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Abstract: Agriculture plays a vital role in Bangladesh’s economy. It is essential to ensure the
proper growth and health of crops for the development of the agricultural sector. In the context
of Bangladesh, crop diseases pose a significant threat to agricultural output and, consequently,
food security. This necessitates the timely and precise identification of such diseases to ensure the
sustainability of food production. This study focuses on building a hybrid deep learning model for the
identification of three specific diseases affecting three major crops: late blight in potatoes, brown spot
in rice, and common rust in corn. The proposed model leverages EfficientNetB0′s feature extraction
capabilities, known for achieving rapid high learning rates, coupled with the classification proficiency
of SVMs, a well-established machine learning algorithm. This unified approach streamlines data
processing and feature extraction, potentially improving model generalizability across diverse crops
and diseases. It also aims to address the challenges of computational efficiency and accuracy that
are often encountered in precision agriculture applications. The proposed hybrid model achieved
97.29% accuracy. A comparative analysis with other models, CNN, VGG16, ResNet50, Xception,
Mobilenet V2, Autoencoders, Inception v3, and EfficientNetB0 each achieving an accuracy of 86.57%,
83.29%, 68.79%, 94.07%, 90.71%, 87.90%, 94.14%, and 96.14% respectively, demonstrated the superior
performance of our proposed model.

Keywords: support vector machines (SVMs); convolutional neural networks (CNNs); classification;
feature extraction; EfficientNetB0

1. Introduction

Agriculture has been a way of life since the beginning of human civilization. It
progressed from traditional practices to modern technologies. However, over time, pests
and crop diseases have evolved as well and it is crucial to detect crop disease manifestations
in the crops as early as possible due to the rise of global food demand. Diseases impact
both the quantity and serve as its main host; they can also affect various other plants,
such as tomatoes and petunias, as well as the quality of crop production, food security,
economic stability, and livelihoods. Late blight is caused by a fungus-like pathogen known
as oomycete. While potatoes and hairy nightshades are susceptible to late blight, it is
crucial to differentiate between the two for accurate disease management [1]. The initial
symptoms are little, light to dark green, round to irregularly shaped, water-soaked patches
on the leaves, and these lesions usually appear on the lower leaves. These lesions grow
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quickly into huge, dark brown or black lesions during cool and moist weather. The first
epidemic of late blight happened over 150 years ago in Europe [2]. It is now seen as a
common example of an obligate parasite that can affect a large number of crops. New
infections occur and entire leaves can become blighted and killed within just a few days.
Late blight can spread from these local sources to potato fields and there are high chances
of crops being affected by late blight particularly in regions where certain areas remain
damp for extended periods. Brown spot has been largely recognized as one of the most
common and damaging rice diseases. The disease causes 5% yield loss across all lowland
rice production in South and Southeast Asia on an average basis, and severely infected
fields can have yield losses as high as 45% (IRRI, 2020). Infected parts have small, circular,
yellow-brown, or brown lesions, and fully developed lesions are circular to oval with a
light brown to gray center. It can grow well in relatively high humidity. Puccinia sorghi is
the fungus that causes common rust, which happens every growing season. Dead tissue
lesions may appear as the leaf tissue surrounding the pustules becomes yellow or dies.
When a leaf is highly affected, the lesions can occasionally form a band across the leaf.
Common rust can spread rapidly in warm and humid conditions [3].

