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Abstract: This study introduces an innovative surgical approach for total knee arthroplasty (TKA)
that combines kinematic alignment (KA) principles with real-time elongation of the knee ligaments
through the range of motion, using augmented reality (AR). The novelty of the surgical technique lies
in the possibility of enhancing the decision-making process to perform the cut on the tibia as for the
KA caliper technique developed by Dr. Stephen Howell. The NextAR is a CT-based AR system that
offers the possibility of performing three-dimensional surgical preoperative planning and an accurate
execution in the surgical room through single-use infrared sensors, smart glasses, and a control unit.
During the preoperative planning, the soft tissue is not considered and only the alignment based on
bony reference is ensured. Thanks to the possibility of measuring in real time the elongation of the
knee collateral lateral ligaments, the system assists the surgeon in optimizing the cut on the tibia after
an accurate resurfacing of the femur as described in the KA surgical technique. The implant used in
this novel approach is a medial pivot design (Medacta GMK Sphere) that allows the restoration of the
physiological behavior of the software tissue and natural knee kinematics. In conclusion, this novel
technique offers a promising approach to TKA, allowing personalized treatment tailored to each
patient’s unique anatomy and soft tissue characteristics. The integration of KA and real-time soft
tissue analysis provided by NextAR enhances surgical precision and outcomes, potentially improving
patient satisfaction and functional results.

Keywords: kinematic alignment; augmented reality; NextAR; personalized arthroplasty; enabling
technology

1. Introduction

In this paper, we present a surgical technique for total knee arthroplasty (TKA) that
blends the principles of kinematic alignment (KA) and the use of an augmented reality
(AR) device that provides the real-time elongation of the collateral lateral ligaments of
the knee (NextAR, by Medacta International, Castel San Pietro, Switzerland). KA is a
“personalized alignment” that aims to restore as close as possible to the pre-arthritic joint
line of each patient [1–4]. Unlike conventional mechanical alignment techniques, which
aim to align the knee joint to a universally neutral axis, KA tailors the positioning of the
knee replacement components to fit the patient’s specific anatomical structure to achieve
a more natural postoperative kinematic [1–4]. While resurfacing the femur during knee
replacement surgery typically allows for predictable restoration of the femoral joint line
due to the predictable nature of femoral wear, this is not always straightforward for the
tibia [5–7]. The tibial joint line can be more challenging to assess and restore accurately
because tibial wear patterns are less consistent and more variable [5–8].
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NextAR is a CT-based AR navigation system, that consists of a pair of smart glasses,
two small single-use infrared sensors, and a control unit (Figure 1) [9]. The use of the
head-mounted display allows the superimposition on the surgical field of relevant surgical
information, such as the position of the cutting guides and thickness of the bone cuts
while surgical procedures are performed. One of the main advantages of this system is
the possibility to evaluate intraoperatively the elongation of the medial (MCL) and lateral
collateral ligament (LCL) [10,11]. Currently, no studies have been published using the
NextAR in TKA. However, in recent years, several authors have begun exploring the use of
AR in TKA across both preclinical and clinical settings [5,12–15].
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Figure 1. The NextAR System (Medacta International).

The MCL is a primary stabilizer of the knee, responsible for resisting valgus stress.
Many kinematic studies, made with a different technique in both cadaver specimens and
in vivo, demonstrate that during knee flexion the MCL fibers undergo minimal length
changes. The different bundles of the MCL become tighter or lax at varying degrees of
knee flexion but functionally maintain knee stability against valgus stress during the whole
range of motion [16–18]. On the other hand, the LCL that is tightened in full extension,
resisting varus stress, became a bit more lax in deep flexion (corresponding to a shortening
of the ligament) [19,20]. The combination of elongation and strain stress resistance of the
MCL and LCL makes the knee stable in both flexion and extension, allowing for a minimal
laxity on the lateral side of the knee that is responsible for the medial pivot kinematics of
the native knee [21,22].

