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Abstract: Cathodic plasma electrolytic treatment (CPET) is an emerging surface modification and
coating preparation technology. By utilizing plasma discharge induced through electrolysis and
the cooling impact of electrolyte, metal cleaning, saturation, and coating preparation are efficiently
achieved. In this review, the principle, application, and development of the CPET process are
briefly summarized based on the past literature. Detailed insights are provided into the influence of
electrolyte parameters (pH, metal salt concentration, and temperature), electrical parameters (voltage,
duty cycle, and frequency), and process parameters (electrode area ratio, material, roughness, and
deposition time) on plasma discharge and coating formation for metal coatings. The interaction
mechanism between plasma and material surfaces is also investigated. Recommendations and future
research avenues are suggested to propel CPET and its practical implementations. This review is
expected to provide assistance and inspiration for researchers engaged in CPET.

Keywords: cathodic plasma electrolytic treatment; metal coating; deposition parameters

1. Introduction

Surface coatings have essential applications in materials science and engineering, such
as enhancing the material’s corrosion and wear resistance and imparting other functional
characteristics, making it better meet various usage requirements [1,2]. In industry, some
of the more mature coating preparation techniques include physical vapor deposition
(PVD) [3], chemical vapor deposition (CVD) [4], spray coating technology [5], electroplat-
ing [6], and hot-dip galvanizing [7]. Although the above techniques have been extensively
utilized, they suffer from complex pre-treatment processes, low deposition rates, and envi-
ronmental issues. Therefore, there is a growing urgency to develop new coating preparation
technologies to minimize environmental impacts and enhance production efficiency.

Plasma electrolysis treatment (PET) has emerged in the last decades as an alternative
to metal surface treatment [8,9]. The PET process produces four effects at the same time:
strong electric field, oxidizing free radicals, ultraviolet light, and shock wave, which has
attracted increasing attention in the fields of material cleaning, etching, film deposition, and
heat treatment [10–12]. Currently, two main types of PET processing have been developed:
anodic plasma electrolytic technology and cathode plasma electrolysis technology. Anodic
plasma electrolytic technology, known as plasma electrolytic oxidation (PEO), has become a
mature surface treatment technique after decades of in-depth research [13–15]. In contrast,
the cathode process is still far behind in fundamental understanding, process parameter
control, and surface analysis.

Cathodic plasma electrolytic treatment is an emerging surface technique based on
liquid-phase plasma discharge [16–18]. The liquid medium is electrolyzed by applying
the potential between the cathode workpiece and the counter electrode to produce high-
energy plasma (micro-arc discharge on the workpiece surface) [19]. In parallel with the
plasma discharge, bubbles surrounding the cathode workpiece surface periodically form
and collapse, generating powerful shock waves [20]. Under the combined physicochemical
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effects of plasma acceleration, ion adsorption, and bubble rupture, the substrate’s cleaning,
deposition, or surface modification is recognized. Compared with the traditional electro-
chemical treatment technology, CPET eliminates the boundary layer diffusion and possesses
the natural advantages of the eco-friendliness, high efficiency, and easy preparation of
nanocrystalline structures.

In the past decade, CPET has been successfully used to apply various metal coatings
(such as Zn [21], Ni [22], Mo [23], Cr [24], Co [25], etc.) and ceramic coatings (such as
Al2O3 [26], ZrO2 [27], etc.). It has been found that the CPET process is influenced by many
parameters, such as electrolyte parameters, processing time, temperature, power supply
parameters, etc. By reviewing the literature on CPET, the present paper summarizes its
development of CPET and briefly describes its principles and applications. In particular,
some specific examples elaborate on the effects of the electrolyte, power supply, and
process parameters on the preparation of metal coatings by CPET. In the end, the current
understanding of the deposition mechanism and plasma effects of CPET is presented.

2. Principles of CPET

As shown in Figure 1A, a typical CPET process consists of two electrodes, where the
workpiece serves as the cathode and the auxiliary electrode serves as the anode (usually
an inert electrode) [8]. Both electrodes are immersed in an electrolyte (e.g., NiSO4 or
ZnSO4 aqueous solution) and are spaced a few centimeters apart. By applying a pulsed
or continuous direct current (DC) power supply, plasma electrolysis is initiated when the
potential difference between the electrodes reaches a critical level. The typical current–
voltage characteristic curves in the CPET process are shown in Figure 1B [9].
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Figure 1. (A) Schematic diagram of the CPET process [8]; (B) Typical current–voltage curves for
CPET [9]: (a) Current−voltage curve during CPET process; (b)–(f) Photos of bubbles and plasma
with increasing voltage.

In the U1 region, the current increases linearly according to Faraday’s law. At this
stage, a hydrogen evolution reaction occurs, while the electrolyte is rapidly vaporized by
Joule heat and mixed with hydrogen. As the voltage increases, the rate of bubble formation
on the cathode surface gradually increases, leading to the formation of an unstable gas
film [9]. The formation of the unstable gas film reduces the contact area between the
electrolyte and the cathode, resulting in the limiting current value. From U2 to U3, the
thickness and stability of the gas film increases as the current continues to decrease. In
the subsequent U3 region, a relatively stable gas film is fully formed, and a stable plasma
discharge is observed. Therefore, the U3–U4 region is generally used as the working region
for CPET. Kellogg first proposed this empirical method of deposition voltage selection.
Hence, the U3–U4 region is also known as the Kellogg zone [28]. In the Kellogg region,
the near-surface of the substrate (coating) is heated to a molten state due to plasma action,
while the surrounding lower-temperature electrolyte quenches the substrate (coating). The
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periodic melt–quench interaction results in a unique microstructure and excellent bonding
of the CPET-prepared coatings.

3. Development of CPET

In previous research, cathodic discharge was considered a byproduct of anodic plasma
discharge processes and was not systematically studied. With the establishment of liquid-
phase discharge theories and the success of anodic plasma electrolysis technology, CPET
has gradually gained attention from researchers.

The discovery of the cathode plasma discharge phenomenon can be traced back to
1950. Kellogg et al. electrolyzed a sulfuric acid solution using platinum wire at high
current densities. When the applied voltage exceeded a critical value, the current–voltage
relationship deviated from the normal Faraday’s law, and the surface of the cathode emitted
a bright blue light. Since this discharge phenomenon is very similar to the “anodic effect”,
it was named the “aqueous cathodic effect” [29]. In 1964, A. Hickling et al. analyzed in
detail the glow discharge electrolysis process. Cathodic discharge was considered a form
of electrolysis involving energy transfer and charge transfer. The involvement of plasma
helps break down solvent molecules into reactive radicals, facilitating electrochemical
reactions [30]. At the same stage, some basic theoretical and practical research on cathode
plasma discharge was carried out simultaneously [31,32]. All studies have found a common
denominator: a significant deviation from the normal Faraday electrolytic state occurs when
the potential reaches a critical value, inducing a cathode plasma discharge. The impressed
potential, temperature, electrolyte composition, hydrodynamics, electrode material, and
geometry influence the formation and evolution of the continuous plasma around the
electrode.

