
Citation: Yuan, H.; Zhong, Y.; Tang, Y.;

Liu, R. Dynamic Characteristics of

Composite Sandwich Panel with

Triangular Chiral (Tri-Chi)

Honeycomb under Random Vibration.

Materials 2024, 17, 3973. https://

doi.org/10.3390/ma17163973

Academic Editor: Thanasis D.

Papathanasiou

Received: 4 July 2024

Revised: 4 August 2024

Accepted: 7 August 2024

Published: 9 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Dynamic Characteristics of Composite Sandwich Panel with
Triangular Chiral (Tri-Chi) Honeycomb under Random Vibration
Hui Yuan 1,2, Yifeng Zhong 1,2,* , Yuxin Tang 1,2 and Rong Liu 1,2

1 School of Civil Engineering, Chongqing University, Chongqing 400045, China;
202216021133t@stu.cqu.edu.cn (H.Y.); 15823179624@163.com (Y.T.); 202016131332@cqu.edu.cn (R.L.)

2 Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University,
Chongqing 400045, China

* Correspondence: zhongyf@cqu.edu.cn

Abstract: A full triangular chiral (Tri-Chi) honeycomb, combining a honeycomb structure with
triangular chiral configuration, notably impacts the Poisson’s ratio (PR) and stiffness. To assess
the random vibration properties of a composite sandwich panel with a Tri-Chi honeycomb core
(CSP-TCH), a two-dimensional equivalent Reissner–Mindlin model (2D-ERM) was created using the
variational asymptotic method. The precision of the 2D-ERM in free and random vibration analysis
was confirmed through numerical simulations employing 3D finite element analysis, encompassing
PSD curves and RMS responses. Furthermore, the effects of selecting the model class were quantified
through dynamic numerical examples. Modal analysis revealed that the relative error of the first eight
natural frequencies predicted by the 2D-ERM consistently remained below 7%, with the modal cloud
demonstrating high reliability. The PSD curves and their RMS values closely aligned with 3D finite
element results under various boundary conditions, with a maximum error below 5%. Key factors
influencing the vibration characteristics included the ligament–rib angle of the core layer and layup
modes of the composite facesheets, while the rib-to-ligament thickness ratio and the aspect ratio exert
minimal influence. The impact of the ligament–rib angle on the vibration properties primarily stems
from the significant shift in the core layer’s Poisson’s ratio, transitioning from negative to positive.
These findings offer a rapid and precise approach for optimizing the vibration design of CSP-TCH.

Keywords: random vibration characteristics; triangular chiral honeycomb; sandwich panel; auxetic
effect; variational asymptotic method

1. Introduction

Materials in nature typically exhibit positive Poisson’s ratios. Nonetheless, there are
unique materials called negative Poisson’s ratio (NPR) materials that expand perpendicular
to the loading direction, leading to their designation as auxetic materials. Research indi-
cates that auxetic effects are present in various minerals and certain biological tissues [1].
Lakes et al. [2] successfully developed auxetic polymer and metal foams. Polymer foams,
known for their lightweight nature and exceptional energy absorption capabilities, have
found widespread application in packaging and protective materials. The creation of
artificial auxetic materials has seen rapid growth, with a variety of these materials emerg-
ing [3–7]. In addition, chiral and anti-chiral structures also exhibit auxetic effects, adding to
the diversity of auxetic materials available for research and application [8,9].

The utilization of cellular material design presents a viable approach for the develop-
ment of novel lightweight materials with exceptional energy-absorbing capabilities and the
creation of metamaterials [10,11]. Cellular metamaterials are characterized by properties
not typically observed in natural substances, with their unique properties closely tied to
their structure rather than the base material. One intriguing example is the honeycomb
metamaterial featuring a negative Poisson’s ratio (NPR), imparting stretchable qualities to
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the material [12–14]. In addition, the chiral metamaterial represents another NPR structure,
utilizing a rotational mechanism to achieve its functionality [15,16]. These materials fall
under the category of metamaterials possessing periodic arrangements and internal spin
overlap characteristics [17,18]. Chirality, a prevalent symmetrical feature in nature, plays a
fundamental role in the design of metamaterials. In nature, chirality manifests when the
natural structure differs from its mirror image. This phenomenon is illustrated in Figure 1
and underscores the significance of mimicking and harnessing natural asymmetries for the
development of innovative materials with unique properties and functionalities.

Figure 1. Several chiral structures in nature.

Cellular structures offer design flexibility by allowing adjustments to the size, shape,
and density to meet specific application requirements [19]. Through optimization of these
parameters, the performance of the cellular structure can be enhanced. In applications
where resistance to vibration and reduction in sound transmission are crucial, the adoption
of NPR cellular structures proves beneficial. Among the various NPR cellular structures,
chiral honeycombs stand out as effective options [20]. These structures exhibit a unique
geometry that enhances their performance, particularly in structural design optimiza-
tion [21]. Unlike traditional honeycomb structures that undergo concave deformations, the
ligaments surrounding the central cylinder in chiral honeycombs rotate, contributing to
their exceptional mechanical properties and making them valuable components in a range
of applications requiring specialized design features [22].

The unique structural properties exhibited by chiral metamaterials have sparked
significant interest in the research community. For instance, Abdeljaber et al. [23] devised an
optimization methodology employing genetic algorithms to identify an optimal parameter
set. By strategically adjusting the chiral lattice insertions, they effectively mitigated the
global vibration levels of a finite-sized beam. Gao et al. [24] delved into the correlation
between relative density, topological parameters, and impact energy of chiral structures
subjected to impact loads. This study illuminates the impact of various factors on the
performance of chiral structures in absorbing impact energy.

Furthermore, Ebrahimi et al. [25] introduced an innovative 3D honeycomb metama-
terial that connects planar structures to an anti-chiral topology. This achievement was
made possible by incorporating tilt-bearing ligaments to connect circular elements of the
anti-chiral topology. Mousanezhad et al. [26] explored the impact of chirality on the in-
plane elastic behavior of a 2D honeycomb structure. Their study found that the anti-chiral
structure demonstrates both anisotropic characteristics and elongation tendencies as the
number of chiral magnetic beads in the cell increases. Despite the extensive research on
chiral metamaterials, there is a significant gap in the overall shape alterations due to the
predominance of chiral structures produced through ligament design [27]. This limita-
tion impedes the ability to fully explore extensive changes in auxeticity. Therefore, it is
imperative to develop design methods for chiral metamaterials that prioritize structural
performance and functional characteristics to overcome this limitation and enhance the
overall effectiveness of these materials.

In addition to rotating the square model, Grima et al. [28] revisited the “rotating
triangle” mechanism and identified it as a highly effective approach for inducing the
auxetic effect. Building upon this concept, Nedoushan et al. [29] developed a triangular
chiral structure comprising four cells designed to enhance the stiffness along all primary
orientations. This innovative design led to the creation of an extended structure capable of
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withstanding axial loads, with the initial tetrachiral unit modified by replacing the circular
part with a triangular chiral unit, as illustrated in Figure 2b. Subsequently, the cells were
duplicated and adjusted in size to create a complete triangular chiral structure known as
Tri-Chi, as illustrated in Figure 2c.

Figure 2. Evolutionary progression of triangular chiral (Tri-Chi) honeycomb structures.

It is worth noting that the auxetic properties in 2D in-plane problems and the chiral
geometry of the underlying microstructure is the result of the optimization process of mini-
mizing the compliance within the isotropic material design method [30]. The composite
sandwich panel with triangular chiral honeycomb core (CSP-TCH) exhibits outstanding de-
formation resistance due to its unique chiral structure integrated with composite materials.
This combination effectively harnesses the benefits of being lightweight, energy absorption,
seismic resilience, and sound insulation. Consequently, an investigation into its dynamic
characteristics provides vital insights for design considerations. In analyzing the structural
dynamic characteristics it is essential to account for random excitations. By examining the
random vibration response of the CSP-TCH, one can more accurately evaluate its reliability,
allowing for informed design improvements.