The authors in [3] propose a model that combines convolutional neural networks
(CNNs) and support vector machines (SVMs) for multi-classification based on the use of
motor imagery techniques. Batch normalization and dropout layers were incorporated
into CNN to improve overfitting. After carrying out a comparative study on performance
matrices, the average cross-validation accuracy rates for CNN and CNN-SVM were 82%
and 84.1%, respectively. The experimental results indicate that the CNN-SVM model
performs better than CNN and many existing classification algorithms. In 2021, Bansal
et al. [4] proposed an ensemble model of pre-trained DenseNet121, EfficientNetB7, and
EfficientNetB0. It classified the leaves of apple trees into categories such as healthy, apple
scab, apple cedar rust, and multiple diseases using its images. The authors included various
image augmentation techniques to increase the dataset size and enhance the model’s
accuracy. The proposed model achieved an accuracy of 96.25% on the validation dataset.
A study conducted by Afzaal et al. [5] evaluated the potential of utilizing deep learning
(DL) combined with machine vision to detect early blight disease in potato production
systems. Three types of convolutional neural networks (CNNs)—GoogleNet, VGGNet,
and EfficientNetB0—were trained using the PyTorch framework to analyze disease images
at different growth stages. The images were categorized into three dimensions (2-class,
4-class, and 6-class). The outcome of this study revealed that EfficientNetB0 performed
significantly better than other CNNs, achieving an FScore range of 0.79 to 0.94. In this
study, traditional machine learning (ML) and CNN-based transfer learning approaches
were presented for cucumber disease recognition. The performance of both techniques was
compared to find the most appropriate one. Then, various ML algorithms were compared
using k-means-based image segmentation after extracting 10 relevant features. Random
forest achieved the better accuracy with 89.93%. In the case of CNN-based transfer learning,
a comparison among various InceptionV3, MobileNetV2, and VGG16 was carried out, and
MobileNetV2 achieved the highest accuracy with 93.23%. There were 4200 images after
data augmentation, and this dataset was divided into train, validation, and test sets. A total
of 20% data was kept for testing purposes; among the rest of the 80% data, 20% data was
used for the validation of the models, and the remaining data was used for the training
of the models [6]. In another study by F. T. Pinki et al. [7], an automated system was
designed to diagnose three common diseases affecting paddy leaves: brown spot, leaf blast,
and bacterial blight. The system provides recommendations for pesticides or fertilizers
based on the severity of diseases. K-means clustering is applied to identify the affected
areas in a paddy leaf image. Visual features such as color, texture, and shape are used
as features for classifying these diseases using a support vector machine (SVM) classifier.
After recognizing the disease, the system suggests a remedy. This study addresses the
issue of sugarcane diseases, which can lead to significant financial losses for small scale
farmers. The deep learning model used in this study was trained and tested on a dataset
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of 13,842 sugarcane images containing both healthy and disease-infected leaves, and it
achieved an impressive accuracy of 95%. The authors, Militante et al. [8], employed CNN
with seven different classes to classify the sugarcane leaf. Jadhav et al. [9] used pre-trained
CNN models to identify diseases in soybean plants using a transfer learning approach.
CNN models such as AlexNet and GoogleNet attained better outcomes, but the model
lacked in the diversity classification. Rather than creating a model to classify different
plant diseases, many of the existing models focus on identifying a single class of a plant
disease. This is mainly due to the limited datasets to train deep-learning models for a
diverse range of plants. The classification of plant diseases using the ensemble classifier
was proposed in another study by Astani et al. [10]. The best ensemble classifier was
evaluated with two different datasets. The study conducted by Kolluri et al. [11] uses
multimodal learning on colored datasets and grayscale datasets. The models performed
better on colored datasets rather than grayscale ones. In this research by Eunice et al. [12],
(CNN)-based pre-trained models were utilized for efficient plant disease identification. The
researchers focused on fine-tuning the hyperparameters of popular pre-trained models,
such as DenseNet-121, ResNet-50, VGG-16, and Inception V4. DenseNet-121 outperformed
the other models. Table 1 illustrates the utilization of various machine learning models as
well as contemporary deep learning models for image classification by researchers. Among
deep learning models, VGGNet and EfficientNet appear to be the most used ones in the
research reviewed by the authors.

Table 1. Literature Analysis.
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Despite significant advancements in crop disease identification using deep learning
and machine learning algorithms, several research gaps remain. Current studies often
focus on single crop diseases, limiting their generalizability across diverse crops. Addi-
tionally, many models face challenges with computational efficiency and scalability. These
limitations hinder the widespread adoption of such models in resource-constrained agri-
cultural environments and leads to the research question “Can a hybrid deep learning and
SVM model achieve high classification accuracy for multiple crop diseases affecting major
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crops in Bangladesh (potato late blight, rice brown spot, and corn common rust), while
maintaining computational efficiency suitable for real-world agricultural applications?”

This study aims to address these gaps and answer the mentioned research question by
developing a hybrid model combining EfficientNetB0 and SVM, tailored for multiple crops
and diseases. Our objectives are to enhance accuracy, improve computational efficiency,
and create a model that can be applied to diverse agricultural contexts in Bangladesh.