As the potential value of liquid-phase plasma discharge technology is gradually recog-
nized, a large number of Russian researchers were engaged in basic and theoretical research
in related fields. In 1997, Steblianko and Ryabkov introduced the cathodic plasma discharge
effect into the field of surface engineering and developed cleaning and deposition pro-
cesses [33]. In 1999, Yerokhin systematically summarized the significant results published
by predecessors and reviewed in detail the fundamental theories of plasma electrolysis in
surface engineering [8]. In addition, the term “plasma electrolysis technology” was used to
name this technology. At the same time, subdivision processes such as plasma electrolytic
oxidation (PEO) and plasma electrolytic saturation (PES) were introduced, which laid a
foundation for the application and development of plasma electrolysis technology.

In 2002, Meletis et al. carried out related work on the cleaning of metal surface
oxide films and the preparation of metal coatings [34]. Figure 2(a1–c2) shows the clean
surface, Zn coating, and Zn-Al coating prepared by Meletis et al., respectively. As shown in
Figure 2(a1,a2), the clean metal surface prepared by CPET has unique anchor profiles, which
provide an ideal surface for subsequent coating deposition. In addition, Figure 2(b1–c2)
shows that the CPET process allows for the production of dense and uniform metal and
alloy coatings, demonstrating enormous potential as a novel plasma surface engineering
technology. In 2005, based on the current–voltage curve during deposition, Gupta et al.
proposed a process mechanism for preparing metal coatings via CPET [9]. This mechanism
effectively elucidates the high deposition rate of CPET, aligning well with the characteristic
points of the current–voltage curve, and has gained widespread acceptance. With the
continuous improvement of CPET-related theories, research on the parameters of metal
coatings, ceramic coatings [35–38], and cleaning [39–41] has emerged. These parameters
include treatment voltage (duty cycle, frequency), treatment time, electrode material,
electrolyte (composition, concentration, and pH), etc. The main outcome of this stage
is the preparation of a series of coatings, such as C [42], ZrO2 [43], ZrO2-Y2O3 [44,45],
Al2O3-Y2O3 [46], Ni-P [47], etc. At the same time, some researchers have explored the
principles and mechanisms of CPET through experiments and theoretical simulations to
deepen the understanding of the deposition process [48,49].



Materials 2024, 17, 3929 4 of 26

Materials 2024, 17, x FOR PEER REVIEW 4 of 26 
 

 

[46], Ni-P [47], etc. At the same time, some researchers have explored the principles and 
mechanisms of CPET through experiments and theoretical simulations to deepen the un-
derstanding of the deposition process [48,49]. 

 
Figure 2. (a1,a2) Cleaning; (b1–c2) Zn-Al coating [34]. 

In 2011, the CAP company (Los Angeles, CA, USA) successfully pioneered commer-
cialization by combining CPET with continuous preparation of coatings. The CAP com-
pany uses a multi-chamber device, supplemented by a prefabricated foam electrolyte, to 
determine the continuous preparation of a variety of metal coatings on the wire. Figure 
3(a1–c2) are the Zn, Ni, and Ag coatings fabricated by CAP, respectively [50]. Under high-
temperature plasma and cyclic quenching, the coatings are tightly bonded to the substrate 
with uniform thickness and good densification, showing excellent coating quality. With 
the success of commercialization, CPET is gradually developing towards intelligent man-
ufacturing. Establishing a connection between plasma physics, materials science, and 
computer science using static and dynamic neural network methods is beneficial for pro-
moting the development of intelligent electrolytic plasma technology. 

 
Figure 3. (a1,a2) Zn coating; (b1,b2) Ni coating; (c1,c2) Ag coating [50]. 
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In 2011, the CAP company (Los Angeles, CA, USA) successfully pioneered commer-
cialization by combining CPET with continuous preparation of coatings. The CAP company
uses a multi-chamber device, supplemented by a prefabricated foam electrolyte, to deter-
mine the continuous preparation of a variety of metal coatings on the wire. Figure 3(a1–c2)
are the Zn, Ni, and Ag coatings fabricated by CAP, respectively [50]. Under high-temperature
plasma and cyclic quenching, the coatings are tightly bonded to the substrate with uniform
thickness and good densification, showing excellent coating quality. With the success
of commercialization, CPET is gradually developing towards intelligent manufacturing.
Establishing a connection between plasma physics, materials science, and computer sci-
ence using static and dynamic neural network methods is beneficial for promoting the
development of intelligent electrolytic plasma technology.
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4. Evolution of CPET Devices

With the continuous advancement of CPET technology, CPET devices are also con-
stantly being improved. The mainstream deposition equipment mainly includes the tradi-
tional immersion type and porous droplet type. The traditional immersion type has strong
compatibility with the shape of the substrate, making it suitable for substrates of complex
shapes. However, it faces issues of high process energy consumption and unstable plasma
arcs, so it is more suitable for smaller samples. To reduce energy consumption and improve
process stability, many variants have been developed based on traditional immersion de-
vices, such as microbead-assisted devices [51] and ultrasound-assisted devices [52]. Deng
et al. studied the impact of adding microbeads to the traditional immersion device, with
the experimental setup shown in Figure 4a. The results show that introducing microbeads
near the cathode significantly reduces the cathode current density required for plasma dis-
charge [51]. Adding microbeads effectively suppresses the transport of electrolyte bubbles
near the cathode, making the electric field distribution around the cathode more uniform,
thus inducing the formation of a thin and uniform gas film. As a result, stable and gentle
plasma discharge occurs across the entire cathode surface rather than an intense plasma
discharge, effectively constraining the plasma discharge process. One study by our research
group applied ultrasound assistance based on a traditional immersion device, with the
experimental setup shown in Figure 4b [52]. After applying ultrasound, bubbles in the gas
film are mechanically broken down into microbubbles, promoting a constant high-speed
replacement of bubbles in the gas film. The reduction in bubble size and the high-speed
iteration allow for a more uniform distribution of the gas film on the cathode surface,
inducing uniform and random plasma discharge. Additionally, Zhang et al. designed a
layered solution device to prepare large-area coatings, as shown in Figure 4c [22]. The
solution is divided into a transparent electrolyte upper layer and a high-density CCl4
organic solvent lower layer. This layered electrolyte strategy effectively ensures the discharge
area of the electrode, providing new insights for the continuous preparation of large-area
coatings by CPET.
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The dripping type device is usually paired with mobile equipment, allowing for the
treatment of large sheet steel and wire (Figure 5a). The CAP technology company has
improved this device over several generations of technical iterations and designed a mature
multi-chamber deposition system, which achieves continuous cleaning of wires and coating
deposition [53,54]. As shown in Figure 5b, the multi-chamber device consists of one or more
anode heating chambers separated by porous plates. The electrolyte is heated to its boiling
point through multiple heating chambers and finally enters the working gap as a foam
electrolyte. By using this multi-chamber design, the traditional electrolyte is transformed
into a foam electrolyte, which reduces the current during the plasma discharge process,
thereby reducing power consumption and enhancing economic efficiency. Furthermore, the
foam content can be adjusted by controlling the heating process of the electrolyte, achieving
the controllable regulation of the plasma discharge process.
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5. Application Progress of CPET

