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Abstract: For patients at risk of developing either lung cancer or colorectal cancer, the identification of
suspect lesions in endoscopic video is an important procedure. The physician performs an endoscopic
exam by navigating an endoscope through the organ of interest, be it the lungs or intestinal tract,
and performs a visual inspection of the endoscopic video stream to identify lesions. Unfortunately,
this entails a tedious, error-prone search over a lengthy video sequence. We propose a deep learning
architecture that enables the real-time detection and segmentation of lesion regions from endoscopic
video, with our experiments focused on autofluorescence bronchoscopy (AFB) for the lungs and
colonoscopy for the intestinal tract. Our architecture, dubbed ESFPNet, draws on a pretrained Mix
Transformer (MiT) encoder and a decoder structure that incorporates a new Efficient Stage-Wise
Feature Pyramid (ESFP) to promote accurate lesion segmentation. In comparison to existing deep
learning models, the ESFPNet model gave superior lesion segmentation performance for an AFB
dataset. It also produced superior segmentation results for three widely used public colonoscopy
databases and nearly the best results for two other public colonoscopy databases. In addition, the
lightweight ESFPNet architecture requires fewer model parameters and less computation than other
competing models, enabling the real-time analysis of input video frames. Overall, these studies
point to the combined superior analysis performance and architectural efficiency of the ESFPNet for
endoscopic video analysis. Lastly, additional experiments with the public colonoscopy databases
demonstrate the learning ability and generalizability of ESFPNet, implying that the model could be
effective for region segmentation in other domains.

Keywords: deep learning; endoscopic video analysis; autofluorescence bronchoscopy; colonoscopy;
lung cancer; colorectal cancer; lesion analysis; semantic image segmentation; efficient stage-wise
feature pyramid; mix transformer

1. Introduction

For patients at risk of developing either lung cancer or colorectal cancer, the identi-
fication of suspect cancerous lesions in endoscopic video is an important procedure. To
perform an endoscopic exam, the physician navigates an endoscope through the organ
system of interest and performs a visual inspection of the resulting video stream to identify
suspect lesions. In particular, for the lungs, the physician performs an airway exam using a
bronchoscope to identify suspect cancerous lesions developing along the airway walls [1,2].
For the colon, the physician draws on a colonoscope or wireless capsule endoscope to
identify polypoid lesions (polyps) along the intestinal surface [3,4].

Unfortunately, while endoscopy has the advantage of being minimally invasive, the
procedure forces the physician to perform a time-consuming, error-prone interactive search
over a video stream consisting of thousands of frames. In addition, the large bulk of a
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typical exam video consists of normal findings and a considerable amount of distracting
repetitive image data, making the task all the more challenging. A solution is to apply
computer-based processing to the video.

In this paper, we propose a computer-based approach that enables the accurate real-
time detection and segmentation of cancerous lesions in endoscopic video. While our
development applies to endoscopy in general, our results and discussion focus on autofluo-
rescence bronchoscopy (AFB) for the lungs and colonoscopy for the intestinal tract [1–4].
Regarding AFB, standard white-light bronchoscopy (WLB) initially was applied, with
minimal success, to the detection airway (bronchial) lesions, but the later introduction
of AFB showed a two- to six-fold increase in sensitivity to suspicious bronchial lesions
compared to WLB [5,6]. Similarly, colonoscopy and wireless capsule endoscopy have been
gaining acceptance recently for detecting colorectal cancer, with much ongoing effort for
developing reliable methods for detecting colonic polyps [4,7].

We emphasize that the issues with the interactive video analysis highlighted above sig-
nificantly hinder the accuracy and routine use of endoscopy for cancer detection. To appre-
ciate this point, recent AFB studies have shown lesion detection sensitivities varying from
44% to 82%, amply pointing out the performance variations between physicians [2]. Regard-
ing interaction time, an AFB study reported a mean exam inspection time of 15–20 min [8].
This is in contrast to the routine non-diagnostic WLB airway exam generally performed
before all bronchoscopies, which takes on the order of 2 min. Similarly, for wireless capsule
endoscopy, gastroenterologists reported spending 30–40 min to read the image data from
one exam [4]. Automated computer-based methods, which have proven their value in
other imaging applications, could greatly ease these limitations and help make endoscopy
a more useful tool for early cancer detection.

Initial computer-based approaches for processing endoscopic video drew on tradi-
tional methods, consisting of image processing operations, hand-crafted image features,
and rudimentary pattern recognition techniques [9–14], while, for AFB, a simple R/G ratio
method based on the ratio of AFB’s red reflectance and green fluorescence signals has
seen use, but with limited success, for bronchial lesion detection [15,16]. Unfortunately,
these approaches have not proven to give robust lesion segmentations, are subject to excess
false detections, and cannot process a video stream near real-time, thereby making them
unsuitable for practical endoscopic examination.

More recently, for colonoscopy, deep learning approaches have shown promise for miti-
gating these issues [17–20]. As an example, Unet++ adds densely connected nested-decoder
subnetworks to the Unet architecture for semantic medical image segmentation [21,22]. It also
uses a deep supervision mechanism to allow for improved feature aggregation across different
semantic scales. Although Unet++ can provide more accurate segmentations than Unet, the
model’s dense connections demand extensive computation. As a more recent example, the
CaraNet also utilizes deep supervision to enhance the use of aggregated features [19]. Yet,
in contrast to the complex subnetworks of Unet++, the CaraNet includes the advantageous
self-attention mechanism and draws on the context axial reverse-attention technique on a pre-
trained Res2Net backbone [23]. Hence, it enables faster processing (sans GPU usage) and better
segmentation performance than Unet++ when tested over multiple public colonoscopy datasets.
Nevertheless, the CaraNet’s self-attention mechanism is complex.

On another front, the SegFormer has shown much success for the general computer
vision task of semantic image segmentation [24]. The SegFormer provides a simple and
efficient layout utilizing the attention technique referred to as “Mix Transformer (MiT)
encoders”. Expanding upon the SegFormer, the SSFormer architecture extracts and aggre-
gates local and global step-wise features from pretrained MiT encoders to predict abnormal
regions [20]. Tests with publicly available colonoscopy datasets again demonstrate the
performance and generalizability of the SSFormer (and its use of the MiT encoders) over
CaraNet and Unet++. Yet, the feature pyramid used by SSFormer could be made more
efficient, thereby reducing the processing time and network complexity. Lastly, we point
out that, to date, no deep learning methods has been devised for AFB lesion analysis.
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We propose a deep learning architecture that enables the real-time detection and seg-
mentation of lesion candidates from endoscopic video. Our architecture, dubbed ESFPNet,
draws on a pretrained Mix Transformer (MiT) encoder as the backbone and a decoder struc-
ture that incorporates an efficient stage-wise feature pyramid (ESFP) to promote accurate
lesion segmentation. Overall, in comparison to existing deep learning models, the ESFPNet
model often facilitates faster computation and requires fewer network parameters while
also often giving better segmentation and detection performance. Also, the ESFPNet has
demonstrable learning ability and generalizability, implying that it could be effective for
region segmentation in other domains. Experiments with AFB and colonoscopy databases
assert these observations.