This technique was proposed as a computer-assisted surgical procedure to the unre-
stricted KA proposed by Howell [23]. The concept of soft-tissue elongation tibial cut aims to
restore the preoperative distal and femoral joint line and to restore the native MCL and LCL
elongation during the whole range of motion. This technique is based on three principles.
The first principle is to fully resurface the femur (same as unrestricted KA described by
Howell [23]. Resurfacing the distal and posterior femur results in removing the same
amount of bone and cartilage of the thickness of the implant (matching the thickness in
non-worn compartments and compensating for loss in worn compartments) allowing the
restoration of the three kinematic axes of the femur (cylindrical or transcondylar axis and
the patellar flexion axis). The second principle is to analyze the MCL and LCL elongation
after performing femoral resurfacing with femoral trial components in situ. After posi-
tioning the trial component and performing femoral resurfacing, we restored the distal
and posterior joint line of the femur. Therefore, by evaluating the length of the collateral
ligaments throughout the entire range of motion, we can obtain important information on
how to adjust the tibial cut planning. This ensures a stable knee under varus/valgus stress
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in extension (with less than 1 mm opening both medially and laterally), while also allowing
for medial pivot in flexion. The third principle is to restore a more native knee kinematic
as possible by the use of a medial pivot liner design. In this study, we used a femoral
component designed specifically to optimize femoral coverage and patellar tracking in KA
(GMK SpheriKA, by Medacta International, Castel San Pietro, Switzerland) and a spherical
liner characterized by a medial ball-in-socket stability thanks to 1:1 congruency with the
femoral condyle and an unconstrained lateral compartment designed to permit complete
freedom of rollback and rotation as knee flexes.

2. Surgical Technique
2.1. Case Presentation

We present the case of a 67-year-old woman diagnosed with primary knee osteoarthri-
tis requiring TKA. Before the procedure, she underwent a preoperative CT scan of the
pelvis, knee, and ankle. Her limb alignment was classified as CPAK II (neutral apex distal),
with a hip-knee angle (HKA) of 173.7◦, a lateral distal femoral angle (LDFA) of 87.6◦, a
medial proximal tibial angle (MPTA) of 86.6◦, an arithmetic HKA (aHKA) of −1◦, a joint
line obliquity (JLO) of 174◦, and a posterior tibial slope (PTS) of 8.8◦. The patient received
spinal anesthesia. For infection prevention, a prophylactic dose of 2 g of cephazolin was
administered preoperatively. Additionally, to control bleeding, 1 g of tranexamic acid was
given at the time of the incision, with an additional gram administered 6 h post-surgery to
reduce blood loss.

2.2. Three-Dimensional Preoperative Planning

Based on Howell’s unrestricted KA criteria, we devised a strategy for femoral resurfac-
ing by removing an equivalent amount of bone and cartilage to match the thickness of the
prosthesis. Our plan involved a pure resurfacing of the femoral component on the coronal
plane while maintaining the native LDFA. Additionally, we set the posterior femoral cut
on the axial plane at 0◦ rotation from the posterior condylar axis. In the sagittal plane, we
adjusted the flexion/extension to the optimal position to prevent femoral notching. In a
varus knee, as described in the case reported in this technical note, the wear is typically
2 mm of cartilage on the medial femoral condyle [24], while there is no cartilage wear
on the lateral femoral condyle. To match the thickness of the prosthesis, we determined
that 6 mm of bone needs to be removed from the medial femoral condyle (6 mm of bone
+ 1 mm saw thickness + 2 mm of missing cartilage equals the 9 mm thickness of the distal
prosthetic medial femoral condyle). For the lateral femoral condyle, we remove 8 mm of
bone and cartilage (6 mm bone + 2 mm cartilage + 1 mm saw thickness equals the 9 mm
thickness of the distal prosthetic lateral femoral condyle). For the posterior condyle, we
remove 2 mm less than the thickness of the prosthetic posterior femoral condyles (3 mm
bone + 2 mm cartilage + 1 mm of saw thickness, which is 2 mm less than the 8 mm thickness
of the prosthetic posterior femoral condyles). Increasing the posterior condylar offset by
2 mm is necessary when using a liner that involves the removal of the posterior cruciate
ligament (as the one used in this case). This adjustment helps close the flexion gap and
prevents a mismatch between extension and flexion. Regarding the tibia, our initial plan
involved pure resurfacing, and maintaining the native MPTA and the native posterior slope.
However, the positioning of the tibial cut would be adjusted or confirmed based on soft
tissue elongation information acquired during the surgical procedure following femoral
resurfacing with trial component placement (Figure 2).
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Figure 2. Three-dimensional planning: The software enables us to conduct three-dimensional
planning based on a CT scan. To preserve the native LDFA, we planned a distal femoral cut at 2.5◦

valgus with a bone thickness of 6 mm. The posterior femoral cut was set at 0◦ of rotation with a bone
thickness of 5 mm. The tibial cut was planned with a varus of 3.5◦ and a PTS of 8.5◦. Additionally,
we determined the optimal component sizes, selecting a femoral component size 3+ and a tibial
component size 3. In red is represented the position of the planned femoral component, while in blue
is the position of the tibial component.