During the CPET process, strong electric fields, oxidative free radicals, ultraviolet light,
and shock waves are all generated simultaneously, which is the fundamental reason for
its high application value. Figure 6 summarizes the progress of applications using CPET
for coating deposition, cleaning, and surface modification since 2005. Most applications
focus on coating preparation, such as metal (alloy) coatings, ceramic (oxide) coatings, and
diamond-like thin films. Additionally, relatively extensive research has been conducted on
surface oxide film cleaning, carburizing, and nitriding applications.

(1) Surface cleaning

Metal surface cleaning is essential in modern manufacturing processes. Oxide films,
dirt, oil, or chemicals on metal surfaces can seriously affect the effectiveness of subsequent
surface treatments. At present, conventional cleaning methods include sandblasting [55,56],
water jet [57,58], ultrasonic cleaning [59,60], acid/lye cleaning, emulsion cleaning, etc.
However, these methods require multiple cleaning steps and produce harmful particles or
chemicals. In contrast, surface cleaning with CPET has the advantage of being cost-effective
and environmentally friendly [61].

Figure 7 shows the cross-sectional TEM morphology of AISI 1010 low carbon steel after
cleaning in a 14 wt.% NaHCO3 aqueous solution [34]. As shown in Figure 7a, impurities
and rust on the metal surface can be directly removed by the CPET cleaning strategy.
During the cleaning process of CPET, the metal surface melts to a certain extent under the
action of high-temperature plasma, and the hydrogen bubbles produced by electrolysis
are broken down by plasma. The shock wave generated by bubble rupture is beneficial
in removing the oxides on the metal surface, thus forming a clean surface. At the same
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time, through the discharge of high-energy plasma on the material’s surface and the cyclic
quenching of electrolytes, a thin layer of nanocrystals can be formed while removing the
surface impurities (Figure 7b,c), significantly improving the material’s corrosion resistance.
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(2) Surface modification

Traditional surface modification techniques such as ion implantation physical or
chemical vapor deposition are generally carried out under vacuum conditions. Plasma elec-
trolytic saturation (PES) is an attractive and flexible process that can prepare the saturated
layer under atmospheric pressure. Compared with the traditional surface modification
process, PES has the advantages of short treatment time, small environmental impact, and
low-temperature operation. At present, a variety of saturated layers have been prepared by
the PES process, such as plasma electrolytic carburizing (PEC), plasma electrolytic nitrid-
ing (PEN), plasma electrolytic nitriding (PEB), plasma electrolytic carburizing (PEC/N),
etc. [62–64]. Under the action of high-energy plasma bombardment, PES can obtain a satu-
rated layer on the metal surface with high efficiency. In addition, the excessive growth of
grains in the saturated layer is limited by the cyclic effect of plasma heating and quenching
cooling. According to the published work, the saturated layer prepared by PES generally
has a nanocrystalline structure with excellent wear and corrosion resistance. PES is simple
to operate and has no additional restrictions on the material and shape of the matrix,
showing good advantages in actual production [65–68].

(3) Ceramic (oxide) coating

Ceramic coatings are widely used as thermal barrier coatings for Ni and Ti alloys due
to their high temperature and pressure resistance [69–71]. Currently, PEO technology based
on anodic plasma discharge effect is the primary method of preparing ceramic coatings.
However, the coating prepared by PEO is usually limited to depositing on valve metals
such as Ti and Mg, and its composition is mainly composed of oxides of the matrix [72,73].
In contrast, CPET is suitable for most conductive substrates, and the composition of the
deposits can be regulated by designing electrolytes. Due to the advantages of low cost,
high efficiency, adjustable microstructure, and vital inclusiveness, a series of ceramic
(oxide) coatings, such as Al2O3 and ZrO2, were prepared by CPET. Among them, the
Al2O3 coating is the most widely studied. Figure 8 shows the schematic diagram of the
deposition process of the Al2O3 coating prepared by CPET. The deposition of the Al2O3
coating undergoes a combination of processes, including plasma discharge, molten Al2O3
spray, sintering, solidification, and stacking [18]. The process of spray, sintering, and
solidification promotes the thickening of the Al2O3 coating. When the coating reaches a
certain thickness, the plasma discharge cannot completely break down the Al2O3 coating,
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and the plasma discharge intensity decreases. At this time, the CPET process enters the
stage of spark extinction. Generally, the Al2O3 coating prepared by the CPET method is
composed of a mixed crystalline phase of α-Al2O3 and γ-Al2O3, and the surface exhibits a
typical porous and rough microstructure [16,74,75]. Therefore, improving the porosity and
surface roughness of the ceramic coating prepared by CPET is the key to further enhancing
its performance.
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form a coating; (d) Injection, sintering and solidification of Al2O3; (e) Spark fading stage.

(4) Metal (alloy) coating

Currently, the preparation of metal coatings mainly adopts the electrodeposition
method. In the traditional Faraday electrolysis zone, a good quality metal coating can
be prepared by electrodeposition at a small voltage. Although electrodeposition has the
advantages of simple equipment and a mature process, its pre-treatment process is compli-
cated and requires steps such as grinding, polishing, degreasing, and acid activation of the
sample. In contrast, CPET does not require additional pre-processing steps. For a sample
with a poor surface state, the preparation of the metal coating can be quickly achieved by
combining plasma cleaning and deposition. In addition, the electrolyte composition of
the CPET process is relatively simple, and high-speed deposition of metal coatings can be
achieved without adding surfactants and other organic chemicals.