Section 2 details the ESFPNet model’s architecture and design considerations. Section 3
next presents two sets of experiments. The first set draws on a database consisting of videos
from AFB airway exams of lung cancer patients collected at our university hospital. (We
note that no publicly available AFB database exists, and we now make ours available to the
public.) The second set of experiments uses multiple publicly available colonoscopy video
databases. We also use these databases to assess the learning ability and generalizability of
our model. Finally, Section 4 gives a discussion and thoughts on future work.

2. Methods

The basic input is an endoscopic true-color video frame I consisting of 720 × 720 pixels.
The proposed deep learning architecture ESFPNet performs a real-time analysis on Î, a
preprocessed version of I, to output a segmented frame M consisting of regions denoting
candidate lesions. Sections 2.1–2.3 describe the proposed ESFPNet architecture, while
Section 2.4 gives the implementation details.

2.1. Proposed Architecture

Our proposed ESFPNet network model (Figure 1) is at the heart of our approach,
with Figure 2, Table 1, and the remainder of this section giving full details. The aim of
the model is to achieve high lesion detection/segmentation accuracy and high compu-
tational throughput, while also reducing the number of parameters to tune for a given
endoscopy application.

Note that state-of-the-art deep learning architectures generally require a large amount
of data for adequate training and testing (the so-called “data hunger” problem) [25]. This is
because the large number of parameters constituting many network architectures requires
considerable tuning when training from scratch. As Section 3 later shows, the ESFPNet uses
a pretrained encoder along with a lightweight decoder, which enables successful domain
adaptation to new inputs despite the amount of available training data.

A pretrained 4-stage Mix Transformer (MiT) encoder serves as the ESFPNet encoder,
while the proposed lightweight Efficient Stage-Wise Feature Pyramid (ESFP) serves as the
architecture’s decoder to generate segmented lesion predictions. In this way, we leverage and
focus on the feature extraction capabilities of MiT encoders, while only needing to additionally
fine-tune the smaller number of parameters in the feature pyramid to an application’s dataset.

Each 720 × 720 video frame I undergoes the following preprocessing. First, it is
center-cropped to a 704 × 704 array and downsampled to an H × H array (H = 352)
for computational efficiency. These dimensions comply with the requirement of the en-
coder’s final stage that the output feature tensor must be a factor of H/32. Specifically,
the 704 × 704 cropped image equals 2 × 352, and 352 = 11 × 32. These dimensions also
strive to maintain the dimensions of the entire original bronchoscopic video frame. The
next preprocessing operation entails applying intensity normalization to I to give Î. This
commonly applied operation, used by the ImageNet and many other architectures, helps
to improve convergence and training stability, while maintaining the relationships between
minimum and maximum feature values [26]. Notably, both the CaraNet and SSFormer,
used as example models in our later Section 3, also follow this approach, as their pretrained
encoders are based on the ImageNet. Thus, Î serves as the network input, while the output
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is a segmented 720 × 720 binary-valued video frame M. Sections 2.2 and 2.3 give further
detail on the ESFPNet encoder and decoder.

Figure 1. Top-level ESPFNet architecture. The input is an H × H video frame Î, where H = 352 for
our application, while the output is a 720 × 720 segmented frame M. The MiT encoder of Xie et al.
serves as the network backbone [24], while the the Efficient Stage-Wise Feature Pyramid (ESFP) serves
as the decoder. The four layers constituting the ESFP are (1) the basic prediction (BP) layer, given
by blocks BP #1 through BP #4; (2) the aggregating fusion (AF) layer, defined by AF #1 through AF
#3; (3) the aggregating prediction (AP) layer, given by AP #1 through AP #3; and (4) the multi-stage
fusion (MF) layer. The “Final Segment” block produces the final segmented video frame. Quantities
such as F1, F2, . . . , FMF denote the feature tensors produced by each network block, while quantities
“A × A × Ci” specify the feature tensor dimensions, e.g., the dimensions of F1 are H

4 × H
4 × C1.

(a) (b) (c)

Figure 2. ESFPNet decoder modules. Inputs and outputs are given by the top and bottom feature
tensor blocks, with dimensions as indicated. For the ConvModule(·), dimension Ci arises from stage
output Fi of the MiT encoder. (a) Linear_Layer(·). (b) ConvModule(·). (c) Multistage_Fusion(·).
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Table 1. Details for components constituting the ESFP decoder’s BP, AF, and AP layers per Figure 1.
Figure 2 depicts module architectures. “Process” refers to the specific operations performed by each
component.

BP Layer BP #1 BP #2 BP #3 BP #4

Input F1 : H
4 × H

4 × C1 F2 : H
8 × H

8 × C2 F3 : H
16 × H

16 × C3 F4 : H
32 × H

32 × C4

Process Linear_Layer(·) Linear_Layer(·) Linear_Layer(·) Linear_Layer(·)

Output FBP
1 : H

4 × H
4 × C1 FBP

2 : H
8 × H

8 × C2 FBP
3 : H

16 × H
16 × C3 FBP

4 : H
32 × H

32 × C4

AF layer AF #1 AF #2 AF #3

Input FBP
1 and FAP

2 FBP
2 and FAP

3 FBP
3 and FBP

4

Process
1.

Concat(FBP
1 , U2(FAP

2 ))
1.

Concat(FBP
2 , U2(FAP

3 ))
1.

Concat(FBP
3 , U2(FBP

4 ))
2. ConvModule(·) 2. ConvModule(·) 2. ConvModule(·)

Output FAF
1 = H

4 × H
4 × C1 FAF

2 = H
8 × H

8 × C2 FAF
3 = H

16 × H
16 × C3

AP layer AP #1 AP #2 AP #3

Input FAF
1 FAF

2 FAF
3

Process Linear_Layer(·) Linear_Layer(·) Linear_Layer(·)

Output FAP
1 = H

4 × H
4 × C1 FAP

2 = H
8 × H

8 × C2 FAP
3 = H

16 × H
16 × C3

2.2. Backbone MiT Encoder

CNN-based encoders as utilized by the Unet, Res2Net, and SegNet architectures have
enjoyed much success for image segmentation (CNN = convolutional neural network) [21,23,27].
A CNN-based encoder, motivated by the idea that every image pixel depends on its neighboring
pixels, uses filters on an image patch to extract relevant local features. Yet, if a processing model
utilized all image data (thereby taking a global view) instead of only the patches considered
by the filters, then processing performance would be expected to improve. This concept helps
explain why the so-called vision transformers (ViTs) work better than most CNN models for
many feature-based computer vision tasks [28].

For the ESFPNet backbone, we draw on the Mix Transformer (MiT) encoder, summa-
rized in Figure 1. The MiT encoder takes advantage of the idea of the ViT network by using
four overlapping path-merging modules and self-attention prediction in four stages [24].
These stages not only furnish high-resolution coarse features but also provide low-resolution
fine-grained features.