2.3. NextAR TKA System

The NextAR system has a compact design, consisting of augmented reality smart
glasses, two small single-use sensors, and a control unit (Figure 1). The smart glasses allow
for the display of the field of view real-time information compared to the preoperatively
planned values needed to perform the surgical steps. The augmented reality feature
improves the user experience by avoiding the continuous look at the external monitor and
favoring hand-eye coordination. The smart glasses are lightweight, fully wireless, and
equipped with an integrated battery. The information is displayed in a straightforward
interface that does not cause fatigue or headaches even after prolonged use [10,11].

The surgical guidance is performed by a wireless optical tracking system that com-
prises two small-sized sensors: an active infrared camera and an active tracker that elim-
inates the need for external cameras and any line-of-sight issues. The two sensors are
provided in a sterile, single-use format and are ready to be used without the need for
calibration, the battery life is certified for over 4 h. When the tracker is correctly positioned,
it transmits spatial data in six degrees of freedom (three translations, three rotations) with
an error ≤0.5◦/0.5 mm, the software warns the user when the tracker approaches the
boundaries of the recommended volume of measurement to maintain maximum accu-
racy [10,11]. The camera and tracker can be securely attached to the femur and tibia within
the surgical incision, eliminating the need for percutaneous bone pins, throughout the
procedure, they provide guidance to the surgeon via the smart glasses.

Completing the hardware of the NextAR TKA is a control unit connected via Bluetooth
to the tracking systems and smart glasses. Once the initial setup is complete, the control
unit is only necessary if the surgeon decides to modify the surgical plan, as all other steps
can be monitored and visualized by utilizing only the sensors and smart glasses
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2.4. Five Steps Technique

Surgical Approach and Device Registration (Step 1): The surgical approach involves a
standard median skin incision and a medial parapatellar arthrotomy. During this approach,
care must be taken not to remove the femoral and tibial osteophytes, as preserving the bone
surface is crucial for accurate registration with the preoperative CT scan. After adequately
exposing the joint, position the femoral and tibial pins. The femoral pins should be placed
approximately 5–6 cm from the joint plane, oriented at about 45◦ to the ground, while the
tibial pins should be positioned outside the surgical field, oriented perpendicularly and
approximately 8 cm from the tibial plateau (Figure 3). Camera holders, which will house
the single-use sensors, are then placed on the pins. Before proceeding with the bone surface
registration, ensure that the distance and orientation between the two sensors are adequate
throughout the entire range of motion. The system employs a single-point acquisition
method, wherein a pointer is held on the relevant anatomical structure to activate automatic
point acquisition. Twenty-six points each for the femur and tibia need to be registered to
align the preoperative CT scan with the intraoperative bone surface. After completing
bone registration, the femoral and tibial osteophytes may be removed before assessing soft
tissue elongation. To establish the reference length (L0) of the collateral ligaments, the knee
should be held between 0◦ and 10◦ of flexion. Once L0 is determined, ligament length
variation can be evaluated throughout the range of motion (ROM). Applying varus/valgus
stress across the entire ROM helps define the limits of maximum elongation and shortening
of the collateral ligaments (boundaries). In a varus knee characterized by medial cartilage
wear of the distal condyle, it is expected that the medial collateral ligament (MCL) will not
be tight in extension due to the cartilage wear (Figure 4a).
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Figure 3. Camera holder positions: The tibial camera holder is positioned 8 cm below the joint line
perpendicular to the joint line, while the femoral camera holder is situated approximately 5 cm above
the femoral joint line at a 45◦ angle; in the image, the top right displays real-time data ensuring that
the two cameras, integral to the AR system, maintain contact (in green). It is mandatory to verify that
these cameras remain in contact throughout the entire range of motion.
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Figure 4. (a) (top) Collateral ligament elongation in extension (top) and in flexion (bottom) showing
a shortened MCL before the femoral resurfacing. (b) Collateral ligament elongation after femoral
resurfacing shows the restoration of more natural kinematics in extension (top), flexion (bottom),
and during the whole range of motion.