Hunady et al. [31] examined the dynamic characteristics of aluminum honeycomb
sandwich panels using numerical modal analysis, analyzing the free vibrations of nine pan-
els to assess the impact of geometric parameters (e.g., core thickness and height) on modal
characteristics. Hou et al. [32] delved into the energy absorption traits of honeycomb sand-
wich panels, exploring the influence of material parameters on energy absorption efficacy
through experimental and numerical simulations. Ma et al. [33] explored the fatigue per-
formance of composite honeycomb sandwich panels subjected to random vibration loads,
investigating the effects of different vibration frequencies and amplitudes on panel fatigue
life via experimental and numerical simulations. Presently, the primary research thrust
centers on the energy absorption capabilities of honeycomb sandwich structures under
dynamic loads [34,35]. Discrepancies in material properties between the facesheet and hon-
eycomb core, coupled with the intricate internal honeycomb core structure prone to pore
and defect formation, resulting in material non-uniformity, could impact the reliability and
accuracy of vibration characteristics and damping properties [36,37]. Thus, there is a need
for appropriate research methodologies and models to tackle these challenges effectively.

This study aims to address the issues by deconstructing the analysis of CSP-TCH into
unit-cell level constitutive modeling and a two-dimensional Reissner–Mindlin model using
the variational asymptotic method (VAM) with small structural parameters (e.g., thickness
to width ratio) [38–40]. The ABD matrix derived from the former is applied to the two-
dimensional equivalent plate for analyzing dynamic characteristics [41,42]. This approach
guarantees precision and efficiency, streamlines model intricacies, lowers computational
expenses, and offers significant support for the design of dynamic characteristics and
parameter optimization in CSP-TCH.

The paper proceeds as follows: Section 2 presents the theoretical formula and constitu-
tive relationship of 2D-ERM using the VAM. In Section 3, a spectroscopy-based random vi-
bration equation for 2D-ERM is derived. Section 4 validates the effectiveness and precision
of 2D-ERM in analyses of free and random vibrations. In addition, Section 5 investigates
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the impact of critical parameters on the Poisson’s ratio (PR) and random vibration char-
acteristics of CSP-TCH. Section 6 compares the computational efficacy of various models.
Finally, Section 7 summarizes the primary conclusions of the study.

2. VAM-Based Equivalent Reissner–Mindlin Model for CSP-TCH

The process of establishing the 2D-ERM of CSP-TCH using the VAM is depicted in
Figure 3. The VAM-based 2D-ERM involves the representation of the panel’s displacement
field (ui) using the displacements (ūi) in the 2D-ERM and warping functions wi, such as

u1(x1, x2, y1, y2, y3, t) = ū1(x1, x2, t)− ζy3ū3,1(x1, x2, t) + ζw1(x1, x2, y1, y2, y3, t),

u2(x1, x2, y1, y2, y3, t) = ū2(x1, x2, t)− ζy3ū3,2(x1, x2, t) + ζw2(x1, x2, y1, y2, y3, t),

u3(x1, x2, y1, y2, y3, t) = ū3(x1, x2, t) + ζw3(x1, x2, y1, y2, y3, t).

(1)

Figure 3. Schematic diagram of equivalent analysis of composite sandwich panels with Tri-Chi
honeycomb core (CSP-TCH).

The explicit expressions of ūi can be derived from Equation (1), e.g.,

ū1 = ⟨u1⟩+ ζ⟨y3⟩ū3,1, ū2 = ⟨u2⟩+ ζ⟨y3⟩ū3,2, ū3 = ⟨u3⟩, (2)

where ⟨·⟩ denotes the average volume within the unit cell.
Because the micro-coordinate yi originates from the geometric center of the unit cell, it

follows that ⟨y3⟩ = 0 and three constraints are imposed on the warping functions,

⟨wi⟩ = 0. (3)

The concept of rotation tensor decomposition can be used to express the 3D strain
components with small local rotation:

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
. (4)

The 3D strain field Γ can be represented in matrix form as

Γe = [ε11 ε22 2ε12]
T = ϵ + ζy3κ + Iαw∥,α,

2Γs = [2ε13 2ε23]
T = w∥,3 + eαw3,α,

Γt = ε33 = w3,3,
(5)

where ()|| = [()1 ()2]
T, ϵ =

[
ϵ11 2ϵ12 ϵ22

]T, κ = [κ11 κ12 + κ21 κ22]
T, and

I1 =

 1 0
0 1
0 0

, I2 =

 0 0
1 0
0 1

, e1 =

{
1
0

}
, e2 =

{
0
1

}
. (6)
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The strain energy can be represented as

U =
1
2

∫ a/2

−a/2

∫ b/2

−b/2

1
Ω
UΩdx2dx1, (7)

where a represents the length of the panel and b represents the width; UΩ
Ω denotes the stain

energy density per unit area, and UΩ can be calculated by adding up the strain energies of
individual components,

UΩ = Uc + U f = Uc + 2 ×
∫ − hc

2

− hc
2 −t f

∫ Ly
2

− Ly
2

∫ Lx
2

− Lx
2

ΓT
f D f Γ f dy1dy2dy3, (8)

where Uc represents the stain energy of the core cell and U f represents the strain energy of
the facesheets,

Uc = 4 ×



4 ×
∫ hc

2

− hc
2

∫ t1
2

− t1
2

∫ Lx
2 −

√
2r sin α

0
ΓT

ADAΓAdy1dy2dy3

+4 ×
∫ hc

2

− hc
2

∫ −k1y1+
√

2r sin α

0

∫ Lx
2 −

√
2r sin α

0
ΓT

BDBΓBdy1dy2dy3

+
∫ hc

2

− hc
2

∫ k2y1+
√

2r sin α

0

∫ Lx
2

0
ΓT

CDCΓCdy1dy2dy3


(9)

where subscripts A, B, and C represent the ligament, side rib, and diagonal rib within the
core unit, as shown in Figure 4, respectively; r denotes the radius of the triangular element;
k1 and k2 refer to the slopes of the B and C ribs, respectively.

Figure 4. Dimensions of (a) core cell of Tri-Chi and (b) triangular chiral unit for strain energy integration.

Equation (7) can be written as

U =
1
2

〈
ΓTDΓ

〉
=

1
2

〈
Γe

2Γs
Γt


T Ce Ces Cet

CT
es Cs Cst

CT
et CT

st Ct


Γe

2Γs
Γt


〉

, (10)

where Ce, Ces, Cet, Cs, Cst, and Ct are the corresponding sub-matrices of the 3D 6 × 6 mate-
rial matrix.

2.1. First Approximation

The first approximation can be obtained by substituting Equation (5) into Equation (10)
and eliminating smaller energy contributions from wi,α:
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2U0 =

〈
(ϵ + ζy3κ)TCe(ϵ + ζy3κ) + 2(ϵ + ζy3κ)T

(
Cesw∥,3 + Cetw3,3

)
+wT

∥,3Csw∥,3 + 2wT
∥,3Cstw3,3 + wT

3,3Ctw3,3

〉
. (11)

Introducing Lagrange multipliers λi allows the associated Euler–Lagrange equations
to be derived: [

(ϵ + ζy3κ)TCes + wT
∥,3Cs + wT

∥,3Cst

]
,3
= λ∥,[

(ϵ + ζy3κ)TCet + wT
∥,3Cst + w3,3Ct

]
,3
= λ3,

(12)

where λ|| = [λ1 λ2]
T.