Using transformers as encoders, however, has a known limitation. The self-attention
layers used by transformers lack locality inductive bias (i.e., the notion that image pixels
are locally correlated and that their correlation maps are translation invariant) and require
costly training on large datasets [28,29]. To alleviate this challenge, one can exploit the
widely used concept of transfer learning to adapt to different problem domains. For our
ESPFNet architecture, we perform this by integrating MiT encoders pretrained on the large
ImageNet database [26], using the identical encoders employed by the SegFormer model
of Xie et al. [24]. Subsequently, we propose three different versions of the ESFPNet archi-
tecture, based on the different MiT encoder scales available: (1) ESFPNet-T (tiny model);
(2) ESFPNet-S (standard model); and (3) ESFPNet-L (large model). These encoders draw
on the MiT-B0, -B2, and -B4 encoders, respectively, as detailed in the ArXiv version of the
paper by Xie et al. [24]. Specifically, MiT-B0 uses C1 = 32, C2 = 64, C3 = 160, and C4 = 256
for each stage, respectively, while MiT-B2 and MiT-B4 use C1 = 64, C2 = 128, C3 = 320, and
C4 = 512. Subsequently, we then train with a dataset for a specific endoscopy application
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(bronchoscopy or colonoscopy) in conjunction with our ESFP decoder. This proves to
facilitate a performance level that often exceeds that of state-of-the-art CNN models.

Figure 3 clearly depicts the functional superiority of the MiT encoder in comparison to
the Res2Net encoder [23]. For the example AFB video frames, the MiT encoder effectively
concentrates the model’s attention on critical details and generates valuable features right
from the initial stage, as exemplified by the F1 through F3 outputs. The Res2Net encoder, on
the other hand, remains focused on local patch information in the first 2–3 stages, resulting
in more random appearing (and less useful) features. Not until stages 4–5 does the Res2Net
encoder finally produce more apparent, but still vague, lesion information, due to the
enhancement from its axial reverse attention blocks. In contrast, the MiT encoder’s final
stage clearly indicates the lesion’s position. As a consequence, the MiT encoder offers more
beneficial low- and high-level features for use in subsequent calculations. Section 3 later
demonstrates that these features boost segmentation performance.

Figure 3. Attention heat maps of feature flow through two encoders for two example AFB video
frames. Frames #1722 and #4182 representing lesion and normal frames, respectively, from patient
case 21405-184 are considered. The “ground truth” frames denote ground truth segmented images
MGT. The top two output rows are for the MiT-B2 encoder (Figure 1). For each feature tensor Fi, the
corresponding heat map’s value at a given location equals the average of the computed Ci features.
For better visualization, the heat maps display the quantity 255 − F; also, F4’s output is normalized.
The bottom two output rows are for the Res2Net encoder as used, for example, by CaraNet [19].

2.3. Efficient Stage-Wise Feature Pyramid (ESFP) Decoder

The prediction results of the decoder rely on multi-level features from the encoder,
where local low-level features are extracted from the shallow parts of the encoder, while
global high-level features are extracted from the deeper parts. Previous research has
shown that the local features computed by the transformer’s shallow part significantly
affect the model’s performance [30]. The existing SegFormer model, however, equally
concatenates these multi-level features to predict segmentation results. Hence, it lacks the
ability to sufficiently and selectively use the local features [24]. To address this issue, the
SSFormer architecture includes an aggregating feature pyramid architecture that first uses
two convolutional layers to preprocess feature outputs from each MiT stage. It then fuses
any two features in reverse order from deep to shallow until final prediction [20]. In this
way, local features gradually guide the model’s attention to critical regions.
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Note, however, that global features typically contribute more to overall segmentation
performance than local features, being especially useful for flagging regions of interest
(e.g., lesions). Although the SSFormer enhances the contribution of local features, its usage
of global features is weaker. In particular, its third stage is the one that derives features
to flag lesion locations, while the feature information from its final fourth stage do not
seem beneficial to the final outputs. Furthermore, its usage of the local emphasis layer is
inefficient in that it wastes floating-point operations after the direct upsampling of features
used for the later aggregating prediction layers.

Inspired by the structure of the lightweight channel-wise feature pyramid network
(CFPNET) [31], we propose the efficient stage-wise feature pyramid (ESFP) to exploit multi-
stage features. As Figure 1 summarizes, the ESFP decoder takes the four stage outputs of
the MiT Encoder as inputs and consists of four successive linear layers:

1. Basic prediction (BP) layer;
2. Aggregating fusion (AF) layer;
3. Aggregating prediction (AP) layer;
4. Multi-stage fusion (MF) layer.

Referring to Figure 1, the data flow through the four decoder layers for input video
frame Î proceeds as follows. First, ESFP passes the four MiT encoder stage outputs
Fi, i = 1, 2, 3, 4, through the basic prediction (BP) layer to produce the output feature tensors:

FBP
i = Linear_Layer(Fi) , i = 1, 2, 3, 4. (1)

The aggregating fusion (AF) layer then linearly fuses these preprocessed features from
global to local via

FAF
i =

 ConvModule
(
Concat(FBP

i , U2(FAP
i+1))

)
, i = 1, 2

ConvModule
(
Concat(FBP

3 , U2(FBP
4 ))

)
, i = 3

(2)

where the standard operations Concat(F1, F2) concatenate feature tensors F1 and F2, and
Ui(F) upsamples feature tensor F by a factor of i in both width and height. Next, the fused
features pass onto the aggregating prediction (AP) layer to give outputs

FAP
i =

 Linear_Layer(FAF
i ) , i = 1, 2, 3

FBP
4 , i = 4

(3)

where (3) trivially defines FAP
4 for clarity. The intermediate aggregated features from all

stages are then concatenated and fed into the final multi-stage fusion (MF) layer:

FMF = Multistage_Fusion
(

Concat
(

FAP
1 , U2(FAP

2 ), U4(FAP
3 ), U8(FAP

4 )
))

(4)

Bold quantities Linear_Layer(·), ConvModule(·) and Multistage_Fusion(·) in
Equations (1)–(4) signify the network components pictured in Figure 2, while Table 1
provides specific details for all blocks within a layer. As a final operation, FMF passes
through the Final Segment block consisting of the following operations:

1. Sigmoid activation;
2. Threshold > 0.5;
3. 4× upsample;
4. Zero padding.

to produce a final binary-valued 720 × 720 segmented image M.
Figure 4 shows the ESFP decoder outputs for all stages for the two AFB input images

considered in Figure 3. The figure clearly shows that the step-wise linear fusion of features
from the various stages generates prediction heat maps that progressively incorporate
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local details and increasingly delineate lesion areas with greater accuracy. By doing so, the
method effectively narrows the information gap between the high- and low-level features
that are fused. In addition, by linearly fusing features from all stages, the lesion and normal
regions are more clearly distinguished in FMF as opposed to FAP

1 , resulting in a strong
lesion prediction. This occurs because the high-level features from FAP

4 , derived directly
from FBP

4 , play a more significant role in the process. This results in low values for the
normal region and high values for the lesion region, thereby highlighting the benefit of
fusing features from all levels. As a result, the ESFPNet enables better performance than
other models for single-frame lesion detection as shown later in Section 3.

(a)

(b) (c)

(d)

Figure 4. Attention heat maps of feature flow through the ESFPNet decoder for the two AFB frames
of Figure 3. The top and bottom rows for each figure part correspond to lesion frame #1722 and
normal frame #4182, respectively. The top right part of Figure 3 gives the decoder inputs. The first
three AP heat maps display the quantity 255 − F for better visualization. (a) Basic prediction (BP)
outputs. (b) Aggregating fusion (AF) outputs. (c) Aggregating prediction (AP) outputs. (d) Ground
truth and final segmentation outputs.
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2.4. Implementation Details

All network models were implemented in Python using the PyTorch framework. A Dell
Precision 7920 Windows-10 PC, driven by an Intel Xeon Gold 6230 CPU @2.10 GHz with
26 cores and 64 GB RAM memory and equipped with an Nvidia GeForce RTX 3090 GPU with
24 GB GPU memory, was used for the majority of the training, validation, and testing. Due
to the varying model sizes, which increases GPU memory demands, we utilized the Nvidia
TESLA A100 GPU to train the ESFPNet. We also integrated C++ (version 14) versions of our
models for use in our laboratory’s custom image-guided bronchoscopy software system [32,33].
Section 3 gives complete detail on all training, validation, and testing of the models.