Femoral Resurfacing (Step 2): This procedure involves performing femoral resurfacing
as described in Howell’s KA unrestricted technique. The only difference from the traditional
technique is the necessity to increase the posterior condylar offset by 2 mm (removing 2 mm
of bone less than the thickness of the prosthesis) if one decides to sacrifice the posterior
cruciate ligament (PCL). If the surgeon chooses to maintain the PCL removal of the same
amount of bone as the thickness of the prosthesis is suggested. The “tibial” camera will be
positioned on the MIKA distal cutting guide using the correct plate based on the cartilage
wear (in this case medial wear and lateral underwear to make a 6 mm cut on the medial
femoral condyle and 8 mm on the lateral femoral condyle). Using the AR system, we will
navigate the position of the cutting guide, first matching the sagittal plane by adjusting
the flexion/extension of the component, and then the varus/valgus alignment. Using
the augmented reality system, we will navigate the position of the cutting guide, first
matching the sagittal plane by adjusting the flexion/extension of the component, and then
the varus/valgus alignment. Once the blue line, representing the real-time position of
the guide in space, is parallel to the green line, representing the planned position of the
distal cutting guide (Figure 5), we will stabilize the cutting guide with three pins (at least
one of which is oblique) and proceed with the distal cut. Next, the posterior cut will be
performed at 0◦ relative to the posterior condylar axis and 2 mm less than the thickness of
the prosthesis to close the flexion gap for the reasons previously explained. This cut can be
made manually using the MIKA instrument sizer or it can be navigated like the previous
cut. Once the pre-planned four-in-one cutting guide is positioned, we will proceed with the
cut. At this point, having completed the cuts for pure femoral resurfacing, the trial femoral
component will be placed. At this stage, osteophytes can be removed before proceeding to
the next step.
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Figure 5. Navigation of the distal femoral cut involves aligning the guide with the planned position
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Definition of the tibial cut by having real-time soft tissue elongation (Step 3): With the
trial component in place after performing the femoral resurfacing cuts (considering that
femoral wear is predictable), we will evaluate the knee’s stability in extension and flexion, as
well as the elongation of the medial and lateral collateral ligaments (Figure 4). Based on the
intraoperative information acquired after femoral resurfacing, we will modify the planning
of the tibial cut to achieve isometry of the MCL throughout the entire range of motion,
and an LCL that matches the L0 length in extension and tends to shorten with increased
flexion. This pattern of collateral ligament elongation corresponds to a clinical scenario
where, in extension, there will be negligible opening (<1 mm) in both the medial and lateral
compartments, while in flexion, the medial compartment remains stable (maximum valgus
stress opening of 1 mm) and the lateral compartment may open up to 2–3 mm when a varus
stress is applied, facilitating the natural medial pivot kinematics of the knee. We will adjust
the tibial cut orientation on the coronal plane (adjusting varus/valgus), the sagittal plane
(adjusting the slope), and the thickness of the tibial cut to achieve the desired elongation
pattern. In this case, we modified the tibial varus from 1.5◦ to 2.5◦ and reduced the slope
from 8.8◦ to 5◦. Using the same navigation rules as the previous step, we will position the
femoral camera on the MIKA extramedullary guide, correcting the position to match the
tibial slope, varus/valgus, and finally the thickness. We will stabilize the guide with three
pins (at least one oblique) and proceed with the tibial cut.

Evaluation of Soft Tissue Balance with Spacer Blocks and Trial Components (Step 4):
As in the standard calibrated technique, we will place spacer blocks in flexion and extension
to confirm the accuracy of the cuts. First, we will evaluate the flexion space with a 10 mm
spacer, expecting to achieve a “medial pivot” where the spacer block pivots medially and
moves more freely laterally. Next, we will place the 12 mm spacer block in the extension
and verify that there is less than 1 mm of laxity under varus and valgus stress. We use
the 12 mm spacer in extension instead of the 10 mm spacer because, at this stage, the
posterior condyles are absent, reducing their tension on the posterior capsule. If satisfied
with the balance using the spacer blocks, we proceed with preparing the tibial plateau. If
not satisfied, we may perform additional recuts (only for the tibia). The same kinematic
evaluations (stability in flexion/extension and range of motion) will be repeated with the
trial components before proceeding to the definitive components implantation.

Components implantation and final evaluation (Step 5): Firstly, the tibial component
(in this case, GMK Primary 3) will be implanted using a double cementation technique,
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where both the tibial plate and the lower portion of the tibial component are cemented
with low-viscosity cement. Next, the final liner (in this case, the FLEX, 10 mm thick) will
be positioned. Lastly, the femoral component (GMK SpheriKA 3+) will be cemented. A
final assessment of the soft tissue elongation will be performed using the NextAR system.
At the end of the procedure, the system will generate a detailed report of the planned and
executed cuts and the elongation of the ligaments during the various phases of the surgery.

2.5. Postoperative Clinical and Radiographic Outcome

One year after the surgery, the patient is satisfied with the surgical procedure, the knee
had a complete ROM (0◦–135◦) and is stable in flexion, mid-flexion, and extension. The
Forgotten Joint Score Improved from 30 preoperatively to 81.7 postoperatively, while the
WOMAC Score improved from 48 preoperatively to 13 postoperatively. Postoperatively
her limb alignment was classified CPAK II (neutral apex distal, same as preoperative). The
HKA changed from 173.7◦ to 178.5◦, the postoperative LDFA was 87.5◦, the postoperative
MPTA was 86.5◦, while the posterior PTS was 5.5◦.