A variety of metal coatings have been prepared by CPET, including monometallic
coatings (such as Ni [22], Zn [34], Co [25], Cr [24], Mo [23], Cu, etc.) and binary coatings
(such as Ni-Cr [76], Zn-Ni [77], Zn-Al [34], etc.). The preparation of metal coatings by
CPET has the advantages of a high deposition rate, nanocrystalline structure, and excellent
adhesion with the substrate. The deposition rate of Zn coatings prepared on medium-
carbon steel using the CPET method can reach 1 µm/s [9]. In addition, due to the high
temperature of plasma, a good diffusion bond layer can be formed between the metal
coating and the substrate, which has a good adhesion. Figure 9 illustrates the cross-
sectional TEM characterization of Ni coatings prepared by CPET. A Ni coating prepared by
CPET tends to have two sublayers: the top layer consists of almost 100% coating material,
and the thin transition layer below consists of a mixed phase of deposited metal and
matrix. The surface of the metal coating deposited by the plasma method has an ultra-fine
nanocrystalline structure, which imparts excellent corrosion resistance and mechanical
properties to the coating [28].
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6. Research Progress on the Preparation of Metal Coatings by CPET

With the continuous progress of science and technology, metal materials are increas-
ingly and widely used in electronics, automotive, and aerospace fields, and the require-
ments for the hardness, wear, and corrosion resistance of metal materials are also in-
creasing [78]. The CPET process can rapidly prepare various metal or alloy coatings with
nanocrystalline structure and excellent adhesion, which can effectively improve the stability
of the substrate in harsh environments and broaden the application scenarios of materials.
Currently, the research on the preparation of metal coatings by CPET mainly focuses on the
effects of power electrolyte composition, supply parameters, and process conditions on the
surface morphology, microstructure, and properties of the coatings. At the same time, the
mechanism of CPET preparation of metal coatings has also been studied.

The CPET process is a complex electrochemical process involving multiple physical
fields containing a large number of process parameters that simultaneously affect process
performance. Figure 10 shows almost all parameters that may affect the CPET process in
the form of a fishbone diagram to illustrate causal relationships. Electrolyte parameters
include electrolyte type, metal salt concentration, temperature, etc. Electrical parameters
include deposition voltage, duty cycle, and frequency, etc. In addition, the quality of
metal coatings prepared by CPET is also affected by parameters such as electrode material,
electrode surface roughness, and deposition time. The following is a comprehensive review
of the above parameters for CPET’s preparation of metal coatings.
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6.1. Electrolyte Parameters

(1) Type of electrolyte

The CPET process involves gas evolution, metal deposition, and other competing reac-
tions. Compared with the solid–liquid two-phase interface of traditional electrodeposition,
the CPET process involves a more complex solid–liquid–gas three-phase interface. As the
“precursor” of the gas film, the characteristics of the electrolyte directly affect the uniformity
and stability of the gas film [79,80]. As shown in Figure 11, the types of electrolytes used
to prepare metal coatings by CPET can be divided into three categories according to pH:
acidic, neutral, and alkaline.
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Ma et al. deposited Zn coatings in water and water–ethanol (C2H5OH) neutral elec-
trolyte systems [81]. The stable plasma voltage of a water–ethanol mixed solvent system is
significantly lower than that of a pure water solvent system, and the initial discharge volt-
age decreases with the increase in ethanol content. Although adding ethanol is beneficial
to reducing deposition voltage, it does not effectively improve the shortcomings of coarse
particles and the compactness of Zn coating in a neutral electrolyte system. Yang et al.
prepared Zn coatings using a neutral electrolyte system containing only ZnSO4 [82]. The
thickness and density of the zinc coating can be adjusted to a certain extent by changing
the electrical parameters. However, the final zinc coating is still rough and porous, with
defects and holes on the surface. Therefore, the preparation of a metal coating by CPET in
a neutral electrolyte system can be achieved, but the high deposition voltage and unstable
plasma discharge lead to poor coating quality. Currently, acidic metal salt solutions are
often used as electrolytes to improve the deposition process and coating quality.

Zhao and colleagues explored the impact of the H2SO4 concentration on the surface
and cross-section morphology of Ni coatings produced via CPET [83]. The large amount of
H+ introduced by adding H2SO4 could accelerate gas film formation and plasma discharge
formation. Adding H2SO4 affects the discharge order during the deposition process,
affecting the deposition rate. Under a low hydrogen ion concentration, the current is
mainly conducted through Ni2+ and SO4

2− in the electrolyte, and Ni2+rapidly deposits on
the cathode surface, resulting in a loose and uneven coating structure (Figure 12(a1–b2)).
As the concentration of H+ increased, the discharge of H+ on the cathode surface led to
a significant decrease in the deposition efficiency of Ni, which, in turn, improved the
coating morphology (Figure 12(c1,c2)). This result aligns well with Quan et al.’s work on
Co coating preparation [25]. Adding H2SO4 reduces the current density and deposition
rate, contributing to the formation of a uniform and dense Co coating.

Materials 2024, 17, x FOR PEER REVIEW 12 of 26 
 

 

Ma et al. deposited Zn coatings in water and water–ethanol (C2H5OH) neutral elec-
trolyte systems [81]. The stable plasma voltage of a water–ethanol mixed solvent system 
is significantly lower than that of a pure water solvent system, and the initial discharge 
voltage decreases with the increase in ethanol content. Although adding ethanol is bene-
ficial to reducing deposition voltage, it does not effectively improve the shortcomings of 
coarse particles and the compactness of Zn coating in a neutral electrolyte system. Yang 
et al. prepared Zn coatings using a neutral electrolyte system containing only ZnSO4 [82]. 
The thickness and density of the zinc coating can be adjusted to a certain extent by chang-
ing the electrical parameters. However, the final zinc coating is still rough and porous, 
with defects and holes on the surface. Therefore, the preparation of a metal coating by 
CPET in a neutral electrolyte system can be achieved, but the high deposition voltage and 
unstable plasma discharge lead to poor coating quality. Currently, acidic metal salt solu-
tions are often used as electrolytes to improve the deposition process and coating quality. 