3. Results

Sections 3.1 and 3.2 compare the performance of the ESFPNet to other existing approaches
for single-frame lesion analysis in endoscopic video over two domains: (1) autofluorescence
bronchoscopy; and (2) colonoscopy. Finally, Section 3.3 discusses computational considerations.

3.1. Autofluorescence Bronchoscopy

We collected and recorded a series of AFB airway exams for 20 lung cancer patients
scheduled for diagnostic bronchoscopy at our University hospital. All participants provided
informed consent in accordance with an IRB protocol approved by our university’s Office
of Research Protections. All exams were performed in the operating room under standard
clinical conditions. The physician started an exam in the trachea and then scanned the
following major airways: right main bronchus (RMB), right upper lobe bronchus (RUL),
right lower lobe bronchus (RLL), left main bronchus (LMB), left upper lobe bronchus (LUL),
and left lower lobe bronchus (LLL). Olympus BF-P60 bronchoscopes and the Onco-LIFE
autofluorescence light source and video camera were used for all airway exams. The
20 recorded videos were collected at a rate of 30 frames/s and consisted of 66,627 total
video frames. The recorded video sequences ranged in duration from 1 min 3 s to 3 min
34 s (median, 1 min 45 s), with video frame counts ranging between 1890 and 6426 frames
(median, 3149 frames).

To perform the experiments, we created a 685-frame AFB dataset. Within the 20-case
dataset, we selected 208 frames depicting clear ground truth bronchial lesions, where our
selection strove to capture variations in airway location, lesion size, and viewing angles.
Figure 5 gives sample lesion frames in the training and validation datasets. In addition,
we incorporated 477 frames depicting normal conditions, chosen to represent a variety of
airway locations and camera angles.

We point out that researchers have made a special point to note that segmentation
methods not trained with any normal images often generate false positives on normal
images; to solve this problem, a separate classification network may be used to classify
frames as normal or abnormal [34,35]. For our application, by training with normal frames
in the dataset, we provide added immunity to false positives and improve detection
precision, without affecting the recall and mean Dice metrics derived for the validation
dataset during training (all metrics are discussed further below). We observe that by doing
so, all attention-based networks, such as CaraNet, SSFormer, and our proposed ESFPNet,
do not erroneously detect lesions in normal images when the model converges. Lastly, the
dataset includes more normal frames than lesion frames because such frames are far more
common in a typical endoscopic exam.

An expert observer picked all lesion frames using the standard OpenCV CVAT annota-
tion tool and defined segmentations through the MATLAB image labeler app [36,37]. Two
to four hours were spent analyzing each video, with the inspection being time dependent
on the video length and number of lesions. Up to three passes were made for each video to
confirm frame choices, with two other experienced observers helping to corroborate deci-
sions. We did not produce inter- or intra-observer agreement results to measure observer
variations (Our anonymized dataset is available to the public on our laboratory’s web site
under “Links/Public Databases” at Ref. [38]).
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(a)

(b)

Figure 5. AFB lesion examples from the training and validation datasets. Each frame pair gives the
original frame (left) and ground truth lesion segmentation (right). (a) Training dataset examples: case
21405-192, frames 1428 (left) and 1444 (right). (b) Validation dataset examples: case 21405-171, frames
0762 (left) and 5878 (right).

Per Table 2, the 685-frame AFB dataset was split into training, validation, and testing
subsets using approximately a 50%, 25%, and 25% split, respectively. To avoid leakage
between the data subsets, every lesion and normal frame from a given case was placed in
the same subset to guarantee independence between the training, validation, and testing
phases. Thus, because of this constraint, our actual splits into training, validation, and
testing subsets were 47%, 28%, and 25%, respectively, as shown in Table 2. Lastly, the
overall lesion regions roughly varied in size from 800 to 290,000 pixels within a video
frame’s circular scan region made up of π·352·352 (≈390,000) pixels.

Table 2. AFB single-frame dataset, subdivided into train, validate, and test datasets. The complete
dataset consists of 685 720 × 720 video frames. The column “Cases” indicates the number of patient
airway exams used for a given data subset. The “Total frames” and “Split ratio” columns indicate
the number of frames and the percentage of frames, respectively, that were allocated to a particular
subset. For an entry of the form “A/B” in these two columns, “A” corresponds to lesion frames and
“B” corresponds to normal frames. Lastly, the column “Size range” denotes the percentage of pixels
within of a frame’s circular scan area that correspond to lesion regions.

Dataset Cases Total Frames Split Ratio Size Range

Train 10 97/223 47/47 0.3–54.3
Validate 5 58/139 28/29 0.2–75.1

Test 5 53/115 25/24 0.5–45.8

Over the complete 208-frame lesion dataset, a total of 128 distinct lesions were identi-
fied during ground-truth construction. Because a particular lesion is generally visible across
multiple consecutive frames in a video sequence, considerable similarity will, of course,
exist between adjacent, or nearly adjacent, video frames depicting a lesion. To eliminate
the impact of frame correlation in the AFB dataset, 61 of the 128 distinct lesions were only
represented by one frame in the dataset. For the remaining 67 lesions, we included one
or more additional frames for a given lesion only if the added frames showed dramatic
differences in size, viewing angle, or illumination. Because our focus is on single-frame
detection, the lesion regions appearing in these added frames were all designated as distinct
lesions in the dataset. Overall, the 208-frame lesion dataset depicts 311 regions representing
lesions, with some frames depicting 1 or more lesion regions.
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Note that our strategy for selecting multiple frames for a particular lesion is similar to
that employed by other endoscopic imaging researchers. For example, with respect to the
public colonoscopy datasets used in the next section, the CVC-Clinic colon database often
depicts a particular polypoid lesion over six or more frames from a video, with each frame
offering a distinct look [39]. Also, Urban et al. sampled every fourth video frame depicting
a polyp for their dataset [40].

We compared the Unet++, SSFormer-S, SSFormer-L, CaraNet, and three ESFPNet
models [19,20,22], along with traditional image-processing methods based on the simple
R/G ratio and a machine-learning approach using a support vector machine (SVM) [12,16].
Chang et al. give details for the R/G ratio and SVM (only #1) methods used here [12]. Note
that the UNet++ model had no pretrained components [22], while the CaraNet drew on a
pretrained Res2Net encoder (see Figure 3) [19]. Finally, the SSFormer-S and SSFormer-L
models used the same pretrained MiT-B2 and -B4 encoders, respectively, as those used by
the ESFPNeT-S and ESFPNeT-L models.