3. Discussion

This technique emphasizes three key principles: first, meticulous preoperative plan-
ning based on three-dimensional CT scans, focusing on bone rather than cartilage thickness
for accurate cuts; second, a sequential approach involving femoral resurfacing followed
by a collateral ligament’s elongation based tibial cut based on soft tissue information; and
third, the use of a spherical liner.

The theoretical advantage of this technique is to restore both the native joint line
orientation and the preoperative soft tissue tensioning, thereby reproducing more natural
knee kinematics. Firstly, the CT scan of the pelvis, knee, and ankle provides detailed
information about lower limb alignment, significantly enhancing preoperative planning.
This allows for more precise planning and positioning of components using 3D planning
instead of traditional 2D methods [25,26]. Secondly, the ability to intraoperatively verify the
accuracy of the planned cuts can reduce the risk of errors at each step of the procedure [5,8].
Thirdly, obtaining real-time information about collateral ligaments, which is crucial in our
technique for adjusting the tibial cut, can also be beneficial if the surgeon opts for either
mechanical alignment or restricted kinematic alignment other than the above-mentioned
technique [9].

In recent years, despite there being currently no studies about the accuracy of the
NextAR device, interesting results in terms of accuracy were reported with the assistance
of similar AR devices in TKA. Castellarin et al. reported an accuracy of the tibial cut
of 0.59◦ ± 0.55◦ in the coronal plane and of 0.70◦ ± 0.75◦ on the sagittal plane with a
different AR System (Knee+ Device) in a series of 76 patients (tibial cut first with the aim of
maintaining the preoperative joint line) [27]. With the same device, Iacono et al. reported
that the average error of their tibial cut was inferior to 1◦ on the coronal plane in 97%
of cases and 88% in the sagittal plane [28]. Similar results were also achieved when AR
devices were used to assist the femoral cuts. Tsukada et al. reported that the Knee+ AR
device was non-inferior in accuracy compared with an accelerometer-based navigation
system (109 knees versus 119 knees), reporting an accuracy of 95.4◦ in the AR group and
of 93.2% of the navigation aiming for accuracy within 3◦ from the mechanical axis on the
coronal plane [29].

By combining the precision of an AR system, with the possibility to have real-time
information about soft tissue elongation. By achieving a balance between soft tissue ten-
sion and bony alignment, our goal is to restore pre-arthritic knee function while ensuring
optimal stability and range of motion. Integrating KA and enabling technology enables
individualized treatment tailored to each patient’s unique anatomy and soft tissue charac-
teristics [16,17]. One of the main advantages of this technique is the ability to restore correct
soft tissue tension by adjusting varus-valgus and tibial slope based on intraoperatively
acquired information before performing the tibia cut [18,30]. Some authors have demon-
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strated that high tibial compartment forces result when the tibial component is placed
more than 1◦ outside of the varus/valgus relative to the pre-arthritic joint line [18,30].
This technique becomes particularly useful considering the challenge of understanding
pre-arthritic tibial coronal alignment and adjusting the slope, especially when the posterior
cruciate ligament is sacrificed [5,6,10,12–15,31–34].

4. Conclusions

This paper presents an innovative approach to TKA that integrates KA principles with
the NextAR AR system. KA aims to replicate the natural, pre-arthritic joint line by tailoring
the prosthetic alignment to the patient’s unique knee anatomy, diverging from traditional
methods that standardize alignment to a neutral axis. This individualized technique often
yields more natural knee kinematics post-surgery. While resurfacing the femur generally
allows for a predictable restoration of its joint line due to the consistent nature of femoral
wear, restoring the tibial joint line is more complex. Tibial wear patterns are highly variable,
making precise restoration challenging. To address this, CAS tools, such as AR systems,
could improve the precision of tibial alignment and joint line restoration. NextAR utilizes
AR to provide real-time visual guidance, overlaying critical surgical information onto the
operative field. This system allows for accurate intraoperative evaluation of ligament
elongation and adjustment of the cutting guides and bone thicknesses.

By combining KA and AR, this technique strives to achieve a balance between soft
tissue tension and bone alignment, aiming to restore the knee’s natural function and
stability. This approach is particularly beneficial in addressing the complexities of tibial
alignment, offering a more accurate and individualized method for TKA. To establish the
true efficacy and long-term benefits of integrating KA and AR technologies like the NextAR,
further studies involving larger patient populations and comprehensive clinical data need
to be performed.
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