2. Methodology

This work introduces a hybrid model to predict crop diseases for three types of crops:
rice, potato and corn. A pre-processed input image is fed into EfficientNet for feature
extraction. Figure 1 illustrates the model architecture where it is shown how the features
are being extracted in the blocks of EfficientNet. EfficientNet B0 consists of multiple
layers that progressively extract features from input images. These layers can be broadly
categorized into low-level, mid-level, and high-level layers based on the abstraction level
of the features they capture. The low-level layers usually consist of the initial convolutional
and pooling layers. These layers operate directly on the raw pixel values of the input
image, convolving over small regions of the image to detect simple patterns like edges and
gradients. The mid-level layers are often found in the middle of the network architecture.
They learn to detect more sophisticated patterns and textures in the input images, such as
object parts, shapes, and contours. High-level layers are located towards the end of the
network. These layers find object categories or scene types. The high-level layers integrate
information from lower-level and mid-level layers. The extracted features are then passed
through the fully connected layers after flattening. Then, the SVM is used as a classifier for
disease prediction.
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2.1. Dataset Preparation
2.1.1. Data Preprocessing

The datasets used in this study include open-source images from Kaggle [24], as
well as 1334 images collected by the authors from different fields across different parts of
Bangladesh. However, the data we collected was not sufficient enough, so we decided to
collect data from open-source datasets as well. There are 7000 images in our dataset after
performing data preprocessing and augmentation. The dataset was divided into training
and testing, with 80% as train dataset and 20% as test dataset. There were 7 classes, Corn
Common Rust, Corn Healthy, Potato Healthy, Potato Late Blight, Rice Brown Spot, Rice
Healthy, and Invalid Images. Through data preprocessing, we ensured the quality, diversity,
and reliability of our dataset. The preprocessing steps outlined below were executed to
optimize the images for subsequent model training and evaluation.
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2.1.2. Image Resizing

We prioritized images that exhibited clear visual symptoms of crop diseases, ensuring
the dataset’s relevance and utility for our research objectives. Additionally, we included
images of healthy plants so that our model could classify healthy and affected crops. To
deal with inconsistent image resolution, we have performed image resizing. The original
image size was 256 × 256 pixels, which was then resized for model training. The image size
was set to 224 × 224 to ensure all the fine details were captured during feature extraction.

2.1.3. Normalization

Normalization is a process of translating data into the range [0, 1]. It includes scaling
and transforming numerical features in a dataset to a standard scale. It is mostly performed
through min-max scaling and standardization scaling. Following resizing, we normalized
the pixel values within each image to a standardized range of [0, 1]. By dividing the
pixel values by 255, the maximum intensity value, we effectively scaled the pixel values
to a common range, decreasing the impact of lighting variations and enhancing model
convergence during training.

2.1.4. Data Augmentation

To enhance the diversity of our dataset and improve model generalization, we applied
a range of augmentation techniques, including rotation, horizontal and vertical flipping,
height and width shift range, and zooming. The ImageDataGenerator class from the Keras
library was used for augmentation during model training. We used 5666 original images
and applied augmentation techniques, resulting in a total of 7000 images for training.

2.1.5. Train-Test Split

The preprocessed dataset was divided into training and testing subsets. The subsets
had an 80:20 split ratio: 80% of the data was allocated for model training, while the
remaining 20% was reserved for testing. There were 5600 images in the training dataset
and 1400 in the testing dataset. This was done to evaluate the model’s performance on
unseen data while preserving a substantial training dataset for effective model learning.
Figure 2 represents the distribution of the final dataset among various classes. Figure 3
shows some of the sample images from the dataset. It is visible that the dataset is balanced
as all classes have the same number of samples.
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2.2. Model Selection

After data pre-processing, an extensive literature study was carried out again. A
thorough exploration of various model architectures was conducted to decide on the
best approach to create a hybrid model. Starting with a fundamental convolutional neural
network (CNN), we proceeded to explore more advanced models such as VGG16, ResNet50,
EfficientNetB0, and other CNN models for feature extraction. Then, we decided to choose
the most appropriate classification models for our disease detection project. The models
we explored and compared with were CNN, VGG16, ResNet50, Xception, Autoencoders,
Inception v3, and Efficient B0.

2.2.1. EfficientNetB0 for Feature Extraction

We incorporated EfficientNetB0 for feature extraction which is renowned for its effi-
ciency and scalability in handling image data. EfficientNet’s advanced architecture enabled
us to extract informative features from the preprocessed crop images. It helped capture
relevant patterns and characteristics from crop images [25]. Capturing intricate patterns
is crucial for accurate disease identification. Through EfficientNetB0, we enhanced the
discriminative power of our model. This contributed to improving the performance in
distinguishing between healthy plants and those affected by various diseases.

2.2.2. SVM for Classification

After feature extraction using EfficientNet B0, a support vector machine (SVM) was
integrated for crop disease classification. SVMs excel at establishing intricate decision
boundaries based on the extracted features. This synergy between EfficientNet’s feature
representation and SVM’s classification capabilities allowed for accurate disease identifica-
tion within the crop imagery. By combining these techniques, we leveraged both strengths,
particularly SVM’s ability to handle high-dimensional data effectively, ultimately leading
to a more robust and precise disease detection system [26].