All network models for the Unet++, CaraNet, SSFormer-S, SSFormer-L, and ESFPNet-T,
ESFPNet-S, ESFPNet-L architectures were trained under identical conditions. We employed
the Adam optimizer with learning rate = 0.0001, β1 = 0.9, and β2 = 0.999, similar to
other recent endoscopic video studies conducted for the PraNet and CaraNet [19,41]. A
network was trained for 200 epochs with batch size = 16, and image size = 352 × 352. To
account for the imbalance in the number of normal and lesion frames, sampling weights for
normal and lesion frames were set to 1.43 and 4.95, respectively, using the PyTorch function
WeightedRandomSampler to ensure an equal number of normal and lesion frames (i.e., 8)
in each training batch. We used the same loss

L = Lw
IoU + Lw

BCE (5)

function used by Wei et al. and Lou et al., where Lw
IoU and Lw

BCE are the weighted global
intersection over union (IoU) loss and weighted local pixel-wise binary cross-entropy (BCE)
loss, respectively [19,42]. The training process drew upon the training and validation datasets.
During each training epoch, data augmentation techniques were applied to increase and
diversify the training dataset. In particular, we employed randomized geometric transforma-
tions (rotation and flipping) and color jittering (image brightness and contrast changes), using
methods built into PyTorch. Data augmentation, which helps reduce overfitting and improve
network robustness, has been a standard procedure used for endoscopic video analysis, where
large datasets are generally hard to compile [43]. Notably, all of the top teams, in a recent
gastroenterology challenge, employed data augmentation [44].

To measure segmentation accuracy, we computed the mean Dice and mean IoU metrics:

Dice(A, B) =
2|A ∩ B|
|A|+ |B| and IoU(A, B) =

|A ∩ B|
|A ∪ B| , (6)

where A and B equal the segmented lesion and ground truth lesion, respectively, and |A| is
defined as the area of A. All metrics were computed using tools along with PraNet [41].

As an additional goal, we also assessed lesion detection performance for the AFB dataset.
We point out in passing that colonoscopy researchers have universally limited their focus
to pixel-based region segmentation and have not considered region detection [19,20,22,45].
For our studies, any segmented region that overlaps a ground truth lesion was designated
as a true positive (TP). A false positive (FP) corresponded to a segmented region, whether
it be on a lesion or normal test frame, that did not overlap a ground truth lesion segmenta-
tion. Lastly, a false negative (FN) corresponded to a ground truth lesion not identified by a
method. Given these definitions, we also used the following standard metrics to measure
detection performance:

recall =
TP

TP + FN
and precision =

TP
TP + FP

, (7)
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where recall, or sensitivity, denotes the percentage of ground truth lesions detected, while
precision, or positive predictive value, measures the percentage of segmented regions
corresponding to correctly detected lesions.

Figure 6 first gives the training and validation results for the ESFPNet-S model. Both the
segmentation accuracy and detection performance (Figure 6a,b, respectively) steadily improve
until leveling off around epoch 120, with little indication of overfitting. Based on these results,
we froze model parameters at epoch 122. (Other models were similarly frozen by optimizing
the mean Dice measure over the validation dataset.) Lastly, Figure 6c,d depict the impact of
the significant region size parameter on detection performance. As this parameter varies from
100 (smaller regions retained), 400 (default value for later tests), and 800 pixels (stricter limit),
the precision and recall performance results vary over a 5–10% range.

(a) Mean Dice versus epoch (b) Precision and recall versus epoch

(c) Precision-epoch plots for (d) Recall-epoch plots for
varying region size varying region size

Figure 6. Training and validation results for ESFPNet-S. Part (a) plots the mean Dice index versus
epoch for the training and validation data. Part (b) illustrates precision and recall performance versus
epoch for the validation data. Parts (c,d) illustrate the impact of varying the size of a significant
region on precision and recall performance. The dashed line indicates where our best model was
selected at this epoch based on its performance on the validation data.

Table 3 next gives results for the AFB test set, while Figure 7 depicts sample AFB
segmentation results. The R/G ratio and SVM methods gave by far the worst results
overall. The ESFPNet-S model gave superior segmentation and precision performance
results over all other models. In addition, the ESFPNet-S model’s 0.940 recall nearly
matches the SSFormer-L model’s 0.949 recall. More specifically, for the AFB test set, the
SSFormer-L and ESFPNet-S models detected 111 and 110 ground truth regions, respectively,
over the 53-frame AFB test set, which contained 117 ground truth lesion legions. The seven
regions missed by ESFPNet-S tended to be small (<1000 pixels) and/or appeared darker
(less illuminated) and blurred, with the largest missed region made up of 10,383 pixels.
Notably, ESFPNet-L exhibited slightly lower performance than ESFPNet-S. This could
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be attributed to (1) its significantly more complex Mit-B4 encoder, which was originally
designed for the SegFormer to segment the much larger 1024 × 2048 cityscapes images,
and (2) the correspondingly more complex ESFP decoder [24,46], i.e., the larger model
implicitly requires more data to optimally train it. We also note that only the R/G ratio,
SVM, and Unet++ methods detected any false positive regions on a normal frame.

Table 3. AFB test results. Columns 2 and 3 measure segmentation performance, while Columns 4 and 5
give detection performance. The quantities “mDice” and “mIoU” refer to the mean Dice and mean IoU
metrics, respectively. “SVM” refers to a support vector machine approach [12]. Bold numbers indicate
the best measures.

Method mDice mIoU Recall Precision

R/G ratio 0.549 0.418 0.820 0.518
SVM 0.527 0.390 0.914 0.389

Unet++ 0.722 0.587 0.897 0.653
CaraNet 0.745 0.610 0.855 0.858

SSFormer-S (B2) 0.746 0.612 0.923 0.778
SSFormer-L (B4) 0.737 0.604 0.949 0.799
ESFPNet-T (B0) 0.717 0.574 0.880 0.820
ESFPNet-S (B2) 0.756 0.624 0.940 0.862
ESFPNet-L (B4) 0.738 0.600 0.889 0.769

Regarding the segmentations in Figure 7, the ESFPNet-S model gave the best perfor-
mance, with gradual declines in performance observed for the other deep learning models.
Lastly, the R/G ratio method missed a lesion on frame #1627 of case 21405-195, whereas
the SVM method consistently produced over segmentations in all examples.

Figure 7. AFB Segmentation results. Each row corresponds to the following example AFB video
frame: top row, case 21405-195, frame #1627; middle row, case 21405-184, frame #2549; bottom row,
case 21405-184, frame #2580. The first two columns in each row depict the original video frames and
ground truth segmentations, while columns 3 through 8 show segmentations derived by the various
models ordered from the highest to lowest mean Dice index.

3.2. Colonoscopy

We next considered the ESFPNet performance for the problem of defining lesion
(polyps) in colonoscopy video. The study’s aim was to demonstrate our proposed model’s
robust performance and adaptability to a different endoscopy domain.

For the studies, we drew on five highly cited public video datasets that have been
pivotal in the evaluation of polyp analysis methods [18]. These datasets include CVC-
ClinicDB [39], Kvasir-SEG [47], ETIS-Larib [48], CVC-ColonDB [3], and CVC-T [49]. The
number of total video frames in these datasets ranged from 60 to 1000, similar in size to our
AFB dataset.
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Three distinct experiments, which considered learning ability, generalizability, and
polyp segmentation, were completed using the datasets. The experiments mimicked the
procedures performed by Wang et al. and Lou et al. for their respective SSFormer and
CaraNet architectures [19,20]. For all experiments, we used the mean Dice and mean IoU
metrics. For the generalizability experiment, we also considered the structural measurement
Sα [50], enhanced alignment metric Emax

ϕ [51], and the pixel-to-pixel mean absolute error
(MAE) metric as considered by Lou et al. [19]. All metrics again were computed using the
evaluation tool provided with PraNet [41].