The free conditions at the top and bottom surfaces can be determined by[
(ϵ + ζy3κ)TCes + wT

∥,3Cs + wT
∥,3Cst

]+/−
= 0,[

(ϵ + ζy3κ)TCet + wT
∥,3Cst + w3,3Ct

]+/−
= 0,

(13)

where the superscript “+/−” indicates the quantity being on the top or bottom surface of
the panel.

Given these conditions, the solutions for w|| and w3 can be expressed as

w∥ =
〈
−(ϵ + ζy3κ)C̄es(Cs)

−1
〉T

, w3 =
〈
−(ϵ + ζy3κ)C̄et

(
C̄t
)−1
〉

, (14)

where
C̄es = Ces − C̄et(Cst)

T(C̄t)
−1, C̄et = Cet − Ces(Cs)

−1Cst,
C̄t = Ct − (Cst)

T(Cs)
−1Cst.

(15)

The stain energy of the 2D-ERM can be determined by substituting Equation (14) into
Equation (11):

U2D = 1
2

〈
(ϵ + ζy3κ)TK(ϵ + ζy3κ)

〉
= 1

2

{
ϵ
κ

}T[ A B
B D

]{
ϵ
κ

}
, (16)

with
A = ⟨K⟩, B = ⟨ζy3K⟩, D =

〈
ζy2

3K
〉
,

K = Ce − C̄esC−1
s CT

es − C̄etCT
et/C̄t.

(17)

The constitutive relationship for the 2D-ERM can be determined from Equation (16) [43]:

N11
N22
N12
M11
M22
M12


=



A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66





ϵ11
ϵ22
2ϵ12
κ11
κ22
2κ12


. (18)

where Aij, Bij, and Dij are the tensile, coupling, and bending stiffnesses, respectively.

2.2. Second Approximation

The first approximation maintains consistency with classical plate theory, enabling
the determination of in-plane stresses. To account for out-of-plane stresses, the second
approximation becomes essential. This step involves perturbing the warping function as

w∥ = v̄∥, w3 = v̄3 + D⊥χ, (19)

where χ = [ ε κ ]T , D⊥ =
[
−DT

et
Dt

− x3
DT

et
Dt

]
.
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Substituting Equation (19) into Equation (5), and then, into Equation (7), the expression
for the second approximate energy can be obtained as

2Π1 =
〈

v̄T
∥,3Dsv̄∥,3 + Dtv̄2

3,3 + 2v̄T
∥ C∥,3χ,α + 2v̄T

∥ Ds∂tD⊥χ,α − 2v̄−T
∥ p∥

〉
− 2v̄T

∥ τ∥ − 2v̄T
∥ β∥.

(20)

The Euler–Lagrange governing equation can be derived as(
Dsv∥,3 + Ds∂tD⊥χ,α

)
,3
= C∥,3∂tD⊥χ,α + g,3 + λ∥, (21)

where C∥ = −∂T
e
[

D∥ x3D∥
]
, g,3 = −p∥.

Since v̄3 does not depend on v̄∥, v̄3 has a trivial solution. Consequently, the solution
for v̄∥ can be determined by solving Equation (21):

v̄∥ =
(

C̄∥ + Lα

)
χ,α + ḡ, (22)

where
C̄∥,3 = D−1

s C∥,
〈

C̄∥

〉
= 0, ḡ3 = D−1

s ḡ, ⟨ḡ⟩ = 0,

Lαχ,α = C̄∥/h, C̄∥ = C∥ +
x3

h
D∓

α − 1
2

D±
∥ − DseαD⊥,

ḡ = g +
x3

h
g∓ − 1

2
g±,

(23)

and (·)∓ = (·)− − (·)+, (·)± = (·)+ + (·)−.
The second approximate energy can be formulated in the Reissner–Mindlin model as

2Π1 = χT Aχ + χT
,αBαβχ,β − 2χTF, (24)

where F is a load-related item:

A =

 〈
D∥

〉 〈
x3D∥

〉〈
x3D∥

〉 〈
x2

3D∥

〉 ,

Bαβ =
〈

DSαβ
DT
⊥D⊥ − C̄T

α D−1
s C̄β

〉
+ LT

α

(
Cβ,3

)
,

F =
〈

DT
⊥p3

〉
−
〈

C̄T
∥ D−1

s ḡ,a

〉
− Lα

(
⟨ p̄⟩+

〈
p∥
〉)

,α
.

(25)

3. Random Vibration Analysis of 2D-ERM
3.1. Differential Equation for Random Vibration of 2D-ERM

The dynamic differential equation for the 2D-ERM under lateral random excitation
can be expressed as

ρ∗h ¨̄u3(x1, x2, t) + c ˙̄u3(x1, x2, t) + D∇4ū3(x1, x2, t) = p(x1, x2, t), (26)

where ∇4 = ∂4

∂x4
1
+ 2 ∂4

∂x2
1∂x2

2
+ ∂4

∂x4
2

represents the double harmonic operator, ρ∗ denotes the

equivalent density, ū3(x1, x2, t) signifies the lateral displacement of the panel, c stands
for the viscous damping coefficient, D represents the equivalent bending stiffness, and
p(x1, x2, t) describes the transverse random excitation, which can be expressed in the form
p(x1, x2, t) = Γ(x1, x2)X(t), with X(t) denoting a Gaussian stationary random process.

Solving the weak form in Equation (26) typically involves transforming the differential
equation into an integral equation through multiplication by a weighting function and
applying numerical techniques such as finite element methods or finite difference methods.
The resulting system of equations is then solved iteratively to approximate the solution.
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3.2. Free Vibration Analysis of 2D-ERM

The damping force and the external force on the right-hand side of Equation (26) can
be set to zero, leading to the differential equation for the free vibration of 2D-ERM without
damping being

D∇4ū3(x1, x2, t) + ρ∗h
∂2ū3(x1, x2, t)

∂t2 = 0 (27)

The simple harmonic principal vibration of the 2D-ERM is given by
ū3(x1, x2, t) = ϕ(x1, x2)eiωt, where ϕ(x1, x2) represents the mode shape function; ω is the
angular frequency.

Substituting ū3 into Equation (27), the mode differential equation can be obtained as

D∇4ϕ − ρ∗hω2ϕ = 0 (28)

For a 2D-ERM with a set of simply supported edges, the mode shape function is

ϕ(x1, x2) = Y(x2) sin µx1 (29)

where µ = mπ/a.
Substituting Equation (29) into Equation (28), a fourth-order ordinary differential

equation can be obtained as

d4Y(x2)

dx4
2

− 2µ2 d2Y(x2)

dx2
2

+
(

µ4 − γ4
)

Y(x2) = 0 (30)

where γ4 = ρ∗hω2/D.
The characteristic equation of Equation (30) is written as

r4 − 2µ2r2 +
(

µ4 − γ4
)
= 0 (31)

and its four roots are

r1,2 = ±
√

µ2 − γ2, r3,4 = ±
√

µ2 + γ2 (32)

For the most common case of µ2 < γ2, the four roots consist of two imaginary roots
and two real roots, i.e., r1,2 = ±i

√
γ2 − µ2 = ±iα, r3,4 =

√
µ2 + γ2 = β, then the general

solution of Equation (30) is

Y(x2) = A1 cos α + A2 sin αx2 + A3 cosh βx2 + A4 sinh βx2 (33)

where the coefficients of A1 to A4 can be determined by solving the frequency equation
and modal function under the corresponding boundary conditions.

