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Abstract: Marine algae, encompassing both macroalgae and microalgae, have emerged as a promising
and prolific source of bioactive compounds with potent anticancer properties. Despite their significant
therapeutic potential, the clinical application of these peptides is hindered by challenges such as
poor bioavailability and susceptibility to enzymatic degradation. To overcome these limitations,
innovative delivery systems, particularly nanocarriers, have been explored. Nanocarriers, including
liposomes, nanoparticles, and micelles, have demonstrated remarkable efficacy in enhancing the
stability, solubility, and bioavailability of marine algal peptides, ensuring controlled release and pro-
longed therapeutic effects. Marine algal peptides encapsulated in nanocarriers significantly enhance
bioavailability, ensuring more efficient absorption and utilization in the body. Preclinical studies
have shown promising results, indicating that nanocarrier-based delivery systems can significantly
improve the pharmacokinetic profiles and therapeutic outcomes of marine algal peptides. This review
delves into the diverse anticancer mechanisms of marine algal peptides, which include inducing
apoptosis, disrupting cell cycle progression, and inhibiting angiogenesis. Further research focused
on optimizing nanocarrier formulations, conducting comprehensive clinical trials, and continued
exploration of marine algal peptides holds great promise for developing innovative, effective, and
sustainable cancer therapies.
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1. Introduction

Cancer is particularly a significant issue in the 21st century, affecting society, public
health, and the economy. It is responsible for around 16.8% of all fatalities and 22.8% of
deaths from noncommunicable diseases (NCDs) globally. The condition is also responsible
for 30.3% of premature deaths from NCDs worldwide, affecting individuals between the
ages of 30 and 69 years. In 117 countries (out of 183 countries), cancer is among the top
three causes of death in the age group [1].

As of 2022, the latest worldwide data reveals that there were about 20 million newly
diagnosed cancer cases and 9.7 million cancer-related deaths. Based on demographic
projections, it is predicted that the yearly incidence of cancer would rise to 35 million by
2050, representing a 77% increase compared to the number of new cases in 2022. The global
prevalence of cancer and the variation in cancer characteristics across different regions
and levels of human development highlight the necessity for a worldwide increase in
focused cancer control strategies. Investing in preventive measures, such as addressing
significant risk factors for cancer like smoking, overweight and obesity, and infections, has
the potential to avoid millions of future cancer cases and save numerous lives globally [2].

Chemotherapy is largely regarded as the most efficient and commonly utilized treat-
ment for cancers, either as a standalone therapy or in conjunction with radiotherapy. Several
chemotherapy drugs are utilized in the treatment of cancer, one of them is anthracycline [3].
Anthracyclines are a category of chemotherapy medications that are composed of antibi-
otics obtained from the Streptomyces bacterium. Doxorubicin, epirubicin, and idarubicin
are all examples of anthracyclines. These substances are extremely efficient in treating
many different types of malignancies by causing damage to the DNA strands through
the creation of unstable oxygen molecules, which in turn interferes with the process of
DNA replication. Anthracyclines exert their anticancer effect by intercalating between
DNA base pairs and inhibiting DNA topoisomerase II, a crucial enzyme involved in DNA
replication and transcription. However, the administration of anthracycline medicines is
closely constrained due to their ability to also affect cardiac cells and cause cardiotoxicity,
potentially resulting in heart failure [4]. Due to the toxicity and side effects induced by
current chemotherapy drugs, it is still crucial to find other alternatives, particularly from
natural products, including marine algal peptides.

Marine algae, one of the biotechnological explorations, is a promising and huge natu-
ral source for anticancer compounds. Global microalgae production is anticipated to hit
56,456 tons. China leads the top ten production with 54,850 tons, followed by the Central
African Republic, Bulgaria, Greece, Tunisia, Burkina Faso, Central African Republic, and
Spain. Recently, there has been a lot of interest in identifying medicinally valuable com-
pounds, especially those with potential anticancer properties, because of the structural
diversity and distinctiveness of these molecules [5,6].

There are two types of marine algae, macroalgae and microalgae. Both contain a
wide variety of biomolecules, some of which have strong anticancer properties, includ-
ing alkaloid, fatty acids, phenolics, terpenes, sulfated polysaccharides (SPs), carotenoids,
sterols, and phycobiliproteins [5,7,8]. The utilization of marine algal in drug development
presents several benefits, such as their rapid generation time, metabolic flexibility, lack of
rivalry for arable land, ability to grow in any season, and minimal need for specialized
nutrients [8]. Likewise, bioactive substances discovered in algae have been witnessed to
possess anticancer capabilities by causing apoptosis and preventing cell division through
disrupted signaling pathways [6].