Zhao and colleagues explored the impact of the H2SO4 concentration on the surface 
and cross-section morphology of Ni coatings produced via CPET [83]. The large amount 
of H+ introduced by adding H2SO4 could accelerate gas film formation and plasma dis-
charge formation. Adding H2SO4 affects the discharge order during the deposition pro-
cess, affecting the deposition rate. Under a low hydrogen ion concentration, the current is 
mainly conducted through Ni2+ and SO42− in the electrolyte, and Ni2+rapidly deposits on 
the cathode surface, resulting in a loose and uneven coating structure (Figure 12(a1–b2)). 
As the concentration of H+ increased, the discharge of H+ on the cathode surface led to a 
significant decrease in the deposition efficiency of Ni, which, in turn, improved the coat-
ing morphology (Figure 12(c1,c2)). This result aligns well with Quan et al.’s work on Co 
coating preparation [25]. Adding H2SO4 reduces the current density and deposition rate, 
contributing to the formation of a uniform and dense Co coating. 

 
Figure 12. Effect of H2SO4 concentration on surface and cross-sectional morphology of Ni coating: 
(a1,a2) 0 g/L; (b1,b2) 20 g/L; (c1,c2) 40 g/L [83]. 

Compared with neutral and acidic electrolytes, alkaline electrolytes in preparing 
metal coatings by CPET are still in their infancy. For some metal salts (such as AgNO3), 
the stability of neutral and acidic electrolytes is poor. Therefore, it is more suitable for 
coating deposition in alkaline electrolytes. Lin et al. prepared nano-silver coatings by 
CPET in an alkaline ammonia system [84]. The main components of the electrolyte are 
deionized water, KNO3, AgNO3, and ammonia. When deposited in a neutral or acidic 
electrolyte environment, the cathode surface is prone to generate gray-brown silver oxide 
intermediates, which hinders the deposition of silver ions, resulting in the inability to ob-
tain a uniformly distributed silver coating. In the ammonia system, intermediates such as 
silver oxide interact with ammonia to form a diammonium hydroxide silver complex, 

Figure 12. Effect of H2SO4 concentration on surface and cross-sectional morphology of Ni coating:
(a1,a2) 0 g/L; (b1,b2) 20 g/L; (c1,c2) 40 g/L [83].

Compared with neutral and acidic electrolytes, alkaline electrolytes in preparing
metal coatings by CPET are still in their infancy. For some metal salts (such as AgNO3),
the stability of neutral and acidic electrolytes is poor. Therefore, it is more suitable for
coating deposition in alkaline electrolytes. Lin et al. prepared nano-silver coatings by
CPET in an alkaline ammonia system [84]. The main components of the electrolyte are
deionized water, KNO3, AgNO3, and ammonia. When deposited in a neutral or acidic
electrolyte environment, the cathode surface is prone to generate gray-brown silver oxide
intermediates, which hinders the deposition of silver ions, resulting in the inability to obtain
a uniformly distributed silver coating. In the ammonia system, intermediates such as silver
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oxide interact with ammonia to form a diammonium hydroxide silver complex, which
enhances the stability of the electrolyte and accelerates the plasma electrolysis reaction rate.

(2) Metal salt concentration

In the CPET process for preparing metal coatings, the concentration of metal ions
in the electrolyte directly influences the coating’s deposition rate and surface melting
degree. The interplay between deposition rate and melting degree collectively shapes
the coating’s topography, density, and properties. Figure 13(a1–b3) displays the Ni coat-
ing and Co coating prepared at varying concentrations of metal salts, respectively. As
shown in Figure 13(a1,b1), the Ni [85] and Co coatings [25] are dense under low metal salt
concentration conditions, and the melting morphology resulting from high-temperature
plasma is clearly visible on the coating’s surface. Figure 13(a2,b2) illustrates that the coating
structure gradually becomes looser with an increase in metal salt concentration, and the
porosity increases. When the concentration of metal ions is excessive, the coating is mainly
composed of loose dendritic structures, presenting a three-dimensional porous morphology
(Figure 13(a3,b3)). In fact, the deposition rate of coating is significantly influenced by the
concentration of metal salts. At low metal salt concentrations, the rate-controlling step of
the deposition process is the mass transfer of metal ions in the electrolyte. The deposited
material formed on the substrate can be fully melted by the plasma to create a dense and
uniform coating structure (Figure 13(c1)). When the concentration of metal salts exceeds a
specific limit, a large number of metal ions in the electrolyte act as carriers for the transfer of
current, leading to rapid deposition and loose crystallization (Figure 13(c2)). According to
the indexes of surface porosity and section thickness, the electrolyte components and sup-
porting process parameters of various metal coatings with better quality are summarized
in Table 1.

Materials 2024, 17, x FOR PEER REVIEW 13 of 26 
 

 

which enhances the stability of the electrolyte and accelerates the plasma electrolysis re-
action rate. 
(2) Metal salt concentration 

In the CPET process for preparing metal coatings, the concentration of metal ions in 
the electrolyte directly influences the coating’s deposition rate and surface melting degree. 
The interplay between deposition rate and melting degree collectively shapes the coat-
ing’s topography, density, and properties. Figure 13(a1–b3) displays the Ni coating and Co 
coating prepared at varying concentrations of metal salts, respectively. As shown in Fig-
ure 13(a1,b1), the Ni [85] and Co coatings [25] are dense under low metal salt concentration 
conditions, and the melting morphology resulting from high-temperature plasma is 
clearly visible on the coating’s surface. Figure 13(a2,b2) illustrates that the coating structure 
gradually becomes looser with an increase in metal salt concentration, and the porosity 
increases. When the concentration of metal ions is excessive, the coating is mainly com-
posed of loose dendritic structures, presenting a three-dimensional porous morphology 
(Figure 13(a3,b3)). In fact, the deposition rate of coating is significantly influenced by the 
concentration of metal salts. At low metal salt concentrations, the rate-controlling step of 
the deposition process is the mass transfer of metal ions in the electrolyte. The deposited 
material formed on the substrate can be fully melted by the plasma to create a dense and 
uniform coating structure (Figure 13(c1)). When the concentration of metal salts exceeds a 
specific limit, a large number of metal ions in the electrolyte act as carriers for the transfer 
of current, leading to rapid deposition and loose crystallization (Figure 13(c2)). According 
to the indexes of surface porosity and section thickness, the electrolyte components and 
supporting process parameters of various metal coatings with better quality are summa-
rized in Table 1. 

 
Figure 13. Effect of metal ions concentration on surface and cross-section morphology: (a1) 50 g/L; 
(a2) 100 g/L; (a3) 150 g/L NiSO4 [85]; (b1) 10 g/L; (b2) 80 g/L; (b3) 250 g/L CoSO4 [25]; (c1,c2) Schematic 
diagram of low and high concentration deposition, respectively. 
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(c1,c2) Schematic diagram of low and high concentration deposition, respectively.
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Table 1. Electrolyte and process parameters for the preparation of various metal coatings.