3.3. Random Vibration Analysis of 2D-ERM Based on Spectral Method

Using the modal superposition method, the lateral displacement of the 2D-ERM can
be represented in modal expansion form as

ū3(x1, x2, t) =
∞

∑
m=1

∞

∑
n=1

ϕmn(x1, x2)ηmn(t) (34)

where ϕmn(x1, x2) represents the mn-th vibration mode of the 2D-ERM, where m and n are
positive integers, respectively, representing the half-wave number in the 1- and 2-directions,
and ηmn(t) is the corresponding displacement coordinate of the mn-th vibration mode.

According to modal orthogonality,∫ b

0

∫ a

0
ρ∗hϕmn(x1, x2)ϕkl(x1, x2)dx1dx2 = γmnδmn,kl (35)
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∫ b

0

∫ a

0
cϕmn(x1, x2)ϕkl(x1, x2)dx1dx2 = cmnδmn,kl (36)

where γmn =
∫ b

0

∫ a

0
ρ∗hϕmn(x1, x2)

2dx1dx2 represents the mass of the mn-th vibration

mode; cmn represents the damping ratio of the mn-th vibration mode; cmn = 2ζmnωmnγmn,
ωmn denotes the mn-th circular frequency; and δmn,kl is the Kronecker delta function.

By multiplying both sides of Equation (26) by the modal shape functions ϕlk(x1, x2),
and integrating over the panel surface, one can decouple Equation (26) into a series of
single-degree-of-freedom systems:

η̈mn(t) + 2ζmnωmnη̇mn(t) + ωmnηmn(t) =
1

γmn

∫ b

0

∫ a

0
p(x1, x2, t)ϕmn(x1, x2)dx1dx2 (37)

The solutions of Equation (37) can be solved using the Duhamel integral:

ηmn(t) =
1

γmn

∫ ∞

−∞

∫ b

0

∫ a

0
hmn(t − τ)p(x1, x2, τ)ϕmn(x1, x2)dx1dx2dτ (38)

where hmn(t − τ) represents the unit impulse response function.
Substituting Equation (38) into Equation (34), the lateral displacement response can be

expressed as

ū3(x1, x2, t) =
∞

∑
m=1

∞

∑
n=1

ϕmn(x1, x2)Pmn

∫ ∞

−∞
hmn(t − τ)X(τ)dτ (39)

where Pmn =
1

γmn

∫ b

0

∫ a

0
Γ(x1, x2)ϕmn(x1, x2)dx1dx2.

The self-power spectral density of the lateral displacement ū3(x1, x2, t) at any point
can be expressed as the sum of modal self-correlation terms and modal cross-correlation
terms, i.e.,

Sū3ū3(x1, x2, ω) = Sū3ū3,1 + Sū3ū3,2

=
∞

∑
m=1

∞

∑
n=1

ϕ2
mn(x1, x2)P2

mn|Hmn(ω)|2SXX(ω)

+
∞

∑
m=1

∞

∑
n=1

∞

∑
k=1
k ̸=m

∞

∑
l=1
l ̸=n

ϕmn(x1, x2)ϕkl(x1, x2)PmnPkl H∗
mn(ω)Hkl(ω)SXX(ω)

(40)

where Hmn(ω) =
(
ωmn

2 − ω2 + 2iωωmnζmn
)−1 is the frequency response function corre-

sponding to the mn-th frequency; the superscript (*) denotes the complex conjugate.
For the elastic thin panel of the 2D-ERM, the relationship between the stress compo-

nents and lateral displacements is

s1 = − Ex3

1 − v2 (ū3,11 + vū3,22), s2 = − Ex3

1 − v2 (ū3,22 + vū3,11), s12 = − Ex3

1 + v
ū3,12 (41)

Consequently, the stress self-power spectral density function can be obtained as

Ss1s1(x1, x2, ω) =
E2x2

3

(1 − v2)
2

∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

∞

∑
l=1

[
ϕmn,x1x1 ϕkl,x1x1 + v

(
ϕmn,x1x1 ϕkl,x2x2 + ϕmn,x2x2 ϕkl,x1x1

)
+v2ϕmn,x2x2 ϕkl,x2x2

]
PmnPkl H∗

mn(ω)Hkl(ω)SXX(ω)

(42)
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Ss2s2(x1, x2, ω) =
E2x2

3

(1 − v2)
2

∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

∞

∑
l=1

[
ϕmn,x2x2 ϕkl,x2x2 + v

(
ϕmn,x2x2 ϕkl,x1x1 + ϕmn,x1x1 ϕkl,x2x2

)
+v2ϕmn,x1x1 ϕkl,x

]
PmnPkl H∗

mn(ω)Hkl(ω)SXX(ω)

(43)

Ss12s12(x1, x2, ω) =
E2x2

3
(1 + v)2

∞

∑
m=1

∞

∑
n=1

∞

∑
k=1

∞

∑
l=1

ϕmn,x1x2 ϕk,x1x2 PmnPkl H∗
mn(ω)Hkl(ω)SXX(ω) (44)

where ϕmn,x1x1 represents the second-order partial derivative of the mn-th mode with
respect to x1, and ϕmn,x1x2 represents the second-order mixed partial derivative of the mn-th
mode with respect to x1 and x2.

Upon obtaining the self-power spectral densities as presented in Equations (40) and
(42) to (44), the mean square value of the arbitrary response ui(x1, x2, t) can be obtained by
frequency domain integration, i.e.,

E
[
ui(x1, x2, t)2

]
=
∫ ωc

0
Suiui (x1, x2, ω)dω (45)

where ωc is the upper cutoff frequency, and the corresponding response root mean square is

σi(x1, x2) =

√∫ ωc

0
Suiui (x1, x2, ω)dω (46)

4. Model Validation

This section presents a comparative analysis between the outcomes of a 3D finite
element analysis (3D-FEA) and the VAM-based 2D equivalent Reissner–Mindlin model
(2D-ERM) to assess its accuracy in analyzing the dynamic characteristics of CSP-TCH. The
effects of selecting the model class are quantified through dynamic numerical examples [44],
wherein the relative error signifies the variance between the 2D-ERM and 3D-FEA outcomes.
The dynamic analyses of both models are implemented using the linear perturbation
procedure (frequency and random response) in the Abaqus finite element software. The
dimensions of the benchmark sandwich panel are a = 450 mm and b = 300 mm, and
T1 = 4 mm, T3 = 8 mm, α = 20◦, Lx = Ly = 15 mm, as shown in Figure 4b. The facesheet
height is hc = 1 mm, with a height ratio of 10:1 between the core layer and facesheet (hc:h f ).

The core layer is constructed from aluminum, an isotropic material with material
properties of ρ = 2.7 g/cm3, EAL = 2.7 GPa, and νAL = 0.3. On the other hand, the
facesheet is composed of CFRP (T800), arranged in layup mode of [45/ − 45/0/90]s.
The homogenized material parameters of the CFRP facesheet are presented in Table 1
for reference.

Table 1. Material properties of CFRP facesheet.

Properties ρ E11=E22 E33 G12 G13=G23 ν12 ν13 = ν23

Values 1.49 g/cm3 41.425 GPa 14.381 GPa 15.541 GPa 3.204 GPa 0.333 0.325

4.1. Free Vibration Verification

To investigate the dynamic performance of the CSP-TCH and access the accuracy of
2D-ERM, different cases were selected for numerical simulation comparison, as shown in
Figure 5. In this context, “F”, “S”, and “C” denote freely, simply, and clamp-supported
edges, respectively. The naming convention reflects the combination of opposite sides, for
instance, “FFCC” implies that the right and left sides are fixed while the upper and lower
sides are free sides.
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(a) (b) (c) (d)

Figure 5. Boundary conditions for dynamic analysis of CSP-TCH. (a) Case 1: CCCC. (b) Case 2: SSCC.
(c) Case 3: FFCC. (d) Case 4: FFCF.