Furthermore, marine algal pharmaceutical compounds have shown potential in anti-
inflammation and antioxidant properties. These compounds regulate reactive oxygen
species, which influence carcinogenesis and cancer development. Marine algae extracts
have shown promise in inhibiting malignant cell growth or promoting apoptosis in human
cancer cell lines (Figure 1), with a specific focus on pro-oxidant natural products [9–11].
Developing marine algae as an effective and environmentally sustainable “bio factory”
of bioactive compounds with antioxidant activity is a biotechnological challenge, given
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the smaller potential of a single microalgae cell in comparison to that of a multicellular
plant [9]. On the other hand, in comparison with other bioactive sources, marine algae
relatively have not received much attention in regard to anticancer drugs development
(Figure 1).

Mar. Drugs 2024, 22, x FOR PEER REVIEW 3 of 17 
 

 

smaller potential of a single microalgae cell in comparison to that of a multicellular plant 
[9]. On the other hand, in comparison with other bioactive sources, marine algae relatively 
have not received much attention in regard to anticancer drugs development (Figure 1). 

 
Figure 1. Several anticancer compound structures found in marine algae. 

This review specifically discusses anticancer compounds derived from marine algae. 
In this review, topics such as current developments in this area are presented and dis-
cussed along with experimental findings and specific peptides mechanism. Considering 
these considerations, bridging the gap between marine algae peptides and current anti-
cancer drug discovery emerges as a critical imperative. Integrating insights from marine 
algae peptides bioactivity with contemporary research can offer novel avenues for devel-
oping more effective cancer treatments. Such an approach holds promise in addressing 
the limitations of current therapies, potentially revolutionizing cancer management and 
improving outcomes for affected individuals worldwide. 

2. Marine Algal Peptides 
Algae are part of the plant kingdom�s earliest evolutionary tiers and are different in 

their ability to photosynthesize. Algae are divided into two categories: macroalgae and 
microalgae (Figure 2). Macroalgae, frequently referred to as “seaweeds” are multicellular 
marine creatures that resemble large plants. Color-based classifications include Rhodo-
phyta, Chlorophyta, and Phaeophyta, also known as red, green, and brown algae, respec-
tively [12]. Meanwhile, microalgae are small photosynthetic organisms that live in both 
saltwater as well as freshwater environments that belong to a varied group of organisms, 
including photoautotrophic protists such as prokaryotic cyanobacteria, which are addi-
tionally known as blue-green algae. The distinct features between macroalgae and micro-
algae are presented in Figure 2. Microalgae account for almost 70% of global biomass, and 
they generate molecules like carbohydrates, protein, and lipids. Microalgae are photosyn-
thetic micro-organisms with a lack of cell organelles compared to land-based plants. Mi-
croalgae can grow via photosynthesis in the presence of CO2, solar light, and water. The 
cultivation can be carried out in marginal ponds, raceway ponds, and synthetic tanks [13]. 

Figure 1. Several anticancer compound structures found in marine algae.

This review specifically discusses anticancer compounds derived from marine algae.
In this review, topics such as current developments in this area are presented and discussed
along with experimental findings and specific peptides mechanism. Considering these
considerations, bridging the gap between marine algae peptides and current anticancer
drug discovery emerges as a critical imperative. Integrating insights from marine algae
peptides bioactivity with contemporary research can offer novel avenues for developing
more effective cancer treatments. Such an approach holds promise in addressing the limita-
tions of current therapies, potentially revolutionizing cancer management and improving
outcomes for affected individuals worldwide.

2. Marine Algal Peptides

Algae are part of the plant kingdom’s earliest evolutionary tiers and are different
in their ability to photosynthesize. Algae are divided into two categories: macroalgae
and microalgae (Figure 2). Macroalgae, frequently referred to as “seaweeds” are multi-
cellular marine creatures that resemble large plants. Color-based classifications include
Rhodophyta, Chlorophyta, and Phaeophyta, also known as red, green, and brown algae,
respectively [12]. Meanwhile, microalgae are small photosynthetic organisms that live
in both saltwater as well as freshwater environments that belong to a varied group of
organisms, including photoautotrophic protists such as prokaryotic cyanobacteria, which
are additionally known as blue-green algae. The distinct features between macroalgae
and microalgae are presented in Figure 2. Microalgae account for almost 70% of global
biomass, and they generate molecules like carbohydrates, protein, and lipids. Microalgae
are photosynthetic micro-organisms with a lack of cell organelles compared to land-based
plants. Microalgae can grow via photosynthesis in the presence of CO2, solar light, and
water. The cultivation can be carried out in marginal ponds, raceway ponds, and synthetic
tanks [13].
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Peptides are an important bioactive compound found in several marine organisms
and have been extensively researched [14]. Bioactive peptides typically include 2–20 amino
acid residues. Bioactive peptides can be released through three methods: solvent extraction,
enzymatic hydrolysis, or microbial fermentation [15]. Marine algae are one of these or-
ganisms that are useful in pharmaceutical biotechnology and drug discovery [16]. Marine
bioactive peptides are gaining popularity in pharmaceutical, cosmetic, and nutraceutical
product development due to their unique biological features. They play crucial roles in
the algae’s survival systems, such as defense, reproduction, growth, and homeostasis [17].
Algal species contain bioactive compounds that have been evidenced to have significant
antidiabetic, antihypertensive, and antibacterial and antiviral properties, as well as neuro-
protective effects [12,18]. For example, seaweed has been found to have bioactive peptides
with antihypertensive, antioxidant, and antidiabetic properties [17]. The majority of pep-
tides have anticancer activity by upregulating the apoptosis pathway and downregulating
the proliferation pathway. Table 1 provides detailed information about the mechanism of
action and IC50.