Learning ability experiment: We trained, validated, and tested the three ESFPNet
models, along with the Unet++, DeepLabv3+ [52], MSRF-Net, and SSFormer-L models.
Each model was trained and validated with data from a particular database. Each model
was then tested on a test subset from the same database. This gave an indication of the
model’s learning ability to make predictions on previously seen data. We followed the
experimental scheme used for the MSRF-Net [53]. In particular, using the CVC-ClinicDB
(612 frames) and Kvasir-SEG (1000 frames) datasets, we randomly split each dataset into
three subsets: 80% train, 10% validation, and 10% test. Following the same training
procedures as for the AFB tests, we froze a model when it optimized the mean Dice measure
on the validation dataset. The frozen models were then used to generate prediction results
for the test dataset. For the models from other’s works, we used their reported results
in the comparison. See Table 4. For the CVC-ClinicDB dataset, ESFPNet-S and ESFPNet-
L gave the best and second best results, respectively, while, for the Kvasir-SEG dataset,
ESFPNet-L and ESFPNet-S gave the second and third best measures, nearly equaling that of
SSFormer-L. Overall, the experiment demonstrates the effective learning ability of ESFPNet.

Table 4. Learning ability experiment. Bold values denote top performance.

CVC-ClinicDB Kvasir-SEG
Model mDice mIoU mDice mIoU

Unet++ 0.915 0.865 0.863 0.818
Deeplabv3+ 0.888 0.871 0.897 0.858
MSRF-Net 0.942 0.904 0.922 0.891

SSFormer-L 0.945 0.899 0.936 0.891
ESFPNet-T 0.945 0.900 0.917 0.866
ESFPNet-S 0.951 0.911 0.929 0.884
ESFPNet-L 0.949 0.907 0.931 0.887

Generalizability experiment: For the three proposed ESFPNet models, we conducted
the following experiment. First, each model was trained on dataset #1. Next, each model
was tested on dataset #2, data from a previously unseen source. In particular, we applied
the same dataset splitting as recommended for the experimental set-up for the PraNet [41],
i.e., 90% of the video frames constituting the CVC-ClinicDB and Kvasir-SEG datasets
(1450 frames) were used for training. Next, all images from CVC-ColonDB (300 frames) and
ETIS-LaribPolypDB (196 frames) were used for testing (the previously unseen datasets). We
kept the best-attained performance for each dataset as a measure of a model’s forecasting
performance on an unseen dataset.

Table 5 clearly shows the capability of ESFPNet for generalizability over all five metrics.
The results demonstrate the proposed ESFP decoder’s sustained adaptability through the
-T, -S, and -L models, as the MiT encoder increases in complexity from B0, B2, and B4.
Notably, the ascending segmentation performance results illustrate that the proposed ESFP
aligns well with the enhanced capabilities offered by the increased parameter count of
the MiT encoder. Lastly, the results highlight our model’s capacity to assimilate common
features of polyps from diverse datasets and predict effectively among unseen data.
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Table 5. Generalizability experiment with bold values marking the best outcomes.

Dataset Model mDice mIoU Sα Emax
ϕ MAE

CVC-ColonDB
ESFPNet-T 0.781 0.699 0.843 0.895 0.036
ESFPNet-S 0.795 0.711 0.854 0.905 0.032
ESFPNet-L 0.823 0.741 0.871 0.917 0.029

ETIS-LaribPolypDB
ESFPNet-T 0.781 0.701 0.866 0.910 0.016
ESFPNet-S 0.807 0.730 0.879 0.916 0.015
ESFPNet-L 0.827 0.752 0.892 0.935 0.011

Polyp Segmentation Efficacy: We used the same training dataset as in the general-
izability experiment, where each model was separately trained until its loss converged.
The remaining 10% of the video frames from the CVC-ClinicDB and Kvasir datasets
(62 and 100 frames, respectively) and all images from CVC-T (60 frames), CVC-ColonDB
(300 frames), and ETIS-LaribPolypDB (196 frames) were used for testing, giving five dis-
tinct test datasets. The focus of the experiment was to evaluate segmentation performance
over both familiar and unseen data across five datasets. For the other models, we used
the numerical results reported in the following studies: Unet++, Zhou et al. [22]; SFA,
Fang et al. [45]; CaraNet, Lou et al. [19]; and SSFormer, Wang et al. [20]. Table 6 gives the
results.

Table 6. Polyp segmentation prediction efficacy across five polyp datasets. Bold values indicate the
best scores.

Model CVC-ClinicDB Kvasir-SEG CVC-T CVC-ColonDB ETIS-LaribPolypDB
mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Unet++ 0.794 0.729 0.821 0.743 0.707 0.624 0.483 0.410 0.401 0.344
SFA 0.700 0.607 0.723 0.611 0.297 0.217 0.469 0.347 0.467 0.329

CaraNet 0.936 0.887 0.918 0.865 0.903 0.838 0.773 0.689 0.747 0.672
SSFormer-L 0.906 0.855 0.917 0.864 0.895 0.827 0.802 0.721 0.796 0.720
ESFPNet-T 0.912 0.859 0.905 0.802 0.884 0.817 0.775 0.695 0.755 0.677
ESFPNet-S 0.921 0.873 0.921 0.874 0.864 0.798 0.801 0.715 0.803 0.725
ESFPNet-L 0.928 0.883 0.917 0.866 0.902 0.836 0.811 0.730 0.823 0.748

ESFPNet-L and ESFPNet-S gave superior performance for two unseen datasets (CVC-
ColonDB, ETIS-LaribPolypDB) and one familiar dataset (Kvasir-SEG), respectively, with
SSFormer-L giving the second best effort for two out of these datasets. The CaraNet gave
the best performance results on the remaining two datasets (familiar CVC-ColonDB and un-
seen CVC-T), with ESFPNet-L and ESFPNet-S giving the second and third best performance
results on these datasets. The sample lesion segmentations of Figure 8 anecdotally corrobo-
rate these numerical observations. The Unet++ and SFA models were not competitive in
this test. Overall, the ESFPNet architecture gives exemplary segmentation performance
over this diverse collection of datasets.

3.3. Computation Considerations and Ablation Study

The number of parameters defining a network gives a direct indication of the number
of floating-point operations (FLOPs) required to process an input and, hence, its compu-
tational efficiency. Table 7 gives measures of model complexity and computational cost
for seven of the network models studied in Sections 3.1 and 3.2. The GFLOPs values were
calculated using the f vcore.nn package under Facebook’s research platform [54]. With
respect to the models which gave the best performance results in the previous tests, the
ESFPNet-S model requires substantially fewer parameters and demands significantly less
computation than CaraNet and SSFormer-L. Over all networks, the ESFPNet-T model
requires by far the fewest number of parameters and processing operations. Since the
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earlier experiments indicate that ESFPNet-T can give potentially acceptable performance,
its simplicity may warrant use in certain applications.