2.2.3. Hybrid Model

Our investigation, through experimentation and performance evaluation, revealed that
the combination of EfficientNetB0 for feature extraction and SVM for classification achieved
promising results in crop disease detection [27]. This pairing exhibited superior accuracy
compared to alternative models. The selection of EfficientNetB0 and SVM stemmed from
their complementary strengths, creating a model architecture well-suited to the intricate
challenges of crop disease identification.
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2.2.4. EfficientNet Architecture

EfficientNet’s innovative approach to scaling, called compound scaling, utilizes a coef-
ficient (φ) to proportionally adjust the network’s width, depth, and resolution. This ensures
balanced scaling across these dimensions, achieving an optimal trade-off between model
complexity and performance, as referenced in [28–30]. The specific scaling factors for width,
depth, and resolution are determined through empirical evaluations (Equations (1)–(3)).
These equations represent width (w), depth (d), and resolution (r).

Width: w = β·φ, (1)

Depth: d = α·φ, (2)

Resolution: r = γ·φ, (3)

The constants α, β, and γ are established through experimentation to achieve the most
effective balance for a particular task.

The input layer receives the input data [31]. EfficientNet B0 contains a series of convo-
lutional layers that perform feature extraction from the input images. These convolutional
layers use filters/kernels to convolve over the input images, extracting features at different
spatial scales. Batch normalization layers are often used afterwards to normalize the ac-
tivations. The activation layers introduce non-linearities into the network, enabling it to
learn complex patterns and relationships in the data [29]. At the end of the convolutional
layers, EfficientNet includes a global average pooling layer. This layer accumulates feature
maps by taking the average of each feature map. Following that, there may be one or more
fully connected layers. Finally, the output layer produces the final predictions of the model.
For classification tasks, this layer typically consists of ReLU or softmax activation units
corresponding to the number of classes in the dataset. Figure 4 represents the architecture
of EfficientNetB0. Table 2 describes the layers in detail for the model.
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Table 2. EfficientNetB0 model table.

Stage i Operator Resolution No. of
Channels No. of Layers

1 Conv3×3 112 × 112 32 1
2 MBConv1, k3×3 112 × 112 16 1
3 MBConv6, k3×3 112 × 112 24 2
4 MBConv6, k5×5 56 × 56 40 2
5 MBConv6, k3×3 28 × 28 80 3
6 MBConv6, k5×5 14 × 14 112 3
7 MBConv6, k5×5 7 × 7 182 4
8 MBConv6, k3×3 7 × 7 320 1
9 Conv1×1 & Pooling & FC 7 × 7 1280 1
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2.2.5. Transfer Learning

Through transfer learning, we fine-tuned a pre-trained Efficient Net B0 model using
our crop disease dataset. By initializing the model with weights pre-trained on the Image
Net dataset, the model efficiently leveraged high-level feature representations learned
from a diverse range of images. Fine-tuning involved updating the parameters of the final
layers to adapt the model to our specific task while retaining the knowledge gained from
Image Net. Mathematically, this can be represented by adjusting the model parameters to
minimize the loss function L. Figure 5 illustrates the hybrid model structure.
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2.2.6. Feature Extraction Process

In the feature extraction phase, the input images of crops underwent a transformative
journey through the layers of the EfficientNetB0 model. This process unfolded as follows:

• Input images: At the outset, our crop disease detection system receives input images
depicting various crops, such as corn, rice, or potatoes [32]. These images serve as the
raw data input into the EfficientNetB0 model, capturing visual information about the
crops’ appearance and condition.

• Propagating through layers: Once the input images are fed into the model, they
propagate through the layers of the EfficientNetB0 architecture. The model learns
from its errors through backpropagation.

• Extraction of abstract features: As the images traverse through the network, the
successive layers extract increasingly abstract and complex features [33,34]. Initially,
lower layers may detect simple patterns like edges and textures, while deeper layers
capture more sophisticated structures and arrangements specific to crop diseases.

• Aggregation and processing: The extracted features from different layers are aggre-
gated and processed further as they progress through the network [35,36]. Through the
process of feature fusion and refinement, the model learns to combine and manipulate
the extracted features to enhance their representational power.

2.2.7. Model Training

We set different learning rates during model training. We monitored the model’s
performance on a separate validation dataset. The training process was halted if the
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validation loss did not improve for a certain number of epochs. We adjusted the dropout
rate to achieve better results.