Table 1. List of peptides identified in various algae species and their known bioactivities.

Bioactivity Peptide Name
or Sequence Source Enzymatic

Treatment/Cell Lines IC50
Mechanism of

Action
Refer-
ences

Antiarthero-
sclerosis NIGK Palmaria palmata Papain 2.32 mM ** ↓ PAG-AH [13]

Antiarther-
osclerosis VECYGPNRPQF Chlorella sp. Pepsin, Flavourzyme,

Alcalase, and Papain 2.32 mM **

↓ VCAM
(E-selectin,

ICAM, VCAM,
MCP-1 and
ET-1) gene
expression

[14]

Antiarthero-
sclerosis

LDAVNR,
MMLDF

Spirulina
maxima

Trypsin, α-chymotrypsin,
and pepsin 2.32 mM **

↓ IL-6, IL-8,
MCP-1,

P-selectin, ROS,
and Egr-1

[15,16]

Anticancer Isomalyngamide
A and A-1

Lyngbya
majuscula MDA-MB-231 0.06—0.337 µM ↓ VEGFR2,

MMP-9 [17]
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Table 1. Cont.

Bioactivity Peptide Name
or Sequence Source Enzymatic

Treatment/Cell Lines IC50
Mechanism of

Action
Refer-
ences

Anticancer Cocosamides
A-B

Lyngbya
majuscula MCF7 A:30 µM;

B:39 µM ↓ cell viability [18]

Anticancer VECYGPNRPQF Chlorella
vulgaris Pepsin 70 µg/mL **

↑ antiprolifera-
tion, post-G1

cell cycle arrest
[19]

Anticancer
Desmethoxy-

majusculamide
C

Lyngbya
majuscula MDA-MB-435 0.22 µM **

Actin
microfilament

disruption
[20]

Anticancer Polypeptide
CPAP

Chlorella
pyrenoidosa

Papain, trypsin, and
alcalase 426 µg/mL ** ↑ apoptosis [21]

Anticancer Polypeptide Y2 Spirulina
platensis

Trypsin, alcalase, pepsin,
and papain 61 µg/mL ** ↑ apoptosis [22]

Antihypertensive Gln-Val-Glu-
Tyr

Gracilariopsis
lemaneiformis

Trypsin, favourzyme,
papain, alkaline protease 474.36 µM ** ↑ ACE-I, ↓ BP [23]

Antihypertensive FGMPLDR
MELVLR Ulva intestinalis Protein hydrolysates 219.35 µM** ↑ ACE-I, ↓ BP [24]

Antihypertensive Val-Glu-Gly-
Tyr

Chlorella
ellipsoidea Alcalase 128.4 mM ** ↓ radical

formation, ROS [25]

Antihypertensive Ile-Pro Ulva rigida

Bromelain,
chymotrypsin, ficin,
pancreatin, pepsin,

peptidases, protease,
trypsin

87.6 µM ** ↑ ACE-I, ↓ BP [26]

Antihypertensive Ala-Phe-Leu Ulva rigida

Bromelain,
chymotrypsin, ficin,
pancreatin, pepsin,

peptidases, protease,
trypsin

65.8 µM ** ↑ ACE-I, ↓ BP [26]

Antihypertensive
Gly-Met-Asn-
Asn-Leu-Thr-

Pro

Nannochloropsis
oculata Pepsin 123 mM ** ↑ Bioavailbility,

↓ BP [27]

Antihypertensive Leu-Glu-Gln Nannochloropsis
oculata Pepsin 173 mM ** ↑ Bioavailbility,

↓ BP [27]

Antihypertensive

Val-Glu-Cys-
Tyr-Gly-Pro

Asn-Arg-Pro-
Gln-Phe

Chlorella
vulgaris Pepsin 29.6 mM ** ↓ BP [19]