Coating Substrate Voltage Electrolyte Researchers

Ni

Aluminium alloy 100 V/80%/1000 Hz 30 g/L NiSO4 + 0.4 mol/L
H2SO4

Zhang [22]

Copper sheet -/-/- 100 g/L NiSO4 + 40 g/L
H2SO4

Zhao [83]

1018 steel DC 200 V 20 wt.% NiSO4 Smith [86]
Steel DC 200 V 20 wt.% NiSO4·6H2O Cionea [28]

Zn
Stainless steel DC 180 V 21 wt.% ZnSO4 Meletis [34]

Q195 wire 120 V/80%/4000 Hz 21 wt.% ZnSO4 Yang [87]
Steel DC 170 V 16 wt.% ZnSO4·7H2O Cionea [28]

Ag 316 stainless steel 200/25%/50 kHz 0.03 wt.% AgNO3 + 20 mL
NH3·H2O Lin [84]

Co 304 stainless steel DC 85 V 25 g/L CoSO4 + 60 g/L H2SO4 Quan [88]

Mo Steel DC 170 V 10 wt.% Na2MoO4 Cionea [28]

Ni-20%Cr 304 stainless steel DC 80–100 V
20 g/L NiSO4 + 20 g/L

Cr2(SO4)3
+40 g/L H2SO4

Quan [76]

FeCoNi 304 stainless steel 150 V/70%/1000 Hz
10 g/L FeSO4 + 10 g/L CoSO4+

10 g/L NiSO4 + 10 mL/L
H2SO4

Xia [89]

(3) Electrolyte temperature

The electrolyte temperature significantly impacts the arc initiation voltage, deposi-
tion rate, surface topography, and other aspects. Generally, preheating the electrolyte is
favorable for forming a plasma arc on the cathode surface. West and Jarhav observed an
increase in electrolyte conductivity from 345 mS cm−1 to 650 mS cm−1 as the electrolyte
temperature increased from 35 ◦C to 80 ◦C [90]. The rise of electrolyte conductivity induces
more hydrogen bubbles to form near the cathode. The increase in the number of hydrogen
bubbles reduces the arc voltage, increasing the rate and intensity of plasma generation. In
addition, the increased ion transport rate at high temperatures makes it easier for metal ions
to be reduced to metal at the cathode. Therefore, the deposited film’s surface morphology
can be controlled by controlling the electrolyte’s temperature. It should be noted that a too
high temperature may lead to volatilization and loss of electrolytes and affect electrolysis.

6.2. Electrical Parameter

(1) Deposition voltage

Operational voltage is crucial for plasma discharge generation and coating deposition
efficiency. In the CPET process, increasing the voltage beyond a critical level is essential for
stable coating deposition. Various factors affect the critical voltage, such as the electrodes’
conductivity, the electrolyte’s concentration, the distance between the electrodes, etc. Within
a specific range, an appropriately high voltage will induce a more dense and intense
plasma discharge, thereby increasing the deposition efficiency of the metal coating. As
depicted in Figure 14, plasma arc intensity and density intensify with increasing voltage [81].
Nevertheless, exceeding a certain voltage threshold can significantly compromise coating
surface quality, leading to micropore formation.
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Zhuang et al. investigated the effect of deposition voltage on preparing ternary FeCoNi
coatings by CPET [91]. As the deposition voltage increases, the number and size of the
separated spherical particles decrease (Figure 15(a1–a3)). At the same time, the melting
degree of the coating surface becomes more apparent, and the surface roughness gradually
decreases. Chen et al. found a similar trend in the research of Ni coatings prepared at
different voltages [85]. When the deposition voltage is 110 V, the coating surface presents
a particle morphology with an obvious boundary (Figure 15(b1)). When the voltage rises
to 125 V, the melting patterns on the coating become highly noticeable, and the coating
becomes dense (Figure 15(b2)). Further voltage escalation leads to micropores forming due
to plasma discharge (Figure 15(b3)). Hence, an operational voltage higher than the critical
voltage of approximately 10–20 V is commonly employed to achieve a smooth and compact
metal coating.
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low, suitable and excessive deposition voltage, respectively.

In addition to the constant voltage deposition strategy, Smith et al. conducted a
study on the deposition of Ni coatings using a stepped voltage [92]. Two different voltage
strategies were used to deposit a Ni coating on aluminum substrates, one at constant voltage
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deposition at 185 V and the other with stepped voltage deposition at 210 V/185 V. The
results showed that deposition at a constant voltage of 185 V formed a dense, continuous
surface coating consisting of nearly 100% Ni. When using stepped voltage deposition, the
high voltage deposition stage at 210 V pre-formed a metal intermetallic compound coating
composed of Ni and Al on the coating surface. Due to the addition of an intermediate layer,
the stepped voltage deposition coating has a denser appearance, more uniform thickness,
and fewer microcracks.

(2) Duty cycle and frequency

Duty cycle and frequency are essential parameters for pulse CPET. In general, using
pulse power supply mode can make the coating more uniform and have ideal performance.
At present, the waveform of pulsed CPET is mainly a square wave. A square-wave pulse
power supply typically includes several critical pulse technical parameters, such as pulse
on-time (ton), pulse interval (toff), pulse period (T), pulse frequency (f ), and pulse duty
cycle (D). Equations (1)–(4) illustrate the general method for calculating the parameters of a
square-wave power supply [93].

D =
ton

T
(1)

f =
1
T

(2)

T = ton + to f f (3)

ia = ipD (4)

Yang et al. extensively discussed the influence of duty cycle and frequency on Zn
coating deposition using CPET [82]. By adjusting the pulse parameters, the morphology and
quality of the Zn coating can be effectively controlled. According to Figure 16a, the average
current density decreases as the duty cycle and frequency increase, indicating that lower
frequencies and duty cycles result in more pronounced plasma discharge and deposition
processes. Yang et al. suggest that adjusting pulse parameters changes the duration of a
single pulse, thereby impacting the deposition process of each coating sublayer. Lower
duty cycles or frequencies promote thicker coatings but lead to looser and more porous
coatings. Higher pulse duty cycles and frequencies lead to denser but thinner coatings.
Figure 16b illustrates the connection between deposition rate and frequency (duty cycle)
through linear regression analysis. The plasma discharge becomes unstable for sufficiently
low frequency or duty cycle (D < 0.6, F = 4 kHz or D < 0.68, F = 1 kHz), resulting in normal
electrolysis.
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Zhao et al. utilized high-frequency pulse power to fabricate Ni coatings via CPET [94].
The findings indicate that as the duty cycle increases, there is a decrease in the molten
degree of the surface coating, while both the hardness and adhesion of the coating exhibit
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an increasing trend. With the rising pulse frequency elevation, the coating surface’s molten
degree gradually diminishes, leading to a denser and smoother coating structure. Zhao et al.
postulated that duty cycle and frequency alterations impact the peak current density in the
deposition process. A rise in duty cycle and frequency will reduce peak current density,
consequently lowering the melting degree of the coating. Furthermore, the investigations
conducted by Zhuang [91] and Yao [95] et al. propose that by employing an appropriate
combination of duty cycle and frequency, the surface roughness of metal coatings produced
via CPET can be regulated.