Table 2 compares the first eight natural frequencies and free vibration modes of CSP-
TCH obtained from the 3D-FEA and 2D-ERM under CCCC boundary conditions (BCs).
It is clear that as the modal order increases, the vibration modes become more complex.
Notably, except for the third, fifth, eighth, and tenth modes, where lateral deflections occur,
the remaining modes predominantly align along the 2-direction as the lateral deflections are
zero on all four sides. This inclination is due to the larger size of the 2-direction compared to
the 1-direction, emphasizing the importance in engineering design of loading towards the
smaller side to mitigate strong resonance effects. The modal comparison highlights a close
correspondence between the vibration modes of the 3D-FEA and 2D-ERM, signifying that
the 2D-ERM not only accurately predicts natural frequencies but also effectively captures
vibration modes. This agreement lays a solid groundwork for subsequent random vibration
analysis based on modal superposition.

Table 2. Comparison of first eight frequencies and free vibration modes of CSP-TCH under CCCC
boundary conditions obtained from 3D-FEA and 2D-ERM.

Model 1 2 3 4

3D-FEA

354.17 Hz 550.19 Hz 857.76 Hz 879.66 Hz

2D-ERM

355.3 Hz 551.99 Hz 864.01 Hz 883.05 Hz

Error 4.53% 4.39% 5.72% 4.63%

Model 5 6 7 8

3D-FEA

1331.4 Hz 1341.3 Hz 1607.8 Hz 1770.2 Hz

2D-ERM

1337.9 Hz 1350.6 Hz 1627.5 Hz 1783.1 Hz

Error 5.20% 5.45% 5.52% 5.67%

Table 3 presents the first eight frequencies predicted by the 2D-ERM and 3D-FEA
across the other three BCs. The comparison reveals a high degree of consistency in the
first eight frequencies between the 2D-ERM and 3D-FEA. Owing to spatial constraints,
the detailed listing of high-order modes under the SSCC, FFCC, and FFCF BCs is omitted.
Nonetheless, it is anticipated that the visualization of high-order free vibration modes
under the three aforementioned BCs mirrors that under CCCC BCs in Table 2. Furthermore,
a marginal disparity in natural frequencies between the 3D-FEA and 2D-ERM is observed,
with a notable alignment in mode shapes.



Materials 2024, 17, 3973 12 of 25

Table 3. Comparison of first eight frequencies of CSP-TCH under other three BCs, as predicted by
3D-FEA and 2D-ERM (unit: Hz).

Order
SSCC FFCC FFCF

3D-FEA 2D-ERM Error 3D-FEA 2D-ERM Error 3D-FEA 2D-ERM Error

1 307.69 319.2 3.74% 174.6 180.44 3.34% 27.341 28.173 3.04%
2 625.05 649.21 3.87% 239.61 248.68 3.79% 90.046 93.582 3.93%
3 799.28 835.77 4.57% 480.02 498.17 3.78% 169.41 174.79 3.18%
4 1093.3 1140.8 4.34% 550.87 574.11 4.22% 304.5 316.49 3.94%
5 1093.9 1141.7 4.37% 575.86 598.89 4.00% 417.53 433.94 3.93%
6 1553.4 1623.8 4.53% 912.84 952.85 4.38% 485.78 503.76 3.70%
7 1644 1736.8 5.64% 938.66 979.65 4.37% 622.97 647.7 3.97%
8 1707.6 1793.2 5.01% 1046.3 1092.8 4.44% 659.57 687.86 4.29%

4.2. Random Vibration Verification

Introducing random loads facilitates a comprehensive analysis of CSP-TCH’s random
vibration behavior, further validating the efficacy of the equivalent model in assessing
its dynamic characteristics [45]. In the random vibration analysis, the random excitation
detailed in Table 4 is utilized, and its PSD curve is illustrated in Figure 6. The analysis
incorporates direct modal damping with a damping ratio set at 0.05. Focusing on the first
eight natural frequencies and associated vibration modes of the panel, a comprehensive
random vibration response analysis is conducted. This analysis encompasses parameters
such as the PSD curve, effective mass fraction, RMS value, etc. The study considers four
boundary conditions without out-of-plane loading: CCCC (0–2000 Hz), SSCC (0–1800 Hz),
FFCC (0–1100 Hz), and SCCS (0–700 Hz).

Table 4. Random excitation.

Frequency Range Power Spectral Density Acceleration Root Mean Square Value

10∼200 Hz +6 dB/oct
14.4 g200∼1500 Hz 1.2 g2/Hz

1500∼2000 Hz −12 dB/oct

Figure 6. Power spectral density curve of random excitation.

4.2.1. Power Spectral Density Response

Figure 7 compares the displacement PSD curves at the center point of the panel
under four BCs, as predicted by the 3D-FEA and 2D-ERM. Notably, the displacement
PSD curves exhibit good alignment across all BCs, with the error in peak displacement
PSD under FFCF BCs at 2.42%, notably lower than the 4.29% error observed under CCCC
BCs. The peak displacement PSD value reaches 3.73 × 10−5 m under CCCC BCs, while
the maximum peak value occurs under FFCF BCs. The trend indicates that heightened
boundary constraints lead to reduced displacement responses but with larger peak errors.
Consequently, reinforcing boundary constraints in engineering applications can effectively
mitigate issues associated with substantial resonance-induced displacements.
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Figure 7. Comparison of displacement PSD curves predicted by 2D-ERM and 3D-FEA under (a) case 1:
CCCC, (b) case 2: SSCC, (c) case 3: FFCC, and (d) case 4: FFCF.

Figure 8 compares the velocity PSD curves across the four cases, revealing that the
excitation frequency associated with the maximum peak closely aligns with the funda-
mental frequency of free vibration obtained through modal analysis, albeit it is slightly
lower. This discrepancy is attributed to Rayleigh damping, which causes the resonance
frequency to be marginally lower than the panel’s natural frequency. Notably, the number
of peaks differs across BCs, with two peaks under CCCC BCs, three under SSCC and
FFCC BCs, and five under FFCF BCs. This pattern corresponds well with the effective
mass fractions derived from the 3D-FEA and 2D-ERM. In addition, within the same case,
modes possessing higher effective mass fractions exhibit greater peak values in velocity
and displacement PSD curves. This observation underscores the significance of the effective
mass fraction in elucidating mode behaviors.
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Figure 8. Comparison of displacement PSD curves predicted by 2D-ERM and 3D-FEA under (a) case 1:
CCCC, (b) case 2: SSCC, (c) case 3: FFCC, and (d) case 4: FFCF.

Figure 9 compares the acceleration PSD curves of CSP-TCH under four cases as
predicted by the 2D-ERM and 3D-FEA. The number and distribution of peak values in
the acceleration PSD curve aligns with those of effective mass fractions under varying
conditions. For instance, the highest peak may lie in the first mode of the acceleration
PSD under CCCC BCs, the fourth mode remains substantial, indicating a heightened
influence of other peaks on the acceleration PSD curve, contrasting the patterns observed in
displacement- and velocity PSD curves. Furthermore, the predominant peak occurs at the
fourth mode under FFCF BCs, surpassing the magnitude of the first peak significantly. This
observation suggests that the acceleration PSD curve diverges from the trend where larger
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effective mass fractions correspond to larger responses, characteristic of displacement-
and velocity PSD curves. Despite distinct acceleration PSD behavior, the predictions
from the 2D-ERM align closely with those from the 3D-FEA, meeting the requirements of
engineering precision.
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Figure 9. Comparison of acceleration PSD curves predicted by 2D-ERM and 3D-FEA under (a) case 1:
CCCC, (b) case 2: SSCC, (c) case 3: FFCC, and (d) case 4: FFCF.