Antihypertensive Ile-Val-Val-Glu Chlorella
vulgaris Pepsin 315.3 mM ** ↑ ACE-I, ↓ BP [28]

Antihypertensive Ile-Ala-Glu Spirulina
platensis Pepsin 34.7 mM ** ↑ ACE-I, ↓ BP [28]

Antihypertensive Ala-Phe-Leu Chlorella
vulgaris Pepsin 63.8 mM ** ↑ ACE-I, ↓ BP [28]

Antihypertensive Phe-Ala-Leu Spirulina
platensis Pepsin 11.4 mM ** ↑ ACE-I, ↓ BP [28]

Antihypertensive Phe-Ala-Leu Chlorella
vulgaris Pepsin 26.3 mM ** ↑ ACE-I, ↓ BP [28]

Antihypertensive Ala-Glu-Leu Spirulina
platensis Pepsin 11.4 mM ** ↑ ACE-I, ↓ BP [28]
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Table 1. Cont.

Bioactivity Peptide Name
or Sequence Source Enzymatic

Treatment/Cell Lines IC50
Mechanism of

Action
Refer-
ences

Antihypertensive Ala-Glu-Leu Chlorella
vulgaris Pepsin 57.1 mM ** ↑ ACE-I, ↓ BP [29]

Antihypertensive Ile-Ala-Pro-Gly Spirulina
platensis Pepsin 11.4 mM ** ↑ ACE-I, ↓ BP [29]

Antihypertensive Val-Val-Pro-
Pro-Ala

Chlorella
vulgaris Pepsin 79.5 mM ** ↑ ACE-I, ↓ BP [29]

Antihypertensive Val-Ala-Phe Spirulina
platensis Pepsin 35.8 mM ** ↑ ACE-I, ↓ BP [29]

Antihypertensive YH, KY, FY, IY Undaria
pinnatifida No enzyme use 2.7–43.7

µmol/L ↑ ACE-I, ↓ BP [30]

Antioxidant Protease extract Scytosiphon
lomentaria Multienzyme complex <125 µg/mL **

↑ radical
scavenging, ↑
antioxidative

[31]

Antioxidant VECYGPNRPQF Chlorella
vulgaris Pepsin * ND

↓ superoxide
radical

quenching
growth, ↓ cell

cycle arrest

[32,33]

Antioxidant Enzymatic
digests Ishige okamurae Multienzyme complex <25 µg/mL ** ↑ antioxidative [34]

Antioxidant

NIPP-1
(Pro-GlyTrp-
Asn-Gln-Trp-
Phe-Leu), and

NIPP-2
(Val-Glu-Val-
Leu-Pro-Pro-
Ala-Glu-Leu)

Naviculla incerta Papain * ND Cytotoxic [35]

Antioxidant

Phe-Ser-Glu-
Ser-Ser-Ala-
Pro-Glu-Gln-

His-Tyr

Spirulina
platensis Thermolysin 171.47 µg/mL

** ↑ antioxidant [36]

Immunomo-
dulatory

Protein
hydrolysates Ecklonia cava Kojizyme * ND

↑ lymphocytes,
monocytes,

granulocytes; ↓
regulation of

TNF-α, IFN-γ;
↑ regulation of

IL-4, IL-10

[37]

Immunomo-
dulatory

Protein
hydrolysates

Porphyra
columbina trypsin, alcalase 2.1–5.6 g/L ** ↓ TNF, IFN-γ;

↑IL-10 [38]

Immunomo-
dulatory

Protein
hydrolysates

Chlorella
vulgaris pancreatin * ND

↑ humoral and
cell-mediated

immune
functions

(TDAR, DTHR)

[39]

Abbreviations: ↑ (induce, regulating); ↓ (inhibit, lowering); ACE-I (angiotensin-converting enzyme Inhibitors); BP
(blood pressure); DTHR (delayed-type hypersensitivity response); ICAM (intercellular adhesion molecule); IFN
(interferon); MCP-1 (monocyte chemoattractant protein-1); PAG-AH (platelet activating factor acetylhydrolase);
ROS (reactive oxygen species); TDAR (T-cell-dependent antibody response); TNF (tumor necrosis factor); VCAM
(vascular cell adhesion molecule). * ND: information is not provided by the original article; **: the concentration
indicated by original article.
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3. Mechanisms of Actions of Selected Marine Peptides in Combating Cancer

The current rate of cancer occurrences is expected to reach 3.05 million by 2040, with
an estimated mortality rate of nearly 7 million [2]. Common cancer treatments include
chemotherapy, radiation, and surgery. However, chemotherapy has numerous side effects
and can affect multiple organs. Over-expression of membrane transporters can lead to the
expulsion of anticancer medicines, reducing their efficacy [20,21]. Peptides, due to their
small size and chemical composition, can pass across cell membranes without causing
harmful effects. They have high affinity and specificity, and few interactions with other
medications. However, their limited bioavailability and activity compared to established
cancer treatments pose challenges [22]. For instance, a peptide VECYGPNRPQF from
Chlorella vulgaris was found to be an antiproliferative agent, inhibiting proliferation in
the human gastric cancer cell line AGS but not in other cell lines, suggesting unique
anticancer efficacy for certain tumor therapies [23]. Anticancer peptides found in marine
species regulate various cellular and molecular pathways, including apoptosis, tubulin-
microtubule balance, DNA defense, cell cycle control, migration, invasion, metastasis
inhibition, and angiogenesis inhibition [11,24–28].