Although researchers have different understandings of how duty cycle and frequency
affect the deposition process of metal coatings, the effects of duty cycle and frequency show
a relatively consistent impact in different metal coating preparation processes. Table 2
summarizes the general rules of changes in porosity, roughness, thickness, adhesion, and
melt degree of metal coatings with increased voltage, duty cycle, and frequency.

Table 2. The influence of electrical parameters on the quality of the coating.

Parameters Porosity Roughness Thickness Bond
Strength

Melting
Degree

Voltage ↑ ↑ ↓ ↓ ↑ ↑
Duty cycle ↑ ↓ ↓ ↓ ↑ ↓
Frequency ↑ ↓ ↓ ↓ ↑ ↓

↑ and ↓ represent increase and decrease, respectively.

6.3. Other Parameters

(1) Area ratio of anode and cathode

Since the discovery of the cathode plasma discharge phenomenon, how to ensure that
the discharge occurs stably at the cathode instead of the anode has become the focus of
research. According to Hickling and Sengupta’s study, the location of discharge is mainly
determined by the conductivity of the region near the cathode and anode, and the side with
lower conductivity tends to be the location of the discharge [30,96]. Zhao et al. studied
the relationship between discharge location and the area ratio of cathode and anode in
a 0.5 mol/L NaCl solution [42]. The results show that alternating cathode and anode
discharge occurs when the cathode-to-anode area ratio is 1.7:1. When the ratio is less than
1.7, only cathode discharge occurs. When the ratio is greater than 1.7, only anode discharge
occurs. Changing the cathode’s and anode’s absolute areas has no significant effect on the
discharge location under a constant relative area ratio. Zhao et al. suggested that whenever
the anode precipitates a unit amount of O2, the cathode must precipitate twice as much H2.
The condition for the alternating plasma discharge of the cathode and anode is that the rate
of gas precipitation per unit area of the cathode and anode is equal. Under ideal conditions,
the critical area ratio of the cathode and anode is 2. However, due to the slight chlorine
evolution reaction on the anode during electrolysis in a NaCl solution and considering the
influence of a small amount of water vapor in the gas film, the cathode-to-anode area ratio
must be less than 2 when the gas deposition rates are equal. The measured value of 1.7
confirms the correctness of the analysis above.

The “large anode and small cathode” strategy is often adopted in practical production
and experiments. On the one hand, it ensures the stable occurrence of cathode plasma
discharge. On the other hand, when the cathode area is much smaller than the anode area,
the electric field lines will be more concentrated near the cathode surface, resulting in a
higher electric field strength on the cathode surface, promoting the growth of deposits on
the cathode surface.

(2) Electrode material and surface roughness

The crystal structure and properties of the coating are closely related to the surface
roughness of the substrate before deposition. For example, during the plasma electrolytic
oxidation of an aluminum alloy, the pre-fabricated texture stimulates increased micro
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discharge, facilitating the interaction between the coating and the substrate interface,
thereby enhancing the mechanical properties of the coating. Similarly, the surface roughness
of the substrate significantly impacts the structure and properties of the metal coating
produced by CPET.

Gupta et al. deposited a Mo coating on a 4330 V steel substrate [23]. Before deposition,
the substrate surfaces with different roughness were prepared by mechanical polishing and
plasma cleaning. Obviously, the surface of the substrate after plasma cleaning pre-treatment
will induce a dense micro-crater texture, which significantly increases the roughness of
the substrate surface. The results show that the final surface roughness of the Mo coating
depends on the initial surface roughness of the substrate. The obtained surface profile can
be described as the superposition of the roughness caused by the CPET process on the
substrate material profile. The hardness test shows that the Mo coating deposited after
plasma cleaning pre-treatment has higher hardness.

Besides the substrate surface roughness, the difference in physical characteristics
between the coating and the substrate material also significantly influences the qual-
ity of the coating. Smith applied Ni coatings on two different substrates (1018 steel
and 1100 aluminum) [92]. Both substrates underwent the same pre-treatment procedure
and used the same electrolyte (20 wt.% NiSO4) for deposition above the critical voltage.
Figure 17 illustrates the surface topography and cross-sectional morphology of Ni coatings
applied on distinct substrates. Ni coatings on 1100 aluminum substrates exhibit superior
quality regarding surface uniformity, roughness, and coating thickness (Figure 17(b2)). Cris-
tian suggests that the difference in melting temperatures (Tm) between the coating material
and the matrix material influences the coating topography and cross-section quality. When
the Tm of the two materials is similar (e.g., Fe and Ni), the high deposition temperature
results in the complete fusion of the materials, while the plasma discharge-induced shock
wave leads to increased porosity and an uneven coating [28].
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(3) Deposition time

A straightforward way to increase the thickness of the metal coating prepared by CPET
is to extend the deposition time. According to the research on FeCoNi coating preparation
by Yao et al. [95], when the deposition time was 10 s, the coating surface was relatively
smooth, and the coating thickness was about 8 µm. By extending the deposition time
to 3 min, the coating thickness reached about 16 µm, and the surface of the sample was
further roughened. Although the extended time can effectively increase the thickness of
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the coating, the thickness of the coating does not continue to grow or even decrease after
deposition for more than 5 min. As shown in Figure 18, the study of Zhuang et al. showed
similar results [91]. In addition, with the extension of the deposition time, the surface
melting degree of the coating gradually increases, and the coating develops holes, cracks,
and even delamination.
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Currently, the research on long-term CPET deposition (>10 min) remains relatively
unexplored, lacking a viable model to elucidate the reason for the limited value of coating
thickness. According to the changing trend of surface roughness with varying deposition
times, it is evident that prolonged deposition leads to increased roughness, along with a
rise in micropores and dendritic protrusions from plasma discharge. The increase in surface
roughness inevitably leads to a rise in the actual surface area of the coating surface, thereby
affecting the gas evolution and plasma discharge processes during the CPET process.
Moreover, heightened surface roughness amplifies tip discharge effects [97], concentrating
plasma discharge in defect regions like micropores and dendritic protrusions. Consequently,
variations in specific surface area and tip discharge effects likely play pivotal roles in the
challenges of thickening coatings.