Table 5 compares PSD errors under different cases. It can be seen that the maximum
error occurs in the peak displacement PSD under CCCC BCs, which is 4.29%. The smallest
error occurs at the peak of the velocity PSD under FFCF BCs, which is only 0.71%. It is
observed that under different BCs, with the weakening of boundary constraints, the error
also decreases, which accords with the trend that strong boundary constraints correspond
to larger overall errors. In general, all the errors are within 5%, to meet the requirements of
engineering accuracy. This shows that the 2D-ERM performs well in predicting structural
dynamic response, and its prediction results are within a reasonable error range with those
of 3D-FEA even under complex boundary conditions, and its reliability is verified.

Table 5. Comparison of PSD peak errors under different cases.

BC PSD Peak 2D-ERM 3D-FEA Error

CCCC
U3 m2/Hz 3.57 × 10−5 3.73 × 10−5 4.29%

V3 (m/s)2/Hz 331.09 345.66 4.22%
A3 g2/Hz 3.08 × 10+9 3.21 × 10+9 4.05%

SSCC
U3 m2/Hz 1.32 × 10−4 1.27 × 10−4 3.8%

V3 (m/s)2/Hz 631.34 654.68 3.57%
A3 g2/Hz 3.15 × 10+9 3.62 × 10+9 3.68%

FFCC
U3 m2/Hz 9.78 × 10−4 10.09 × 10−4 3.07%

V3 (m/s)2/Hz 1.25 × 10+3 1.27 × 10+3 1.57%
A3 g2/Hz 1.49 × 10+9 1.51 × 10+9 1.32%

U3 m2/Hz 2.82 × 10−2 2.89 × 10−2 2.42%
V3 (m/s)2/Hz 825.45 831.34 0.71%FFCF

A3 g2/Hz 2.29 × 10+7 2.37 × 10+7 3.38%

4.2.2. Effective Mass Fraction

Effective mass fraction serves as a critical metric for exploring random vibration
responses. It aids in the analysis of plate vibration characteristics and structural reliabil-
ity assessment. Principal modes are characterized by non-zero effective mass fractions,
with higher fractions indicating modes that are more easily excited and displaying larger
oscillation peaks.

Table 6 compares the effective mass fractions predicted by the 3D-FEA and 2D-ERM
under four BCs. The total mass of the 3D-FEA is 3.1900188 × 10−3, while for the 2D-ERM it
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is 3.1900561 × 10−3. Due to the presence of pores in the 3D-FEA, its total mass is slightly
lower than that of the 2D-ERM. The distribution of effective mass fraction aligns closely
with the amplitude variation of random vibration: notably, the maximum amplitude occurs
at the first order for all four BCs. This phenomenon arises from the fact that the first
effective mass fraction is the largest, contributing significantly to random load response.
Moreover, the fundamental frequency exerts the most substantial impact on the effective
mass fractions. Therefore, when analyzing the random vibration response of the panel,
it is crucial to focus on the fundamental frequency and conduct thorough analysis and
evaluation accordingly.

Table 6. Comparison of effective mass fractions of 3D-FEA and 2D-ERM under four BCs.

BC Model
Order

1 2 3 4 5 6 7 8

CCCC
3D-FEA 49.22% 0 0 8.42% 0 0 0 9.67%
2D-ERM 49.13% 0 0 8.39% 0 0 0 9.61%

δ (%) 0.18 0 0 0.36 0 0 0 0.62

CCSS
3D-FEA 57.15% 0 0 0 9.80% 0 6.65% 0
2D-ERM 56.59% 0 0 0 9.75% 0 6.57% 0

δ (%) 0.28 0 0 0 0.51 0 1.2 0

FFCC
3D-FEA 68.83% 0 0 0.09% 0 0 13.22% 0
2D-ERM 67.81% 0 0 0.08% 0 0 12.79% 0

δ (%) 1.48 0 0 0.08 0 0 3.25 0

FFCF
3D-FEA 61.01% 0 18.85% 0 0.98% 5.59% 0 0.15%
2D-ERM 60.15% 0 18.78% 0 0.97% 5.56% 0 0.15%

δ (%) 1.41 0 0.37 0 1.02 0.54 0 0

4.2.3. Root Mean Square Response

On the basis of verifying the PSD response of CSP-TCH, this section further examines
the RMS response, which holds greater significance for its random vibration characteristics.
Table 7 compares the displacement, velocity and acceleration RMS clouds at the center point
of the panel under four BCs. The analysis reveals a striking similarity in the RMS clouds
generated by both models, with a negligible error margin of only 2.45%, meeting established
engineering criteria. Inspection of the RMS clouds indicates that symmetric boundary
conditions result in symmetric RMS clouds, while variations in boundary conditions cause
shifts in the peak position of the RMS cloud. This observation signifies the potential value
of analyzing RMS clouds to assess vibration characteristics and energy distribution of the
panel, thereby offering insights for structural optimization in the design processes. Notably,
the RMS cloud of random vibration under the four BCs aligns with the first free vibration
mode. This mode holds exceptional significance, exerting a substantial influence on the
overall vibration response due to its distinctive vibrational characteristics.

Figures 10–12 compare the RMS curves at the pickup point located at the center of the
panel, as predicted by the 2D-ERM and 3D-FEA under different BCs. The trends in change
projected by the 2D-ERM align closely with the outcomes from the 3D-FEA, demonstrating
minimal discrepancies with a maximum error of 2.45%. Furthermore, the results indicate
that the displacement and velocity RMS values exhibit a linear and pronounced increase
with increasing frequency, followed by a gradual deceleration after reaching peak values.
Notably, the frequency corresponding to the first turning point of each curve is close to the
fundamental frequency under the corresponding BCs.

The velocity RMS curve under FFCF BCs, as illustrated in Figure 11d, displays a unique
behavior where it does not immediately flatten out after reaching the first turning point.
Instead, it continues to rise to a new peak before gradually stabilizing. This distinctive
phenomenon can be attributed to the effective mass fraction associated with FFCF BCs.
Analysis of the data presented in Table 6 reveals that the third mode holds a relatively
substantial share in the effective mass fraction under FFCF BCs, accounting for close to
20%. The heightened effective mass fraction of the third mode signifies its pronounced
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influence on the structural vibration. Consequently, the velocity RMS curve demonstrates
a distinct change pattern, setting it apart from the curves observed under other three
BCs. This observation underscores the impact of different vibration modes on the dynamic
characteristics of the panel, emphasizing the significant effect that the effective mass fraction
exerts on the vibration response.

Table 7. Comparison of the RMS cloud of CSP-TCH under different BCs predicted by 3D-FEA and
2D-ERM.

BC U3 V3 A3

CCCC

3D-FEA

2D-ERM

Error 2.14% 0.83% 0.58%

SSCC

3D-FEA

2D-ERM

Error 2.45% 0.86% 0.16%

FFCC

3D-FEA

2D-ERM

Error 1.34% 0.16% 1.25%

FFCF

3D-FEA

2D-ERM

Error 1.34% 0.23% 0.29%

Figure 12 shows the acceleration RMS curves under four BCs, which do not imme-
diately flatten out upon reaching the first turning point. This behavior is linked to the
heightened susceptibility of the acceleration PSD to higher vibration modes, as previously
discussed. However, as the boundary constraints intensify, this susceptibility diminishes,
indicating a trend where stronger constraints lead to a more stabilized acceleration RMS
curve after the first turning point. For instance, the last turning point of the acceleration
RMS curve corresponds to a higher frequency value within its frequency range under
SSCC BCs. Conversely, lower frequency values correspond to CCCC BCs. This pattern
illustrates that stronger boundary constraints result in a reduced impact of higher-order
modes on the acceleration RMS values. Consequently, accounting for the influence of
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boundary conditions in engineering applications stands as a critical factor in guaranteeing
the performance of the CSP-TCH.
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Figure 10. Comparison of displacement RMS curves at the receiver point predicted by 2D-ERM and
3D-FEA under (a) case 1: CCCC, (b) case 2: SSCC, (c) case 3: FFCC, and (d) case 4: FFCF.
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Figure 11. Comparison of velocity RMS curves at the receiver point predicted by 2D-ERM and
3D-FEA under (a) case 1: CCCC, (b) case 2: SSCC, (c) case 3: FFCC, and (d) case 4: FFCF.