3.1. Apoptosis

Apoptosis is a critical process in development, physiology, and homeostasis. Its
dysregulation, defined as the loss of pro-apoptotic signals or the gain of anti-apoptotic
signals, can result in cancer genesis, development, and progression, as well as therapeutic
failures. Apoptosis is a preferred method of cancer cell death during treatment because
it does not normally elicit an inflammatory or immunological response. Pharmacological
compounds that modulate apoptotic pathways and selectively induce apoptosis are poten-
tial approaches to cancer therapy [29–33]. Effective anticancer drugs should target many
apoptotic pathways, both intrinsic and extrinsic. Caspase-3 activation occurs in intrinsic
pathways, resulting in DNA damage, protein degradation, apoptosis, and cell uptake.
Intrinsic routes, regulated by the Bcl-2 protein, produce Cyt C, whereas extrinsic pathways
stimulate cell surface death receptors [34–37]. Some marine anticancer peptides activate
the c-Jun N-terminal kinase (JNK) and MAPK pathways, causing cytochrome C (Cyt C)
release from mitochondria, which initiates apoptosis by activating caspases and leading to
cell death (Figure 3) [38]. Peptides such as Somocystinamide A and C-phycocyanin exhibit
caspase-dependent anti-apoptotic activity in cancer cells [24].
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3.2. Tubulin–Microtubule Balance

Marine anticancer peptide (MACP) kills cancer cells through mechanisms like disrup-
tion of the tubulin–microtubule balance [39]. Microtubules, formed from tubulin, are crucial
for cell maintenance, transport, motility, and organelle distribution (Figure 3). Drugs that
disrupt tubulin–microtubule equilibrium are effective cancer therapies [40]. The mitotic
spindle, composed of microtubules and proteins, is crucial for cell division. Changes in the
tubulin–microtubule balance can lead to cell degradation and death [41].

3.3. Angiogenesis

Angiogenesis, the development of new blood vessels, is vital in carcinogenesis, influ-
encing solid tumor growth, invasion, and metastasis. It involves disrupting existing vessels,
promoting endothelial cell proliferation, migration, and tube formation [42–45]. Vascular
endothelial growth factor (VEGF) and its receptor, VEGFR-2, are critical in cancer angiogen-
esis (Figure 3). Cancer cells produce VEGF, stimulating angiogenesis via ERK1/2, CXCR4,
HIF1α, and Akt. MMP2 and MMP9 are necessary for tumor invasion and metastasis. Block-
ing the VEGF-VEGFR-2 pathway and its downstream signals can slow tumor development.
HIF1α controls adaptive responses to hypoxia and cellular functioning during normoxia,
including VEGF aggregation. For instance, some peptides reduce MCF7 and MDA-MB-231
cell migration by reducing VEGFR2 expression and MMP-9 [46–53]. Mycothiazole from
marine sponge, a mixed polyketide/peptide-derived molecule, suppressed hypoxia HIF1
signaling in tumor cells, decreasing HIF1 target gene VEGF production [54].

3.4. Cell Cycle Disturbance

Cell cycle disturbance is closely associated with apoptosis (Figure 3). Cyclin D1 and E
inhibitors, p21 and p53, are activated to restrict tumor development and protect DNA from
destruction by stopping the cell cycle and directing apoptosis [55–62]. For example, an
undecapeptide derived from C. vulgaris protein waste with the sequence VECYGPNRPQF
demonstrated significant dose-dependent antiproliferation and post-G1 cell cycle arrest in
gastric cancer AGS cells with minimal cytotoxicity in normal lung fibroblast WI-38 cells [23].
Cyclodepsipeptides, including those derived from marine sponges, inhibit cell proliferation
by disrupting microtubule dynamics and preventing proper mitotic spindle formation,
which is crucial for cell division [63].

3.5. Membrane Disruption

MACP, as anticancer peptides depolarize cell membranes, cause tumor cells to lose
osmotic pressure and spill cytoplasmic substances. They kill cancer cells using necrotic
processes, resulting in membrane lysis and cell death. Peptides with low ROS activity may
help avoid cancer [64–70].