7. Plasma Interaction with Materials Surface

The single-bubble breakdown theory is the widely accepted deposition mechanism
for preparing metal coatings by CPET [9]. Figure 19 illustrates the interaction between
plasma and material surface based on the single-bubble breakdown theory. The defects,
such as pits and cavities on the cathode, provide nucleation sites for the formation of gas
bubbles captured. As the amount of gas captured near the nucleation site increases, a
separate bubble gradually forms. After the bubble is formed, the metal ions move around
the bubble and attach to the surface of the bubble under the action of the electric field
force. Due to the isolation of bubbles, the electric field strength between the electrolyte
and the cathode is high, up to 105 V/m or more. When the critical voltage for bubble
breakdown is reached, the gas inside the bubble is ionized, forming a plasma and starting
to discharge (Figure 19a). When the bubble is broken down by discharge, the metal ions
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attached to the bubble surface are accelerated to the cathode surface (Figure 19b–d)). At
the same time, the kinetic energy generated by rupture is released to the surface of the
cathode in the form of a shock wave (energy can reach hundreds of megapascals). The
combined effect of plasma acceleration and shock wave enhancement leads to a relatively
high deposition rate of metal ions. After bubble rupture, the electrode surface is quenched
by the electrolyte environment, forming a unique surface microstructure (Figure 19e,f).
Due to periodic surface melting and quenching cooling, the coating has good adhesion
and ultrafine grain structure. The above deposition mechanism based on single bubbles
reasonably explains the morphological characteristics of metal coatings prepared by CPET.
Still, plasma discharge during the actual deposition process is more complicated. Belkin
argues that the theoretical mechanism of this single bubble is suitable for explaining discrete
plasma discharge, but it cannot reasonably describe the discharge process in the presence
of gas films [11].
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(b) Shockwave production by the cooling plasma bubble; (c) Collapse of plasma bubbles; (d) Rupture
of plasma bubbles; (e) Formation of metal coatings; (f) Thickening of metal coating.

Yang et al. explored the deposition mechanism of Zn coatings in pulsed mode based on
the single bubble theory in conjunction with the photovoltage of the plasma process [87]. As
shown in Figure 20a, the breakdown of bubbles by plasma mainly occurs in the high-voltage
stage of a single pulse, and no apparent deposits were found at this stage. Between pulses,
there is no photovoltage present between the electrodes. The metal ions accumulated
on the cathode surface move away from the cathode surface to maintain the solution’s
electroneutrality, as shown in Figure 20b. For bubbles, the previous bubbles gradually move
away from the surface at this stage. Upon the next pulse, a complete gas film structure
must be re-established on the cathode surface, requiring time from voltage application to
plasma generation. During this time, rapid electrolysis occurs on the cathode surface to
obtain a large number of bubbles, thus blocking the pathway of ions, and the deposition
of Zn occurs mainly at this stage (Figure 20c,d). Yang et al. clarified that plasma does
not enhance metal ion deposition but serves to clean the cathode surface. The deposition
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of metallic Zn on the cathode surface mainly originated from the conventional cation
electrolytic reduction reaction, contrary to Paulmier’s perspective. Paulmier investigated
the relationship between plasma discharge and coating formation and showed that no
deposits would be observed without the presence of plasma discharge [98].
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At present, most of the research on CPET is from the perspective of application, and
there is no systematic study on the properties and mechanism of plasma. Due to the
existence of gas films, the physical and chemical processes of CPET are relatively complex,
and no theoretical model has been formed that can profoundly reveal the plasma formation
and interaction with the materials. From this point of view, it is urgent to strengthen the
research on the characteristics and mechanism of CPET.

8. Conclusions and Outlook

The CPET process is a promising surface modification and coating preparation tech-
nology. Due to the synergistic effect of periodic melting, quenching, and cooling of the
substrate surface, the CPET process can quickly and effectively achieve the metal’s cleaning,
modification, and coating. Through the investigation of previous literature, this paper
briefly summarizes the principle, application, and development status of the CPET process.
In addition, the effects of electrolyte parameters, electrical parameters, and process parame-
ters on plasma discharge and coating deposition were summarized in detail in the field of
the CPET process for preparing metal coatings. As far as the current focus of scholars is
concerned, there is still room for further scope in this field, with the following objectives.

(1) Detailed reports have been made on the effects of process parameters and electrolytes
on the CPET process, particularly on coating morphology and properties. However,
there are different theoretical views on the CPET deposition process, and a model
revealing plasma formation and substrate interaction mechanisms is lacking. Thus,
further research on liquid-phase discharge plasma characteristics and generation
mechanisms is imperative.

(2) Current research focuses on the single influencing factors of CPET, with few studies
investigating the interactions between these factors. In addition, due to the complexity
of discharge in liquids, there is a lack of direct observation and characterization of
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plasma in CPET. Therefore, combining the evolution of current and voltage during the
discharge process and observation methods such as photovoltage and spectroscopy is
beneficial for better understanding and establishing the relationship between plasma
discharge and CPET processes.

(3) Various factors influence the quality and performance of CPET coatings. All parame-
ters affecting the deposition process point to a core factor: the stability and thickness
of the gas film during CPET are crucial for controlling coating quality. Currently,
research on constraining the gas film in CPET coating preparation is lacking, with no
systematic study attempting direct control of the gas film to enhance process repeata-
bility and stability. Thus, in-depth research on gas film characteristics and methods
for constraining it is necessary to achieve controllable CPET processing.

(4) Although the CPET process has many advantages, its application in large-scale indus-
trial manufacturing still faces difficulties. The main reason is that the CPET process
involves the establishment and breakdown of the gas film, resulting in high energy
consumption during the deposition process. Therefore, it is crucial to reduce the
energy consumption of CPET through device design and process optimization.

(5) The stability and final outcome of the CPET process are affected by various factors.
Optimizing one parameter can lead to chain changes in other parameters. For instance,
altering the electrolyte’s pH or the concentration of metal salts can change the voltage
required for plasma formation. Consider combining machine learning with CPET
parameter optimization to achieve objective optimization under multi-parameter
coupling.

(6) In large-scale industrial manufacturing, it is considered to deeply integrate CPET
equipment with precision numerical control systems, intelligent robots, and advanced
sensors to build an advanced and intelligent CPET system.
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