fastener/data
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Figure A2 illustrates test curves for precision, recall, specificity, and F1 score for
our RailTrack-DaViT model and baseline models on rail dataset. The results demon-
strate that RailTrack-DaViT, EfficientNet-B0, and ResNet-50 perform comparably; however,
RailTrack-DaViT achieves the highest scores across all four metrics from the early training
epochs onward.

(a) Test precision on rail dataset (b) Test recall on rail dataset

(c) Test specificity on rail dataset (d) Test F1 score on rail dataset

Figure A2. Comparative analysis of test precision, recall, specificity, and F1 score for different
classification models on rail dataset over 100 training epochs.

Appendix B. The Curves of Precision, Recall, Specificity, and F1 Score for Baselines and
RailTrack-DaViT on Fastener and Fishplate Dataset

Figure A3 illustrates training curves for precision, recall, specificity, and F1 score
for our RailTrack-DaViT model and baseline models on fastener and fishplate dataset.
The results demonstrate that RailTrack-DaViT and EfficientNet-B0 perform comparably;
however, RailTrack-DaViT achieves the highest scores across all four metrics from the early
training epochs onward.

(a) Training precision on fastener
and fishplate dataset

(b) Training recall on fastener and
fishplate dataset

Figure A3. Cont.
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(c) Training specificity on fastener
and fishplate dataset

(d) Training F1 score on fastener and
fishplate dataset

Figure A3. Comparative analysis of training precision, recall, specificity, and F1 score for different
classification models on fastener and fishplate dataset over 100 training epochs.

Figure A4 illustrates test curves for precision, recall, specificity, and F1 score of our
RailTrack-DaViT model and baseline models on fastener and fishplate dataset. The results
demonstrate that EfficientNet-B0 outperforms all models from the initial training state
until the 90th epoch. However, starting from epoch 90, when all layers in RailTrack-
DaViT were unfrozen, the performance curves of RailTrack-DaViT for all four metrics
improved significantly.

(a) Test precision on fastener and
fishplate dataset

(b) Test recall on fastener and
fishplate dataset

(c) Test specificity on fastener and
fishplate dataset

(d) Test F1 score on fastener and
fishplate dataset

Figure A4. Comparative analysis of test precision, recall, specificity, and F1 score for different
classification models on fastener and fishplate dataset over 100 training epochs.

Appendix C. The Curves of Precision, Recall, Specificity, and F1 Score for Baselines and
RailTrack-DaViT on Multi-Faults Dataset

Figure A5 illustrates training curves for precision, recall, specificity, and F1 score
for our RailTrack-DaViT model and baseline models on multi-faults dataset. The results
demonstrate that RailTrack-DaViT achieves the highest scores across all four metrics from
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the early training epochs onward. EfficientNet-B0 and EfficientNet-B7 rank second and
third, respectively, in terms of performance.

(a) Training precision on
multi-faults dataset

(b) Training recall on
multi-faults dataset

(c) Training specificity on
multi-faults dataset

(d) Training F1 score on
multi-faults dataset

Figure A5. Comparative analysis of training precision, recall, specificity, and F1 score for different
classification models on multi-faults dataset over 100 training epochs.

Figure A6 illustrates test curves for precision, recall, specificity, and F1 score of our
RailTrack-DaViT model and baseline models on the multi-faults dataset. The results
demonstrate that RailTrack-DaViT and EfficientNet-B0 perform comparably the middle
period of model training; however, RailTrack-DaViT achieves the highest scores across all
four metrics in the later epochs of training.

(a) Test precision on multi-faults dataset (b) Test recall on multi-faults dataset

Figure A6. Cont.
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(c) Test specificity on
multi-faults dataset (d) Test F1 score on multi-faults dataset

Figure A6. Comparative analysis of test precision, recall, specificity, and F1 score for different
classification models on multi-faults dataset over 100 training epochs.

Appendix D. The Curves of Precision, Recall, Specificity, and F1 Score for Baselines and
RailTrack-DaViT on ThaiRailTrack Dataset

Figure A7 illustrates training curves for precision, recall, specificity, and F1 score for
our RailTrack-DaViT model and baseline models on ThaiRailTrack dataset. The results
demonstrates that RailTrack-DaViT achieves the highest scores across all four metrics from
the early training epochs onward.

Figure A8 illustrates test curves for precision, recall, specificity, and F1 score of our
RailTrack-DaViT model and baseline models on ThaiRailTrack dataset. The results demon-
strates that RailTrack-DaViT achieves the highest scores across all four metrics from the
beginning of model training and shows slightly improvement subsequent epochs. In con-
trast to other CNN-based models, whose performance fluctuates during fine-tuning process
on this dataset, RailTrack-DaViT exhibits more stable performance.

(a) Training precision on
ThaiRailTrack dataset

(b) Training recall on
ThaiRailTrack dataset

(c) Training specificity on
ThaiRailTrack dataset

(d) Training F1 score on
ThaiRailTrack dataset

Figure A7. Comparative analysis of training precision, recall, specificity, and F1 score for different
classification models on ThaiRailTrack dataset over 100 training epochs.
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(a) Test precision on
ThaiRailTrack dataset

(b) Test recall on
ThaiRailTrack dataset

(c) Test specificity on
ThaiRailTrack dataset

(d) Test F1 score on
ThaiRailTrack dataset

Figure A8. Comparative analysis of test precision, recall, specificity, and F1 score for different
classification models on ThaiRailTrack dataset over 100 training epochs.
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