We experimented with different batch sizes and epochs to find the optimal config-
uration for training the model. A batch size of 64 was chosen to balance computational
efficiency and model convergence [37,38]. The model was trained for 100 epochs to ensure
convergence and capture complex patterns in the data.

3. Results and Discussion

This model was experimented on in two stages: training and testing. The hybrid
model, combining EfficientNetB0 as a feature extractor with a support vector machine
(SVM) classifier, demonstrated better performance for the specified classes—rice, potato,
and corn.

Figure 6 represents the accuracy and loss values of the hybrid model of training and
testing. Tables 3 and 4 describe the classification reports for training and testing respectively
where it is observed that the training accuracy is 99.63% and the testing accuracy is 97.29%.
The reports also include precision, recall, and F1-score to provide a detailed understanding
of the model’s performance for individual classes. These metrics were calculated using a
weighted average across classes.
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Table 3. Hybrid classification report (train).

Precision Recall F1-Score Support

Corn Common Rust 1 1 1 800
Corn Healthy 0.996264 1 0.9981285 800

Invalid Images 1 1 1 800
Potato Healthy 1 1 1 800

Potato Late Blight 1 1 1 800
Rice Brown Spot 1 0.9825 0.9868173 800

Rice Healthy 0.9911728 0.99125 0.9887781 800
Accuracy 0.99625 5600

Macro Average 0.9962507 0.99625 0.9962463 5600
Weighted Average 0.9962507 0.99625 0.9962463 5600
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Table 4. Hybrid classification report (test).

Precision Recall F1-Score Support

Corn Common_Rust 1 1 1 200
Corn Healthy 0.990099 1 0.9950249 200

Invalid Images 1 1 0.9974937 200
Potato Healthy 0.9848485 1 0.9798995 200

Potato Late Blight 0.9752475 1 0.9800995 200
Rice Brown Spot 0.952381 0.9825 0.9254499 200

Rice Healthy 0.9095238 0.99125 0.9317073 200
Accuracy 0.9728571 1400

Macro Average 0.9731571 0.9728521 0.9728107 1400
Weighted Average 0.9731571 0.9728521 0.9728107 1400

Table 5 illustrates the comparison among various contemporary deep learning models
including the proposed hybrid model based on accuracy. The batch size (64), epoch (15),
and learning rate were kept the same to conduct a fair comparison. It is observed that our
hybrid model achieved the best performance out of all these models with an accuracy of
97.29%. The results indicate that the proposed hybrid model achieved a high accuracy for
all three diseases, demonstrating its potential for practical use. However, further validation
in real-world conditions is necessary to confirm its effectiveness.

Table 5. Comparative analysis of ResNet50, VGG16, CNN, EfficientNetB0, Xception, mobilenetV2,
Autoencoders, Inception V3, Hybrid.

Model Input Shape Train Accuracy Test Accuracy

CNN 128, 128, 3 91.20% 86.57%
VGG16 128, 128, 3 85.98% 83.29%

ResNet50 128, 128, 3 71.75% 68.79%
Xceptiion 128, 128, 3 95.05% 94.07%

Mobilenet V2 128, 128, 3 92.00% 90.71%
Autoencoders 128, 128, 3 87.98% 87.90%
Inception v3 128, 128, 3 85.21% 94.14%

EfficientnetB0 128, 128, 3 98.025 96.14%
Hybrid 224, 224, 3 99.63% 97.29%

4. Conclusions

In conclusion, this study presents a robust framework for crop disease prediction in
Bangladesh, a nation where such capabilities are paramount for guaranteeing long-term
agricultural productivity and food security. Although we utilized open-source datasets, a
significant portion of our data, comprising 23.54%, was collected from agricultural fields
in Bangladesh. By strategically integrating deep learning methodologies, specifically
EfficientNetB0, with the established classification prowess of support vector machines
(SVM), we have developed a hybrid model optimized for disease classification across three
vital crops: rice, potato, and corn. This model capitalizes on EfficientNetB0′s proficiency in
feature extraction, demonstrably leading to enhanced performance and accuracy. Notably,
the proposed hybrid model achieves a commendable accuracy of 97.29%, surpassing the
performance of several benchmark models during comparative analysis. This study makes
a valuable contribution to the field of plant disease identification by demonstrating the
effectiveness of deep learning models across multiple crops. However, further research
is needed to enhance the models’ robustness and adaptability to diverse agricultural
environments. Future endeavors could involve expanding this approach to encompass a
wider range of crops and integrating real-time monitoring systems. Such advancements
have the potential to further bolster agricultural sustainability and resilience.
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