Figure 8. Polyp segmentation results for sample video frames taken from the following public polyp
datasets: CVC-ClinicDB, Kvasir-SEG,CVC-T, CVC-ColonDB, and ETIS-LaribPolypDB. The first two
rows depict the original video frames and ground truth segmentations. Rows 3 through 7 show
segmentations derived by the various models, ordered with respect to their name in Table 6.
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Table 7. Model computational attributes. “Parameters” equals the number of model parameters in
millions, while “GFLOPs” corresponds to gigaflops, which indicates the floating point operations re-
quired to process an input true-color video frame having dimensions 3 × 352 × 352 (3 RGB channels).

Model Parameters GFLOPs

Unet++ 9.2 65.7
SSFormer-S (B2) 29.6 20.0
SSFormer-L (B4) 66.2 34.6

CaraNet 46.6 21.8
ESFPNet-T (B0) 3.5 1.4
ESFPNet-S (B2) 25.0 9.3
ESFPNet-L (B4) 61.7 23.9

To gain a fuller picture of model practicality, we also considered the actual compu-
tation time in a real-world implementation. Because an end-to-end turnkey version of
a network model requires additional image processing steps, such as cropping, resizing,
and normalization (Section 2.1), the actual computation time depends on more than just
a network’s parameter count. Secondly, the actual computation time is also influenced
by the power of the CPU and GPU employed. Table 8 presents the computation time
measurements for various CPU/GPU configurations, using the hardware discussed in
Section 2.4.

Table 8. Computation time (milliseconds per frame) for various deep learning models under different
hardware configurations. “CPU” implies using a single CPU, “CPU multi-thread” indicates perform-
ing multi-threaded processing, “CPU + GPU” denotes using the GPU with a single CPU thread, and
“CPU multi-thread + GPU” represents using the full capability of the computer system discussed in
Section 2.4.

CPU Only CPU Multi-Thread CPU + GPU CPU Multi-Thread + GPU

Unet++ 632.1 624.1 26.7 17.0
CaraNet 521.3 506.7 76.1 66.8

SSFormer-S 441.8 436.6 44.4 32.0
ESFPNet-T 144.2 135.0 34.6 20.7
ESFPNet-S 369.1 360.1 44.4 31.9
ESFPNet-L 759.9 754.1 88.2 73.6

Leveraging CPU multi-threading cuts 5–15 ms per frame by parallelizing the image
preparation, resizing, and display operations, but overall, the computation time remains
very high if the GPU is not used. GPU acceleration markedly decreases the overall com-
putation time to a range of 26 to 88 ms per frame over all models. Lastly, adding CPU
multi-threading to GPU processing cuts a substantial 10–15 additional ms per frame, giving
a computation time range of 17 to 73 ms per frame—hence, CPU efficiency clearly helps
significantly reduce the computation time and should not be neglected.

Table 8 shows that the superior performing ESFPNet-S model achieves a processing
speed exceeding 30 frames per second, enabling real-time video processing, while ESFPNet-
T achieves a processing speed of 48 frames per second. In addition, the ESFPNet-S exhibits
the second-lowest parameter count and GFLOPs measure, per Table 7. While Unet++
exhibits the lowest parameter count, it demands the highest computational load of all
models due to its dense convolution operations in skip-connections, which especially
escalates with larger input sizes. Coupling this with its weaker analysis performance
noted earlier, it is the least competitive of the network models. Notably, even though
the ESFPNet-S and SSFormer-S models share the same backbone, ESFPNet-S requires
fewer parameters and significantly fewer GFLOPs than the SSFormer-S while also giving
better segmentation performance. Similar observations can be made when comparing
the ESFPNet-L and SSFormer-L models. Although the CaraNet analysis performance is
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often comparable to that of ESFPNet-S, it demands more parameters and computational
resources than ESFPNet-S.

To summarize, for the endoscopy applications considered here, the results and dis-
cussion of Sections 3.1 and 3.2 clearly demonstrate the strong analysis performance of
ESFPNet-S. In addition, as discussed above, the results of Tables 7 and 8 show the ar-
chitectural efficiency of ESFPNet-S, both in terms of the number of parameters required
and computation time. Thus, ESFPNet-S strikes a favorable balance between analysis
performance and architectural efficiency.

To conclude, we performed an ablation study of the ESFPNet-S model, which draws
on the MiT-B2 encoder. In particular, we investigated the impact of each component
comprising the model’s ESFP decoder (Figure 1). Table 9 gives the results (cf. Table 3). The
table clearly shows that all components make a substantial contribution to the performance
of the ESFP decoder.

Table 9. Ablation study to evaluate the contribution of each decoder component of the ESFPNet-S
model for AFB analysis. Per Figure 1, the ESFP decoders components are as follows: BP = basic
prediction layer; AF = aggregating fusion layer; AP = aggregating prediction layer; MF = multi-stage
fusion layer.

Decoder Components Used mDice mIoU

MF 0.707 0.567
BP + MF 0.732 0.596

BP + AF + MF 0.738 0.602
AF + AP + MF 0.720 0.583
ESFP (all used) 0.756 0.624

4. Discussion and Concluding Remarks

Lung cancer, the world’s most common cause of cancer death, still tends to be detected
at an advanced stage, resulting in a high patient mortality rate [55]. In addition, colorectal
cancer continues to be the second largest cause of cancer death [7]. Hence, early-stage
cancer detection is vital to increase patient survival. For both domains, endoscopy has
proven to have considerable value as a minimally invasive tool for imaging precancerous
and cancerous lesions along the walls of hollow tubular organs, such as the lung airways
and intestinal tract. Unfortunately, the standard approach for performing an endoscopic
exam demands human-based visual inspection of the resulting video to localize potential
lesions—a very time-consuming, error-prone task, dependent on the widely varying skills
of individual physicians.

For the airways, autofluorescence bronchoscopy (AFB) has the potential to be a su-
perior tool for distinguishing potential cancerous lesion sites from normal regions. Yet,
the aforementioned limitations of human-based inspection have largely limited the use
of AFBs in academic centers, with AFB not regularly being used for lesion analysis [2].
While colonoscopy is a more common procedure, research toward finding faster and more
robust automated methods, with the possibility of reducing the dependence on human
skill, continues [18].

We have a proposed a deep learning model referred to as ESFPNet that enables
efficient real-time analysis of endoscopic video for lesion detection and segmentation.
When compared to existing methods for endoscopic video analysis, ESFPNet gave superior
segmentation performance for an AFB video database. To the best of our knowledge, this
is the first study to apply deep learning to AFB lesion analysis. (Our anonymized AFB
dataset, the first of its kind, is available to the public under “Links/Public Databases” on
our laboratory’s web site [38].) ESFPNet also gave superior segmentation performance
results for three widely used public colonoscopy databases and comparable performance
results to the CaraNet on two other public colonoscopy databases [19]. Notably, for the AFB
dataset, ESFPNet also gave superior immunity to false positive lesion detections on normal
frames, a common issue noted previously [34,35]. Because we prioritized lesion detection
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performance (unlike all previous deep learning colonoscopy studies), we included normal
frames in the training, which helps attention-based networks, such as the ESFPNet, CaraNet,
and SSFormer models, avoid false detections. In addition, further experiments with the
publicly available colonoscopy datasets also indicated the ESFPNet model’s learning ability
and generalizability.