4. Sensitization of Cancer Cells to Chemotherapy by Certain Algal

Cancer hallmarks refer to the common pathways that contribute to carcinogenesis,
such as self-sufficiency, growth signaling, insensitivity to anti-growth signals, reproductive
potential, tissue invasion, metastasis, resistance to apoptosis, sustained angiogenesis, im-
mune surveillance evasion, tumor-promoting inflammation, genome instability, mutation,
and cellular energetic dysregulation. These mechanisms can be effectively blocked by
chemotherapies, yet its efficacy is eventually reduced following resistance growth after
extended periods of exposure [71]. Drug resistance is a major concern in cancer treatment,
and it is frequently caused by efflux, target alteration metabolism, cell surface receptor
abnormalities, and epigenetic changes [72–75]. Therefore, sensitizing resistant cancer cells
to the same or various medicines is of importance, allowing for the establishment of effec-
tive therapy regimens and overcoming a target shortage by using the same drug, but can
facilitate the cancer cell death [76]. Recent anticancer medicines, such as small molecule tar-
geted, immunotherapy, anti-angiogenic, peptide, protein, and gene therapies, have gained
popularity because of their minimal side effects. Researchers find that algae show great
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promise to reduce cell proliferation, metastasis, and tumor angiogenesis while increasing
apoptosis, indicating anticancer potential. Genetic modification also could improve their
biological activity and enable focused cancer treatment [77].

The sensitization of cancer cells to chemotherapy by certain algae involves the use of
algal-derived compounds to enhance the efficacy of chemotherapeutic agents. This process
leverages the unique bioactive compounds found in algae, which can interact with cancer
cells to increase their susceptibility to chemotherapy.

For example, phycocyanin from Spirulina has been shown to promote apoptosis in var-
ious cancer cells. C-phycocyanin, a new type of TAM-targeted photosensitizer, is efficient
in in vitro photodynamic activity and selectively accumulates in tumor locations due to
its affinity for tumor-associated macrophages (TAMs), providing a unique technique for
improving cancer therapeutic efficacy [1,78]. It also contains peptides that have demon-
strated potential in sensitizing cancer cells to chemotherapy by modulating pathways
such as apoptosis, cell cycle arrest, and inhibition of drug efflux pumps [79]. Seaweed
contains biologically active chemicals that induce death in cancer cells, making them more
responsive to chemotherapy treatments [80]. Fucoidan, found in brown algae like Fu-
cus vesiculosus, has demonstrated the ability to enhance the sensitivity of cancer cells to
chemotherapy drugs like cisplatin and doxorubicin by inducing apoptosis and inhibiting
cell proliferation [81,82].

5. Preclinical and Patents of Certain Algal Peptides as an Anticancer Agent

Several preclinical trials have reported the efficacy and safety of marine algal peptides
in cancer therapy. These trials reported the potential of algal peptides to inhibit tumor
growth, induce apoptosis, and enhance the effectiveness of conventional anticancer treat-
ments. Several red and green algae species were included. Pal et. al. (2021) found that Ulva
intestinalis and Ulva lactuca have the ability to reduce the proliferation of cervical cancer [83].
Two studies with the same cancer resulted in significant inhibition of the cell. Another
study from Pradhan et. al. (2020) proved that Enteromorpha compressa increases apoptosis
activity in oral cancer [84]. Furthermore, one study using a liver cancer cell line also worked
as an anticancer by stimulating the marker of apoptosis [85]. Initial preclinical studies
have shown promising results in different types of cancer, demonstrating the anticancer
properties of certain algal peptides (Table 2).

Table 2. Preclinical Trial of Certain Algal Peptides as an Anticancer Agent.

References Methods, Aim Algae Species Results

[83]
Methanolic extracts, Assess

anticancer potential in cervical
cancer cells (SiHa)

Ulva intestinalis, Ulva lactuca

- Algal fractions inhibited proliferation of SiHa
cells in a dose-dependent manner

- IC50 values against SiHa cells: 141.38 µg/mL
(U. intestinalis) and 445.278 µg/mL (U. lactuca)

[84]

Methanolic extracts, Assess
anticancer potential in oral
squamous cell carcinoma

(OSCC)
Enteromorpha compressa

- Methanolic extract of E. compressa exhibited
robust free radical scavenging activity

- Enhanced intrinsic apoptosis against OSCC
by downregulating protective

antioxidant enzymes
- Induction of autophagy to promote cell death

in oral cancer cells

[85]

Aqueous extracts, Assess
antiviral potential in HeLa

cells co-cultured with HTLV-I
infected-T-cell line (causative

agent of adult T-cell
leukemia/lymphoma)

Ulva fasciata, Sargassum
vulgare, Vidalia obtusiloba,

Laminaria abyssalis

- U. fasciata extract showed 60.2% syncytium
inhibition at 2.5% concentration

- S. vulgare and V. obtusiloba extracts presented
78.8% and 76% syncytium inhibition,

respectively, at 5% concentration
- L. abyssalis extract exhibited 100% syncytium

inhibition at 2.5% concentration
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Table 2. Cont.