Materials 2024, 17, 3973 18 of 25

0 3 6 9 12 15 18
0

3

6

9

12

 A
cc

el
er

at
io

n-
RM

S×
10

5  [m
m

/s
2 ]

Frequency×102 [Hz]

 3D-FEA
 2D-ERM

Receiver point

(a)

0 3 6 9 12 15 18
0

2

4

6

8

10

A
cc

el
er

at
io

n-
RM

S×
10

5 
[m

m
/s

2 ]

Frequency×10 2 [Hz]

 3D-FEA
 2D-ERM

(b)

Receiver point

0 3 6 9 12
0

1

2

3

4

5

A
cc

el
er

at
io

n-
RM

S×
10

5 
[m

m
/s

2 ]

Frequency×10 2 [Hz]

 3D-FEA
 2D-ERM

Receiver point

(c)

0 3 6 9
0.0

0.5

1.0

1.5

2.0

A
cc

el
er

at
io

n-
RM

S×
10

5  [m
m

/s
2 ]

Frequency×10 2 [Hz]

 3D-FEA
 2D-ERM

Receiver point

(d)

Figure 12. Comparison of acceleration RMS curves at the receiver point predicted by 2D-ERM and
3D-FEA under (a) case 1: CCCC, (b) case 2: SSCC, (c) case 3: FFCC, and (d) case 4: FFCF.

5. Influence of Critical Parameters on Poisson’s Ratio and Random Dynamic Characteristics

Based on the validated equivalent model, this section examines the impact of key
parameters (e.g., ligament–rib angle, thickness ratio T1/T3, width–height ratio Lx/hc,
and layup mode) on the PR and random vibration characteristics of the sandwich panel,
focusing primarily on the displacement PSD and displacement RMS under CCCC BCs.

5.1. Ligament–Rib Angle

Figure 13a illustrates that with the ligament–rib angle gradually increasing from 15°
to 45°, the PR of the sandwich panel fluctuates around 0.317, suggesting that the change
in the ligament–rib angle has minimal impact on it. The PR of the core layer generally
increases, shifting from a negative to a positive value. The discrepancy in PR alterations
between the core layer and the sandwich panel is due to the fact that the high stiffness
of the facesheet limits the lateral deformation of the core layer. This disparity highlights
the intricate interplay among the different components of the sandwich panel during the
fluctuation process.
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Figure 13. Influence of ligament–rib angle on the Poisson’s ratio (PR) and displacement PSD of
CSP-TCH. (a) Poisson’s ratio. (b) Displacement PSD curve.
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Figure 13b illustrates the displacement PSD curves corresponding to various ligament–
rib angles, reflecting a consistent peak at approximately 510 Hz, in alignment with the
fundamental frequency. The structural stiffness proportionally rises with an increase in
the ligament–rib angle, leading to a gradual decrease in the displacement PSD values.
Significantly, a discernible deviation emerges in the displacement PSD curve at α = 30◦,
with a premature peak at 400 Hz that surpasses values at other angles. This discrepancy
can be attributed to a shift in PR from negative to positive at the 30◦ angle, as illustrated
in Figure 13a. This shift likely triggers local resonance within the panel, impacting the
transmission and diffusion of vibrational energy, and subsequently, amplifying the vibration
displacement of the panel.

5.2. Thickness Ratio T1/T3

Figure 14a depicts that the PR of the core layer rises steadily as the thickness ratio
escalates from 0.6 to 1.8, shifting from −0.521 to −0.446. This suggests that while the core
layer maintains the NPR effect, an increase in the ratio diminishes the likelihood of the core
layer flipping along the cross-section, thereby lowering the NPR value. The high stiffness
of the facesheet ensures that the PR of the sandwich panel remains relatively constant at
around 0.33, regardless of any changes in the ligament–rib angle.
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Figure 14. Influence of thickness ratio on the Poisson’s ratio (PR) and displacement PSD of CSP-TCH.
(a) Poisson’s ratio. (b) Displacement PSD curve.

Figure 14b illustrates that the displacement PSD curve resulting from variations in
the T1/T3 ratio exhibits a consistent pattern. Unlike the impact of the ligament–rib angle,
alterations in this ratio do not lead to sudden changes. The curve consistently peaks around
510 Hz, consistent with the fundamental frequency. The peak displacement PSD value
occurs at T1/T3 = 0.6, with the minimum observed at T1/T3 = 1.8. As the T1/T3 ratio
increases, there is a gradual decrease in the displacement PSD value. This trend supports
the notion that a higher T1/T3 ratio corresponds to greater structural stiffness and reduced
vibrational response. In practical engineering applications, tailoring the T1/T3 ratio can
lead to lower displacement PSD values, thus mitigating significant resonance displacement
in the panel and enhancing its overall stability.

5.3. Width–Height Ratio Lx/hc

Figure 15a illustrates that the PR of the core layer decreases gradually as the Lx/hc
ratio increases from 6.0 to 9.0, shifting from −0.41 to −0.54. This phenomenon occurs
because when the width of the unit cell surpasses the thickness of the core layer, expanding
the width while maintaining the core layer thickness leads to an increase in transverse
deformation within the core layer. Consequently, this increment in transverse deformation
results in the increasing NPR of the core layer. The PR of the sandwich panel stays constant
irrespective of changes in the width–height ratio.
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Figure 15. Influence of width–thickness ratio on the Poisson’s ratio (PR) and displacement PSD of
CSP-TCH. (a) Poisson’s ratio. (b) Displacement PSD curve.

Figure 15b illustrates the displacement PSD curves corresponding to various Lx/hc
ratios, demonstrating a consistent pattern that peaks around 510 Hz, reflecting the funda-
mental frequency of the sandwich panel. Notably, the displacement PSD value reaches its
minimum at Lx/hc = 0.6; whereas it reaches its peak at Lx/hc = 1.8. The displacement
PSD value consistently rises with an increase in the Lx/hc ratio, in line with the trend of
decreasing structural stiffness as the Lx/hc ratio increases. In engineering applications,
reducing the Lx/hc ratio can enable the attainment of a smaller displacement PSD value,
thereby preventing significant resonance displacement and enhancing the overall stability
of the panel.

5.4. Layup Mode

The stiffness of the composite sandwich panel can be modified by altering the facesheet’s
layup modes, consequently influencing its PR. This adjustment occurs because the layup
arrangement impacts the fiber orientation within the facesheet, subsequently influencing
the overall stiffness properties of the composite sandwich panel. To study this effect, seven
layup modes were chosen for investigation: ID1: [±30]2s; ID2: [±45]2s; ID3: [±60]2s; ID4:
[±75]2s; ID5: [90]2s; ID6: [0/90]2s; ID7: [45/ − 45/0/90]s. Figure 16a shows that the PR
of the sandwich panel decreases progressively with an increase in the fiber layup angle
from ID1 to ID5. This change arises because the stiffness of the laminated facesheet is
primarily dictated by the orientation of the internal fibers, leading to a reduction in the
PR when multiple angles are implemented. Conversely, the PR of the core layer remains
relatively constant regardless of changes in the layup angle, as the core layer’s geometry
remains consistent.
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Figure 16. Influence of layup mode on the Poisson’s ratio (PR) and displacement PSD of CSP-TCH.
(a) Poisson’s ratio. (b) Displacement PSD curve.