Following on our earlier comments, a major challenge in the general field of endoscopic
video analysis is the need to alleviate the demands and obvious accuracy concerns of
human-based visual inspection during a live endoscopic procedure. To this point, devising
real-time, or at least near real-time, methods for endoscopic video analysis remains a crucial
goal, as such methods would allow the physician to immediately focus attention on the
important video information contained in the vast oncoming video stream. This would then
permit the physician to make more instantaneous and confident clinical decisions. Such
methods would also facilitate more comprehensive endoscopic exams than those that are
currently feasible based on visual inspection only—this would clearly further enhance the
value and clinical success of endoscopic procedures. Overall, by addressing this challenge,
such endoscopic procedures would become less skill dependent and burdensome, thereby
enabling them to be performed more widely.

Our work has focused on the endoscopic video analysis task of real-time object detec-
tion and segmentation, where the objects specifically represent suspect cancerous lesions.
However, current deep learning models demand substantial computational resources for
accurate segmentation, making them often impractical for live use [56]. A major advantage
of the ESFPNet is its computation efficiency. More specifically, its simpler lightweight
model enables real-time usage and good segmentation performance as opposed to the
CaraNet and SSFormer-L architectures, which are not suitable for real-time use and involve
more complex models [19,20]. This property enabled the ESFPNet-S to process video
frames at better than a real-time frame rate (30 frames/s) in our implementation.

The primary design innovation of the ESFPNet model lies in its novel efficient stage-wise
feature pyramid (ESFP) decoder structure. In particular, the ESFPNet decoder begins with
simple linear prediction through the basic prediction (BP) layer, which directly processes
outputs from each encoder stage to generate useful features at various scales ( H

4 , H
8 , . . .,

H
32 ). Next through the aggregating fusion (AF) layer, the decoder utilizes a 1 × 1 kernel
convolution layer to merge global and local features. A second linear prediction (AP) layer then
follows, which guides local features at each scale to add more details to regions from global
features at the corresponding scale. Finally, the multi-stage fusion (MF) layer accumulates
region information, fully utilizing features at all scales, to produce the final output. Compared
to the decoder structure of SSFormer, the ESFP decoder replaces the local emphasis (LE) layer
with the BP layer to retain high-frequency feature information while reducing computation
cost [20]; it also adds the MF layer to fully utilize features at every scale. In contrast to
the SegFormer’s decoder structure, the ESFP decoder draws upon the AF and AP layers to
provide more beneficial features that focus on flagging regions of interest (potential lesions) at
all scales [24]; these features are then in turn utilized by the final MP layer.

Regarding future work, it would be helpful to add a lesion tracking mechanism
that draws on the single-frame detection capability of ESFPNet to enable complete video
sequence analysis, thereby more fully exploiting the information content of a complete
sequence. As a related task, a method that automatically localizes the true 3D locations
of identified lesions within the organ of interest would facilitate local treatment regimens
and follow-up procedures. On a related note for lung cancer, researchers have noted that
other bronchoscopic modalities, such as WLB and narrow-band imaging bronchoscopy,
effectively complement AFB to facilitate potentially more robust multimodal detection of
bronchial lesions [1]. We have been working toward the latter two tasks with the devel-
opment of an early system prototype for multimodal bronchoscopic synchronization [57].
Lastly, along with computational performance, the interpretability of a network model’s
output is important in helping physicians and researchers better understand and justify
how a model identifies and segments important regions. To this point, the feature heatmaps
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we utilized for Figures 3 and 4 illustrate the decision-making process of our model. This
visualization technique was also used for SSFormer [20] and other related works. For live
procedures, suitable visualization techniques and processing tools could be integrated into
an interactive graphical system that gives live feedback on likely lesion locations. These
techniques could include labeled bounding boxes on the live video, plots of region (lesion)
segmentation metrics, and the selection of key frames featuring the “best” video view of a
lesion, among others. We have made progress toward building an interactive system for
AFB analysis that includes these techniques, but further work would be important for other
applications [58].

Another important challenge in devising effective methods for endoscopic video
analysis is the availability of suitably large datasets for training and validating candidate
deep learning methods. While the datasets we used in our AFB and colonoscopy tests,
both in-house and public, have similar sizes—and conform to the sizes of datasets used
by many researchers in this field—they realistically are still insufficient for ascertaining a
method’s performance in a high-volume live clinical setting. Unlike radiologic imaging
scans, which do not require a complex operating room scenario for collection, endoscopic
procedures arguably require a much greater dedication of clinical resources in terms of
people, operating room preparation, and time to perform. In addition, after collecting such
data, proper ground truth information must then be generated. Lastly, if such data are to be
shared with the public and other researchers, they must be stripped of human identifiers to
protect patient confidentiality. Ideally, as new high-volume clinical applications become
mandated by physicians, such as the effective management of early lung cancer patients,
larger multi-center clinical studies could help collect and manage such datasets. As a short-
term alternative, because of the high cost of collecting live human video data, one could
use semi-supervised learning methods, such as contrastive learning, to train candidate
models more rigorously [59].

On a related comment, our model structure could be applied to other problems that
draw on datasets of different dimensions from our tests. In particular, researchers could
explore our network model for multi-class segmentation or multi-function tasks involving
larger datasets or more complex cancer detection problems by leveraging the capabilities of
MiT encoders and ESFP decoders. To this point, with respect to the MiT encoders, MiT-B4
employs more complex “transformer encoder” blocks (increasing number of encoder layers)
in stages 2 and 3, as compared to the MiT-B2 encoder. In addition, both MiT-B2 and MiT-B4
use more intricate “transformer encoder” blocks than MiT-B0 at all stages. Therefore, these
encoders give the capacity and flexibility to handle larger and more complex datasets [24].
Continuing, we note in turn that the ESFPNet efficient decoders are designed to match the
actual configurations used for encoders. In fact, we demonstrated this design flexibility
during our generalizability test in Section 3.2 (Table 5).

A final important challenge in the field of endoscopic analysis entails the ethical
considerations involved in using deep learning (i.e., artificial intelligence [AI]) methods
for making clinical decisions. As our focus here is on basic research in developing a new
method that shows promise for accurate, efficient analysis, any future clinical deployment
of our method (and others) as a clinic-ready “production mode” system certainly needs
to address these issues. As our brief discussion of interpretability above highlighted,
researchers have clearly recognized that caution is required in relying on the decisions
made by so-called “black box” deep learning models. This issue had led to research
in explainable artificial intelligence (XAI) [60–62]. This research has given rise to the
imperative that complete systems deployed for clinical use should incorporate mechanisms
that give interpretable models and explainable predictions. Such mechanisms are vital
to ensure patient safety and decision-making transparency. Chaddad et al. summarize a
number of these mechanisms, with the references giving detailed current surveys of this
important area [60–62].

As an overall summary, our studies point to the combined superior analysis per-
formance and architectural efficiency of the ESFPNet for endoscopic video analysis. We
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emphasize, however, that we have only tested our model on video from bronchoscopy and
colonoscopy. Hence, we cannot categorically state that the model will give superior perfor-
mance for other endoscopic video applications. For example, other endoscopic modalities,
such as those drawing on hyperspectral imaging, have been explored for early cancer
detection in the gastrointestinal tract, with some work having been undertaken toward
applying deep learning to this imagery [63–65]. Yet, the learning ability and generalizability
we demonstrated for ESFPNet in our results do give support to the belief that it could also
be effective for application in other domains.
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