References Methods, Aim Algae Species Results

[86]
Methanolic extracts, Assess
anticancer potential in HeLa

cells

Enteromorpha intestinalis,
Rhizoclonium riparium

- IC50 values of 309.048 ± 3.083 µg/mL
(E. intestinalis) and 506.081 ± 3.714 µg/mL

(R. riparium)
- Treated cells exhibited morphological changes

including rounding with blebbing and
condensed nuclei

- Formation of acidic lysosomal vacuoles
observed in treated cells

- Expression of apoptotic genes in both mRNA
and protein levels decreased

- Expression of LC3B-II suggested occurrence
of autophagy in treated cells

[87]

Assess anticancer potential in
Human lung cancer cell lines
(A549, H460 and H1299) and
lung fibroblast MRC-5 cells

Bryopsis plumosa

- Treated cells exhibited morphological changes
involved in the typical EMT and apoptosis

- Expression of E-cadherin increased
- Expression of N-cadherin, Zeb1, snail and

vimentin decreased
- Suppressed migration and invasion

in NSCLCs

[88] Assess anticancer potential in
HT29 and LS174 cells Pterocladiella capillacea

- Decreased the viability of LS174 and HT29
cells in a dose-dependent manner

- IC50 values of 56.50 ± 8.68 µg/mL (HT29
cells) and 49.77 ± 4.51 µg/mL (LS174 cells)

- Enhanced of AKT and ERK-1/-2 activation

[89]

Assess potential anticancer in
MDA-MB-231, MDA-MB-453,
MCF7, A549, H1299, HCT116,

SW620, CT26, PC3, DU145,
HeLa

Sargassum macrocarpum

- Induced apoptosis
-Expression of Bcl2 decreased

- Expression of cleaved caspase-3 and
PARP increased

- Enhanced DNA fragmentation
- STAT3 signaling pathway inhibition

Marine algae peptides constitute a burgeoning class of therapeutic agents of can-
cer treatment [83,84]. However, their clinical utility is often curtailed by challenges per-
taining to bioavailability and susceptibility to enzymatic degradation within biological
systems [90,91]. Marine algae peptides have low capacity to attain therapeutic concen-
trations at target sites [92]. These hurdles underscore the critical need for innovative
approaches to unlock the full therapeutic potential of marine algal peptides.

Several patents have reported the use of algal peptides as anticancer agents, indicating
commercial interest and the potential for future therapeutic applications. These patents
cover the identification of novel peptide sequences, methods for peptide synthesis, and
formulations for enhancing peptide stability and bioavailability (Table 3). Moreover, patents
may also address the use of algal peptides in combination with therapies or targeted drug
delivery systems for improved cancer treatment outcomes by using nanotechnology.

The use of nanocarrier-based delivery systems as a strategy for augmenting the
bioavailability of marine algal peptides has been increasing currently [93]. Nanocarri-
ers, encompassing liposomes, nanoparticles, and micelles, offer distinctive advantages in
modulating the pharmacokinetic profiles and tissue distribution of peptides. The encapsu-
lation of marine algal peptides within nanocarriers affords protection against enzymatic
degradation and facilitates controlled release kinetics, thereby enabling sustained drug
delivery and optimized therapeutic efficacy [92].

Preliminary investigations into nanocarrier-based delivery systems have yielded en-
couraging findings in preclinical models [94]. Liposomal formulations have demonstrated
proficient encapsulation of marine algal peptides, yielding improvements in solubility,
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stability, and in vivo bioavailability [95]. Similarly, nanoparticle-based delivery platforms
have exhibited enhanced pharmacokinetic profiles and augmented tissue distribution of
marine algal peptides, thereby heralding enhanced therapeutic efficacy [96].

The translation of these preclinical endeavors into clinical practice holds profound
implications for cancer therapy [97]. By circumventing the obstacles associated with
the bioavailability of marine algal peptides, nanocarrier-based delivery systems offer a
transformative pathway toward more efficacious and targeted anticancer interventions [98].
Moreover, their potential for synergistic combination therapies and tailored therapeutic
regimens underscores their pivotal role in cancer treatment paradigms [99].

Table 3. Patents of certain algal peptides as an anticancer agent.