Figure 16b depicts the impact of fiber layup mode on the displacement PSD of CSP-
TCH under CCCC BCs. Notably, ID1 exhibits the most significant displacement PSD peak,
whereas ID5 exhibits the smallest peak. Specifically, the curve trajectories of ID2, ID6,
and ID7 closely align. This coherence arises from the similarities in the ABD stiffness
matrix of the panel across these three layup modes. An important observation is that for
ID7 the peak displacement PSD value of the first mode falls in the mid-range, with the
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corresponding frequency also being intermediary. In contrast, ID4 exhibits a smaller peak
displacement PSD but necessitates the highest frequency. Consequently, opting for the ID7
layup proves advantageous in mitigating low-frequency resonance occurrences by yielding
a relatively moderate peak displacement PSD. This highlights the commendable structural
performance associated with this specific layup mode.

5.5. Influence of Critical Parameters on Displacement RMS

Figure 17 illustrates that the displacement RMS of CSP-TCH remains consistent despite
variations in critical parameters. Specifically, the displacement RMS increases with the
increase in the width–thickness ratio (Lx/hc) and ligament–rib angle, as well as decreases in
the thickness ratio (T1/T3). It is noteworthy that Lx/hc and T1/T3 have minimal influence
on the displacement RMS compared to the ligament–rib angle. Crucially, a transition
in the ligament–rib angle from 25° to 30° results in a sudden spike in the displacement
RMS of CSP-TCH. This abrupt change is attributed to the shift in the PR of the core layer
from negative to positive, triggering a localized resonance phenomenon during random
vibration and significantly magnifying the displacement alteration.
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Figure 17. Comparison of displacement RMS curves predicted by 2D-ERM and 3D-FEA under four
critical parameters. (a) α. (b) T1/T3. (c) Lx/hc. (d) Layup modes.

Figure 17d offers a visual representation of the displacement RMS of CSP-TCH across
various layup modes. It is evident that ID1 exhibits the highest displacement RMS value,
ID5 displays the lowest, and ID7 falls in between, highlighting the significant impact of
different layup modes on the sandwich panel’s vibration characteristics. This trend is
attributed to the alteration in panel stiffness resulting from the increasing ply angle, which
subsequently influences the panel’s natural frequency and vibration mode.

5.6. Summary

For a detailed analysis of the diverse impact of each parameter, Table 8 compares the
change rates of equivalent density (ρ∗), PR of the core layer (ν1) and sandwich panel (ν2),
first-order natural frequency (ω), first-order displacement RMS (RU3), and displacement
PSD (U3) under the impact of individual parameters.
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Table 8. Comparison of change rates of vibration characteristics under the impact of individual
parameters.

Parameter Range of Variation
|∆ρ∗| |∆ν1| |∆ν2| |∆ω| |∆RU3| |∆U3|
(%) (%) (%) (%) (%) (%)

α 15°∼45° 9.28 176.66 6.33 3.30 28.86 61.33
T1/T3 0.6 ∼1.8 25.72 16.82 7.69 7.61 10.26 25.47
Lx/hc 6.0∼9.0 22.32 25.88 9.58 6.80 9.49 23.19

Layup modes ID1∼ID7 0 0 83.11 43.77 41.12 76.52

Table 8 highlights that critical parameters impacting the vibration characteristics
include the ligament–rib angle and facesheet layup mode, whereas the thickness ratio and
the width–height ratio have relatively minimal effects. It is crucial to recognize that different
parameters have distinct impacts on the structural vibration characteristics. For instance,
the thickness ratio and width–height ratio primarily affect vibration characteristics through
variations in the panel’s equivalent density. Conversely, the influence of the ligament–rib
angle on vibration characteristics stems from significant changes in the PR of the core layer.
This shift from a negative to a positive PR renders the panel more susceptible to local
resonance, consequently driving notable alterations in structural vibration characteristics.
By carefully adjusting parameters such as the ligament–rib angle, facesheet layup mode,
thickness ratio, and width–height ratio, designers can customize the CSP-TCH to mitigate
resonance issues and improve stability.

6. Computing Efficiency

Table 9 compares the efficiency of the 3D-FEA and 2D-ERM in dynamic analysis.
Notably, in free vibration and random vibration analysis, the computational time required
for the 2D-ERM represents only 0.64% and 0.161% of that needed for the 3D-FEA. This
highlights that the 2D-ERM, leveraging variational asymptotic homogenization, can signifi-
cantly reduce calculation time in the dynamic analysis of CSP-TCH. By enhancing efficiency
in analysis, the 2D-ERM offers more effective tools and methodologies for engineering
design and dynamic analysis, thereby improving overall efficiency and productivity in
the field.

Table 9. Comparison of the efficiency of 3D-FEA and 2D-ERM in dynamic analysis of CSP-TCH.

Item 3D-FEA
2D-ERM

3D Unit Cell Equivalent Model

Element type C3D10 C3D10 S4R
Number of elements 371,562 12,844 3148

Free vibration analysis 1802 s / 23 s
Random vibration analysis 4836 s / 58 s

7. Conclusions

This work introduces a 2D equivalent Reissner–Mindlin model (2D-ERM) utilizing
VAM to examine the random vibration characteristics of CSP-TCH. Through comparison
with a 3D finite element analysis, the effectiveness of the 2D-ERM in predicting vibration
characteristics is confirmed. The primary research outcomes are as follows:

(1) In the free vibration analysis, the order of the first eight natural frequencies under
different boundary conditions is CCCC, SSCC, FFCC, and FFCF. This ranking is in accor-
dance with the principle that panels exhibiting higher support stiffness tend to possess
higher natural frequencies. This observation is corroborated by the mode shape analysis
performed on both the 2D and 3D models. Comparing the natural frequencies obtained
from the 2D and 3D models, it is noted that the natural frequencies calculated by the 3D
model are slightly lower than those from the 2D model. However, the overall discrepancy
falls within the acceptable engineering margin of less than 7%. This suggests that the VAM-
based equivalent model offers commendable accuracy and dependability in free vibration
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analysis, showcasing its effectiveness in capturing dynamic behavior while maintaining
error levels within acceptable engineering thresholds.

(2) In the random vibration analysis, the PSD curves demonstrate a strong alignment
across all four boundary conditions, with the most consistent fitting observed under FFCF
boundary conditions, where the maximum displacement PSD peak error is merely 2.42%.
The largest discrepancy of 4.29% appears in the CCCC boundary conditions, meeting
the required engineering accuracy standards. Moreover, the peak value of displacement
PSD reaches 3.73 × 10−5 under CCCC boundary conditions. This emphasizes that stricter
boundary constraints result in decreased displacement responses but can also lead to
heightened displacement PSD peak errors. The RMS curves under all boundary conditions
show excellent agreement, with the RMS clouds from the 3D-FEA and 2D-ERM exhibiting
similar trends and minimal discrepancies of 2.45%, affirming the efficacy of the equivalent
model in accurately capturing random vibration responses.

(3) Among the considered key parameters, the rib-to-ligament thickness ratio and
the width–height ratio have minimal effects on the vibration characteristics. Changes in
the thickness ratio and width–height ratio primarily relate to alterations in the equivalent
density. On the other hand, the impact of the ligament–rib angle on vibration characteristics
predominantly arises from substantial shifts in the Poisson’s ratio of the core layer. This
shift increases the likelihood of local resonance within the panel, leading to significant
alterations in structural vibration characteristics. Hence, when designing and optimizing
the CSP-TCH, it is crucial to carefully assess the effects of these parameter adjustments on
vibration characteristics to ensure stable vibration performance.
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