Inventor, Year Country Identifier Polypeptide
Names Method Type of Formulations

Figueirdo et al.,
2018 [100] China CN104812381B No specific data

Therapeutic
nanoparticle
preparation

Nanoparticles for
targeted drug delivery

Miller et al., 2017
[101] USA US9668951B2 No specific data

Pharmaceutical
compositions

comprising renewably
based biodegradable

1,3-propanediol

Oral, topical, or
injectable formulations
include biodegradable

pharmaceutical
compositions

Lin et al., 2014
[102] USA US8859727B2 Fused in sarcoma-1

Nanoparticle–
polypeptide
complexes

Bioactive
peptide–nanoparticle

complexes

Aharoni et al., 2024
[103] USA US20200354759A1 Cyp76ad1-beta

clade Genetic engineering Polynucleotide-encoded
polypeptides

Foger et al., 2021
[104] USA US10905744B2 Glucagon-like

peptide-1 Oral delivery drugs Peptide drugs
formulations

Bradbury et al.,
2023 [105] Canada CA2900363C Tyr3-octreotide Silica-based

nanoparticles

Multimodal silica-based
nanoparticle
formulations

Klein et al., 2019
[106] USA US20190022228A1 Glucagon-like

peptide-1

Microparticle/
nanoparticle
formulations

Drug delivery particles

6. Current Challenges and Future Perspectives for Using Peptides as Anticancer Agents

Ensuring their stability and bioavailability poses a significant challenge. Their sus-
ceptibility to enzyme degradation and their characteristics of poor absorption and rapid
clearance are challenges in their application as a therapeutic agent for anticancer [90].
Moreover, large-scale production, while maintaining the quality and activity of peptides, is
technically demanding and expensive [107]. Lastly, a lack of clinical studies evaluating the
safety, efficacy, and pharmacokinetics of marine algal peptides in cancer therapy presents
challenges on the implementation of this novel strategy in clinical settings.

Future research should prioritize enhancing the stability and bioavailability of marine
algal peptides. The advanced exploration of marine algal biodiversity may aid the discovery
of novel peptides with potent anticancer properties. The use of marine algal peptides as
multimodal cancer treatment regimens should be studied. Finally, collaborative efforts
between researchers, industries, and regulatory agencies are needed to advance promising
peptide candidates from the laboratory to clinical application.

7. Conclusion and Highlights

In conclusion, marine algal peptides hold a promising role in cancer therapy. Investi-
gating the anticancer properties of marine algal peptides is crucial for improving clinical
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modalities, particularly in the development of anticancer drugs with minimum adverse
effects. Peptides are believed to be non-harmful because they penetrate cellular membranes
through a specific mechanism attributed to their small size and unique chemical properties.
Marine algae have been shown to act as rich sources of bioactive compounds, including
peptides, with potent anticancer properties. Among the bioactive compounds identified,
specific peptides from the cyanobacterium Lyngbya majuscula, such as Isomalyngamide
A and A-1, have demonstrated particularly potent anticancer properties by inhibiting
VEGFR2 and MMP-9, which are critical factors in tumor growth and metastasis. More-
over, peptides such as VECYGPNRPQF from Chlorella vulgaris have exhibited significant
antiproliferative effects, particularly against the gastric cancer cell line AGS, underscoring
their potential as promising candidates for further development in cancer therapy. Notably,
this peptide also demonstrated minimal cytotoxicity to the lung fibroblast WI-38 cells,
highlighting its therapeutic specificity and safety profile.

Mechanisms underlying the anticancer activities by marine algal peptides are var-
ied, including apoptosis induction, tubulin-microtubule balance disruption, angiogenesis
inhibition, cell cycle disturbance, and membrane disruption. Somocystinamide A and
C-phycocyanin are examples of algal peptides that have been reported to induce cancer
cell apoptosis through the caspase pathway. Apoptosis by marine algal peptides may also
involve the release of Cyt C concomitant to the activation of the JNK and MAPK pathways.

Despite the potential, the efficacy of the algal peptide could be challenged by the com-
plex physiological response which contributed to low bioavailability and bioaccessibility.
Therefore, innovative approaches, such as nanocarrier-based delivery systems, have been
proposed to overcome challenges associated with the bioavailability and stability of marine
algal peptides. Nanocarriers, including liposomes, nanoparticles, and micelles, enhance the
pharmacokinetic profiles and tissue distribution of these peptides. Encapsulation within
nanocarriers protects the peptides from enzymatic degradation and enables controlled
release, thereby improving therapeutic efficacy.

Continued exploration and clinical trials are essential to validate their efficacy and
safety, optimize delivery systems, and develop targeted therapeutic regimens. The sen-
sitizing activity of the peptide against cancer cells, which can improve the efficacy of
chemotherapy drugs (such as cisplatin and doxorubicin), is also an interesting research
topic that is worth further exploration. The integration of marine algal peptides into cancer
treatment paradigms could offer more effective and targeted interventions, ultimately
advancing the fight against cancer.
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